## БИОГИБРИДНАЯ ТЕХНОЛОГИЯ ОБНАРУЖЕНИЯ СВЕРХНИЗКИХ КОНЦЕНТРАЦИЙ ТРИНИТРОТОЛУОЛА В ВОЗДУХЕ

© 2023 г. В. Н. Кирой<sup>*a*</sup>, П. О. Косенко<sup>*a*</sup>, И. Е. Шепелев<sup>*a*</sup>, И. В. Шербань<sup>*a*</sup>, А. Б. Смоликов<sup>*a*</sup>, Ф. В. Арсеньев<sup>*b*</sup>, А. В. Заборовский<sup>*c*</sup>, В. А. Аксёнов<sup>*d*</sup>, М. И. Тивилёва<sup>*d*</sup>,

В. М. Грузнов<sup>е, f,</sup> \*, И. И. Засыпкина<sup>е</sup> <sup>а</sup>Южный федеральный университет ул. Б. Садовая, 105/42, Ростов-на-Дону, 344006 Россия <sup>b</sup>Фонд перспективных исследований Бережковская наб., 22, стр. 3, Москва, 121059 Россия <sup>c</sup>Научно-производственное объединение "Специальная техника и связь" Министерства внутренних дел

Российской Федерации

ул. Пруд Ключики, 2, Москва, 111024 Россия

<sup>d</sup>Сибирский филиал Научно-производственного объединения "Специальная техника и связь" Министерства внутренних дел Российской Федерации

ул. Кутателадзе, 3, Новосибирск, 630055 Россия

<sup>е</sup>Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения

Российской академии наук

просп. Академика Коптюга, 3, Новосибирск, 630090 Россия

<sup>f</sup>Новосибирский государственный технический университет

просп. Карла Маркса, 20, Новосибирск, 630073 Россия

\**e-mail: GruznovVM@ipgg.sbras.ru* Поступила в редакцию 21.02.2023 г.

После доработки 29.03.2023 г.

Принята к публикации 03.04.2023 г.

Технология основана на регистрации фокальной активности (**ФA**) обонятельной луковицы (**ОЛ**) крыс при предъявлении крысам паров тринитротолуола (**THT**) с концентрацией 4.7 × 10<sup>-15</sup> г/см<sup>3</sup> отдельно и в смеси с насыщенными парами комплексной помехи из специй. Регистрация **Ф**А ОЛ крыс осуществлялась с помощью матрицы из 16 специальных электродов, имплантированных в дорсальную часть ОЛ крысы. Установка для регистрации **Ф**А ОЛ крыс содержала бокс с крысой, источники паров (одорантов), многоканальную цифровую систему цифровой регистрации электрических сигналов с матрицы электродов, программное обеспечение, содержащее алгоритмы распознавания и классификации предъявляемых крысе одорантов. Источники паров THT: статического объемного приготовления с концентрацией порядка 10<sup>-15</sup> г/см<sup>3</sup> и источник с концентрацией 4.7 × 10<sup>-15</sup> г/см<sup>3</sup> в потоке воздуха, предъявляемом крысам. Данные 25 испытаний показали 100%-ную вероятность обнаружения паров THT указанных концентраций в чистом воздухе и также в присутствии сложной запаховой помехи в виде паров от смеси красного перца, кориандра, табака и др., которые, как правило, маскируют для животных запах THT.

Ключевые слова: обонятельная луковица, фокальная активность, взрывчатые вещества, биосенсорная тест-система.

DOI: 10.31857/S0044450223080091, EDN: SHDSTZ

Проблема обнаружения паров опасных веществ в воздухе является актуальной как в контексте экологического мониторинга, так и решения задач в сфере охраны здоровья и безопасности людей [1, 2].

Портативные быстродействующие газоаналитические обнаружители паров взрывчатых веществ (**BB**) с временем реакции 1–3 с широко используются в практике антитеррористического контроля. Это приборы на основе спектрометрии приращения ионной подвижности (СПИП) "Пилот", "МО-02" и на основе спектрометрии ионной подвижности "Кербер", а также приборы "Fido XT" (США), "Заслон-М" (Россия) на основе гашения люминесценции. Порог обнаружения паров ТНТ у большинства серийных приборов

находится на уровне 10<sup>-13</sup> г/см<sup>3</sup>. Исключением является отечественный прибор "Шельф-ПКЛ" с временем обнаружения 2–5 с на основе СПИП с ионизатором по методу лазерной десорбции микрочастиц BB с контролируемой поверхности с порогом обнаружения паров ТНТ 3 × 10<sup>-15</sup> г/см<sup>3</sup> [3], т.е. для увеличения чувствительности применяется лазерная десорбция.

В ряде публикаций отмечено значительное влияние высокой пороговой чувствительности на возможность быстрого обнаружения объектов с ТНТ. В частности, в работах [4, 5] экспериментально показано, что при пороге обнаружения концентрации паров ТНТ  $10^{-16}$  г/см<sup>3</sup> возможно значительное сокращение времени обнаружения объекта с 200 г ТНТ с момента его помещения в автоматическую камеру хранения – до 5 мин вместо нескольких суток при пороге  $10^{-15}$  г/см<sup>3</sup>. Задержка обнаружения обусловлена медленным накоплением в ячейке камеры хранения обнаруживаемой концентрации паров.

Однако несмотря на наличие чувствительных аналитических приборов практические задачи обнаружения объектов с ВВ и наркотиками часто решаются с использованием специально обученных животных. Последнее связано с тем, что животные-макросматики обладают чрезвычайно высокой чувствительностью в режиме реального времени.

В настоящее время наряду с методиками обучения животных интенсивно исследуется активность структур обонятельного анализатора животных методом биогибридной технологии с анализом сигналов с микроэлектродов, имплантированных в дорсальную (заднюю) часть обонятельной луковицы (ОЛ) [6, 7]. Это наиболее перспективные направления исследования, которые позволяют обнаруживать активные нейроны и нейронные популяции, гломерулы ОЛ и исследовать их активность, непосредственно связанную с процессами анализа ольфакторной (обонятельной) информации [8]. Экспериментально показано, что устойчивые повторяющиеся сочетания данных активации гломерул (одорант-специфичные паттерны) ОЛ устойчиво воспроизводятся при повторных предъявлениях [9] одорантов и существенно различаются при предъявлении одорантов, различающихся физико-химическими свойствами [8]. Вследствие этого регистрация и анализ паттернов вызванной фокальной активности (ФА) ОЛ позволяет решать задачи, связанные с распознаванием и классификацией одорантов [10, 11].

Целью настоящей работы являлось определение возможности обнаружения следовых количеств паров ТНТ по сигналам фокальной активности, регистрируемым микроэлектродной матрицей с дорзальной поверхности ОЛ крысы, в условиях отсутствия и наличия паров запаховой помехи в виде смеси, содержащей следующие ингредиенты: перец красный молотый, табак курительный и др., пары которых, как правило, маскируют у животных запах ТНТ.

Эксперименты выполняли в НИТЦ нейротехнологий ЮФУ, (Ростов-на-Дону) и в Сибирском филиале ФКУ НПО "СТиС" МВД России (Новосибирск).

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экспериментальные животные. Эксперименты выполняли на четырёх взрослых самцах серых доместицированных крыс, широко используемых в лабораториях (массой от 350 до 450 г), которые содержали в индивидуальных клетках с постоянной температурой  $(23 \pm 1)^{\circ}$ С, влажностью 45% и 12 : 12 часовым циклом свет : темнота. Крысам был предоставлен свободный доступ к пище (коммерческий состав) и воде (очищенной). Все эксперименты и процедуры по уходу за животными были одобрены комитетом по биоэтике Южного федерального университета (Россия).

Вольфрамовые остро заточенные микроэлектроды (n = 16) в стеклянной оболочке (диаметр меньше 30 мкм) имплантировались в дорсальную часть ОЛ на глубину, соответствующую представительству так называемых митральных клеток (около 500 мкм), с межэлектродным расстоянием 500 мкм. Верификацию расположения кончиков микроэлектродов проводили после завершения экспериментальных работ посредством гистологического исследования срезов ОЛ. Микроэлектродная матрица и разъем, с которым она была соединена, укреплялись на черепе светоотверждаемой пластмассой. После операции крысам отводилось время для восстановления в течение одной недели. В экспериментах использовали четыре крысы. Выбранные особи не различались по возрасту, не имели ранее заболеваний. Многократные повторения нагрузок крыс одорантом с учетом межстимульных интервалов проводили в течение не более 20 мин. Ниже приведены результаты обнаружения паров ТНТ для крысы с наиболее правильным расположением кончиков микроэлектродов.

Отметим, что крысы с такой подготовкой по имплантации электродов, по режиму ухода и содержания перед экспериментами ранее успешно использовались в исследованиях воздействия наркоза на ФА ОЛ крыс, а также при отслеживании информативных признаков в гамма-частотном диапазоне ФА ОЛ [11, 12]. Для контроля функционального состояния крыс эксперименты проводились с ксилазин-золетиловой анестезией крыс (внутримышечно 5 и 15 мг/кг соответственно). Применение наркоза позволяло сформировать контролируемое функциональное состояние



**Рис. 1.** Схематическое изображение экспериментальной установки для проведения электрофизиологических экспериментов с регистрацией фокальной активности обонятельной луковицы крыс при предъявлении одорантных стимулов. 1 – наркотизированная крыса с вживленной микроэлектродной матрицей; 2 – экспериментальная камера (бокс); 3 – система для автоматического поддержания температуры тела животного; 4 – система контроля дыхания; 5 – аппаратио-программный комплекс, обеспечивающий управление режимом стимуляции животного газо-воздушными смесями (одоризатор): 5.1 – клапаны, 5.2 – источники одорантов, 5.3 – плата управления клапанами #1, #2, #3 подачи одорантов, 5.4 – маска для подачи газовоздушной смеси; 6 – усилитель – 32-канальная цифровая система Plexon Multichannel Acquisition Processor (MAP) (Plexon Corp., Dallas, Texas, USA); 7 – компьютер; 8 – программа визуализации сигналов фокальной активности (программное обеспечение Plexon).

крыс в течение двух часов, что значительно больше длительности экспериментов, а также нивелировало воздействие таких факторов, как степень голода, стресса и т.д.

Регистрация фокальной активности обонятельной луковицы крыс. Блок-схема экспериментальной установки для регистрации ФА ОЛ крыс показана на рис. 1. Крыс помещали в прямоугольную камеру (2) размером  $100 \times 50 \times 30$  см<sup>3</sup> внутри клетки Фарадея. Регистрацию 16 сигналов ФА ОЛ крыс осуществляли с помощью 32-канальной цифровой системы Plexon Multichannel Acquisition Processor (MAP) data acquisition system (Plexon Corp., Dallas, Texas) [12]. Система MAP содержит усилитель сигналов (6) с преобразованием сигналов в цифровой код с частотой дискретизации 10 кГц по каждому из каналов, компьютер (7), программное обеспечение Plexon-Sort Client (8) для визуализации зарегистрированных сигналов, распознавания и идентификации целевых сигналов, соответствующих предъявленным одорантам.

Синхронизация регистрации ФА ОЛ с временем предъявления стимулов (одорантов) осуществлялась с помощью платы управления клапанами (5.3). Все данные поступали на жесткий диск компьютера. Одновременно осуществлялся контроль постоянства температуры и дыхания крысы электронными системами (3 и 4) соответственно. Фокальную активность регистрировали в ходе экспериментов непрерывно в течение 3 с.

Методики приготовления и предъявления газовоздушных смесей (ГВС). Газовоздушные смеси готовили для экспериментов, которые проводили в два этапа. Первый этап состоял в настройке параметров алгоритма обнаружения и демонстрации возможности обнаружения следовых концентраций пара ТНТ в воздухе. Эту работу выполняли на базе НИТЦ нейротехнологий ЮФУ (Ростов-на-Дону). Второй этап — обнаружение следовых концентраций пара ТНТ в воздухе в присутствии паров запаховой комплексной помехи выполняли на базе Сибирского филиала НПО



**Рис. 2.** Схема получения и контроля источника паров тринитротолуола в эксперименте. Генератор стандартных концентраций (а), биосенсор – крыса (б), контроль состава газовоздушной смеси (в).

"Специальная техника и связь" МВД РФ (Новосибирск).

Для экспериментов I этапа готовили пары ТНТ в воздухе с концентрацией не более 10<sup>-15</sup> г/см<sup>3</sup> методом статического объемного приготовления градуировочных газовых смесей [13]. Использовали три стеклянных 15-литровых баллона, предварительно вымытых ацетоном и дистиллированной водой. В первом баллоне формировали концентрацию насыщенного пара ТНТ ~ 10<sup>-11</sup> г/см<sup>3</sup>. Для этого использовали раствор ТНТ в ацетоне с концентрацией 10<sup>-2</sup> г/см<sup>3</sup> (10 мг/мл) производства АО ГосНИИ "Кристалл". 5 мл раствора распределяли по дну и стенкам первой 15-литровой емкости и в открытом виде помещали емкость под вытяжку на 24 ч для удаления паров растворителя. Далее баллон закрывали герметичной крышкой, в которую был герметично вмонтирован патрубок с вентилем, и выдерживали в течение 48 ч при температуре окружающего воздуха 23 ± 2°С и нормальном атмосферном давлении (в пределах 740-760 мм. рт. ст.). Масса вещества в емкости с учетом его летучести превосходила необходимую для создания насыщенного пара. Далее последовательным двукратным разведением насыщенного пара в соответствии с методикой [13] получали в третьем баллоне концентрацию ~10<sup>-15</sup> г/см<sup>3</sup>. Перенос газовоздушных смесей ТНТ при каждом разведении осуществляли одноразовыми шприцами объемом 150 мл. Разведение паров осуществляли непосредственно перед проведением каждого эксперимента с животными. Концентрацию оценивали расчетным путем.

В третий баллон был встроен герметичный пакет с патрубком в крышке. Подачей воздуха в пакет со скоростью 2 л/мин обеспечивали подачу паров ТНТ в приготовленной концентрации в маску крысы через систему подводных трубок и программно управляемых компьютером клапанов. Продолжительность предъявления каждой пробы составляла 5 с. Межстимульный интервал, во время которого в маску крысы подавался только воздух с той же интенсивностью, составлял 10 с.

Для второго этапа экспериментов с испытаниями биогибридной технологии в ИНХ СО РАН создан генератор стандартных концентраций (ГСК) паров ТНТ (рис. 2а) на основе источников паров (ИП) ТНТ с концентрациями  $1.92 \times 10^{-13}$  и  $1.91 \times 10^{-14}$  г/см<sup>3</sup> [14]. Формирование паров ТНТ в созданном ГСК осуществляли пропусканием отфильтрованного осушенного воздуха (ООВ) через ИП ТНТ (рис. 2). Пары подавались в маску (рис. 1, позиция *5.4*) околоносового пространства животного через адаптер (стеклянную трубку) со скоростью 1 л/мин.

На выходе ИП ТНТ и адаптера периодически отбирали пробы ГВС для контроля концентрации паров ТНТ портативным газовым хроматографом ЭХО-М [15] с порогом определения паров ТНТ в воздухе 10<sup>-14</sup> г/см<sup>3</sup> с предварительным концентрированием с коэффициентом 10<sup>2</sup>.

Хроматограммы проб ГВС с парами ТНТ на выходе ИП и адаптера при комнатной температуре 23°С представлены на рис. 3. По амплитуде хроматографических пиков (выделены) оценивали концентрацию паров. Удовлетворительное качество анализа, включая пробоотбор и хроматографирование, иллюстрируется уменьшением амплитуды пика примерно на порядок при смене ИП ТНТ с концентрацией 1.92 × 10<sup>-13</sup> г/см<sup>3</sup> на ИП с концентрацией 1.91 × 10<sup>-14</sup> г/см<sup>3</sup>. Из сравне-



**Рис. 3.** Примеры хроматограмм проб тринитротолуола, полученных на выходе источника паров и адаптера при определении концентрации паров. Колонка поликапиллярная с 0.2 мкм фазы SE-30, температура колонки 170°C, поток газа-носителя (аргон) 55 мл/мин.

ния хроматограмм ИП с концентрацией ТНТ  $1.92 \times 10^{-13}$  г/см<sup>3</sup> без адаптера и с адаптером следует, что наличие адаптера уменьшает концентрацию пара примерно в четыре раза. На этом основании оценена концентрация ТНТ на выходе адаптера при ИП  $1.91 \times 10^{-14}$  г/см<sup>3</sup>, которая составила  $4.8 \times 10^{-15}$  г/см<sup>3</sup>. В такой концентрации пары ТНТ предъявляли животному.

В качестве запаховой помехи использовали комплексную помеху (КП на рис. 1) в виде сложной смеси ингредиентов, содержащей приправу "универсальную" ТУ 10.84.12-015-52230123-217 (состав: соль, перец зеленый сладкий (кусочки), чеснок гранулированный, лук молотый, морковь (кусочки), куркума молотая, перец красный молотый, кориандр молотый, зелень петрушки сушеная, зелень укропа сушеная, зелень базилика

| Номер эксперимента | Вероятность обнаружения |  |
|--------------------|-------------------------|--|
| 1                  | 90.0                    |  |
| 2                  | 83.3                    |  |
| 3                  | 90.0                    |  |
| 4                  | 83.3                    |  |
| 5                  | 86.7                    |  |
| 6                  | 76.7                    |  |
| 7                  | 96.7                    |  |
| 8                  | 76.7                    |  |
| 9                  | 86.7                    |  |
| 10                 | 96.7                    |  |
| Среднее значение   | $86.7\pm6.7$            |  |

Таблица 1. Вероятность обнаружения на тестовых выборках

сушеная, перец душистый молотый, лавровый лист молотый, краситель E160a); табак курительный тонко резаный "Corsar of the queen zware" и стиральный порошок "Dosia ActiveMax", ГОСТ 32479-2013 (состав: кислородсодержащий отбеливатель менее 5%, анионные и неионогенные ПАВ, цеолит, поликарбоксилаты, энзимы, оптический отбеливатель, антивспениватель, ароматизатор).

Комплексную помеху помещали в склянку Дрекселя и считали, что в ней образуется насыщенный пар веществ всех ингредиентов КП при комнатной температуре 23°С.

Алгоритм обнаружения паров тринитротолуола по характеристикам сигналов фокальной активности обонятельной луковицы крыс. Записанная в экспериментах ФА ОЛ, как правило, очень зашумлена и нестационарна, в том числе под влиянием двигательных артефактов. На рис. 4 приведен характерный пример зарегистрированной ФА ОЛ при предъявлении животному очищенного воздуха без паров ТНТ.

Продолжительность записей около 7 с. Периодичность процесса вдох—выдох у крысы около 1 с. Предъявление паров ТНТ не сопровождается сколько-нибудь выраженными и визуально идентифицируемыми изменениями характера ФА ОЛ крысы.

Для обнаружения/классификации наличия ТНТ использовали метод анализа общих пространственно-спектральных характеристик (паттернов) ФА ОЛ (common spatio-spectral patterns, **CSSP**) [16], который успешно применяется при распознавании и классификации электроэнцефалограмм (ЭЭГ) человека, в частности при разработке биогибридных протезов.

В методе CSSP [16] регистрируются две цифровые матрицы  $X_1$  и  $X_0$  соответственно при предъ-

явлении ГВС с ТНТ и без ТНТ. Число строк равнялось числу микроэлектродов, число столбцов определялось временем регистрации сигналов 3 с и частотой дискретизации 250 Гц, что соответствовало 750 столбцам. Эти матрицы в методе CSSP используются для определения оптимальных характеристик цифровых фильтров для каждого канала регистрации ФА и весовых коэффициентов в методе логистической регрессии, которая в свою очередь используется в качестве алгоритма обнаружения/классификации [17].

Пример удовлетворительной настройки алгоритма обнаружения по критерию максимальной вероятности обнаружения паров в расчетной концентрации ~10<sup>-15</sup> г/см<sup>3</sup> для тестовой серии из 10 экспериментов представлен в табл. 1. Концентрацию готовили упомянутым ранее методом статического объемного приготовления градуировочных газовых смесей.

Вероятность обнаружения достаточно высокая, в интервале (80—93.4)%. Настройки обнаружителя в этой тестовой серии экспериментов использовали в следующих экспериментах по обнаружению паров ТНТ в присутствии комплексной паровой помехи.

## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При апробировании биогибридной технологии реализованы два этапа экспериментов. На первом этапе использовали три образца ГВС: пары ТНТ, КП и ООВ. На втором этапе пары ТНТ подавались через склянку Дрекселя, содержащую КП, и по отдельности пары КП и ООВ. Образцы ГВС подавали животным в случайной последовательности. Продолжительность предъявления каждой пробы – 5 с, пауза – 10 с. В общей сложности каждый образец ГВС предъявляли 25 раз. Результаты двух этапов апробации технологии при подаче животному ГВС, содержащих пары ТНТ в концентрации  $4.7 \times 10^{-15}$  г/см<sup>3</sup>, приведены в табл. 2. Из таблицы следует, что вероятность обнаружения паров ТНТ биогибридным детектором в концентрации  $4.8 \times 10^{-15}$  г/см<sup>3</sup> в составе ГВС (в том числе в составе КП) составила 100%.

Полученные результаты (табл. 1, 2) показывают высокую среднюю вероятность обнаружения паров низколетучего ТНТ в интервале 86.7-100% в газовоздушных смесях в сверхнизких концентрациях до  $10^{-15}$  г/см<sup>3</sup>. Эти результаты подтверждают высокую чувствительность к запахам фокальной активности обонятельной луковицы, регистрируемой от нейронов/гломерул [18–20].

Экспериментально показана возможность обнаружения паров ТНТ в ГВС в сверхнизких концентрациях с вероятностью, не уступающей вероятности обнаружения обученными животными [21].





Рис. 4. Пример фокальной активности обонятельной луковицы крысы, зарегистрированной при предъявлении воздуха без паров тринитротолуола.

Впервые достигнута 100%-ная вероятность обнаружения низкой следовой концентрации паров ТНТ 4.8  $\times$  10<sup>-15</sup> г/см<sup>3</sup> в составе паров многокомпонентной комплексной помехи в виде смеси красного перца, кориандра, табака и др., кото-

рые, как правило, маскируют для животных запах ТНТ. Этот результат позволяет утверждать, что разрабатываемая биогибридная технология в настоящее время не имеет аналогов по возможностям обнаружения паров ТНТ среди известных

| № серии    | Наименование<br>газовоздушной смеси             | Количество предъявлений<br>(каждому животному) | Вероятность, %<br>(n/кол-во предъявлений ГВС) |
|------------|-------------------------------------------------|------------------------------------------------|-----------------------------------------------|
| <b>№</b> 1 | THT $(4.7 \times 10^{-15} \mathrm{r/cm^3})$     | 25                                             | 100% (25/25)                                  |
|            | КП                                              | 25                                             | 0% (0/25)                                     |
|            | OOB                                             | 25                                             | 0% (0/25)                                     |
| <b>№</b> 2 | ТНТ (4.7 × $10^{-15}$ г/см <sup>3</sup> ) + КПС | 25                                             | 100% (25/25)                                  |
|            | КП                                              | 25                                             | 0% (0/25)                                     |
|            | OOB                                             | 25                                             | 0% (0/25)                                     |

Таблица 2. Результаты апробации биогибридного детектора обнаружения паров тринитротолуола

аналитических методов в условиях присутствия паров-помех.

Учитывая используемую в экспериментах концентрацию паров ТНТ ( $4.8 \times 10^{-15}$  г/см<sup>3</sup>) и объем ГВС до 8 мл, вдыхаемый крысой в течение 3 с [22], оценили для исследуемого биогибридного детектора предельную обнаруживаемую массу ТНТ в пробе, которая составила 0.04 пг, в том числе и на фоне насыщенных паров КП. Отметим, что метод газовой хроматографии со спектрометром приращения ионной подвижности в приборе ЭХО-СПИП [5] обеспечивает определение ТНТ массой 0.08 пг в пробе с временем отбора пробы до 10 с и временем анализа пробы не менее 20 с.

\* \* \*

Таким образом, показано, что исследуемая биогибридная технология обеспечивает обнаружение паров ТНТ в сверхнизкой концентрации без предварительной пробоподготовки и в режиме времени, близком к реальному. Достигнутая высокая вероятность обнаружения паров ТНТ (табл. 2) свидетельствует о том, что обнаруживаемая концентрация 4.8 × 10<sup>-15</sup> г/см<sup>3</sup> в присутствии помехи не является предельно низкой и целесообразно продолжить исследования способности крысы к обнаружению паров ТНТ при более широкой постановке задачи, включая получение зависимостей отклика крысы от ее состояния (возраст, голод, температура и др.), а также от наличия запаховых помех, связанных с условиями практического применения исследуемой биогибридной технологии.

Материалы статьи подготовлены при поддержке: Фонда перспективных исследований (Договор от 01.11.2017 г. № 6/112/2017-2020), Программы стратегического академического лидерства Южного федерального университета ("Приоритет 2030"), Программы фундаментальных научных исследований РФ. Проект FWZZ-2022-0027 "Новые технологии внелабораторного химического анализа и контроля, прецизионных измерений физических полей природных и техногенных объектов" (ИНГГ СО РАН).

## СПИСОК ЛИТЕРАТУРЫ

- 1. Saravanan N.P., Venugopalan S., Senthilkumar N., Santhosh P., Kavita B., Gurumallesh Prabu H. Voltammetric determination of nitroaromatic and nitramine explosives contamination in soil // Talanta. 2006. V. 69. № 3. P. 656.
- Salinas Y., Martínez-Máñez R., D Marcos M., Sancenón F., M Costero A., Parra M., Gil S. Optical chemosensors and reagents to detect explosives // Chem. Soc. Rev. 2012. V. 41. № 3. P. 1261.
- Детектор паров взрывчатых веществ "Шельф-ПКЛ" [Электронный ресурс]. http://www.bnti.ru/des.asp?itm=5591&tbl=04.01.01 (дата обращения: сентябрь 2022 г.).
- 4. *Грузнов В.М., Балдин М.Н., Аксёнов В.А.* Роль высокой чувствительности газоаналитических обнаружителей и их современные характеристики // Научно-технический портал МВД России. 2019. № 4. С. 61.
- 5. *Грузнов В.М., Балдин М.Н., Прямов М.В., Максимов Е.М.* Определение концентрации паров взрывчатых веществ с дистанционным автоматизированным отбором проб при контроле объектов // Журн. аналит. химии. 2017. Т. 72. № 11. С. 1000.
- Homma R., Nagayama S. A prism method for optical glomerular mapping of the medial olfactory bulb in mice // Front Neural Circuits. 2019. V. 13. P. 79.
- Olofsson J.K., Freiherr J. Neuroimaging of smell and taste // Handb Clin. Neurol. 2019. V. 164. P. 263.
- 8. *Murthy V.N.* Olfactory maps in the brain // Annu. Rev. Neurosci. 2011. V. 34. P. 233.
- 9. Baker K.L., Vasan G., Gumaste A., Pieribone V.A., Verhagen J.V. Spatiotemporal dynamics of odor responses in the lateral and dorsal olfactory bulb // PLoS Biology. 2019. V. 17. № 9. Article e3000409.
- Vizcay M.A., Duarte-Mermoud M.A., de la Luz Aylwin M. Odorant recognition using biological responses recorded in olfactory bulb of rats // Comput. Biol. Med. 2015. V. 56. P. 192.
- 11. Shepelev I.E., Kiroy V.N., Scherban I.V., Kosenko P.O., Smolikov A.B., Saevskiy A.L. Tracking of informative gamma frequency range in local field potentials of anesthetized rat olfactory bulb for odor discrimination // Biomed. Signal Process. Control. 2022. V. 71. Article 103139.
- 12. Kosenko P.O., Smolikov A.B., Voynov V.B., Shaposhnikov P.D., Saevskiy A.I., Kiroy V.N. Effect of xylazine-tiletamine-

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 78 № 8 2023

zolazepam on the local field potential of the rat olfactory bulb // Comp. Med. 2020. V. 70. № 6. P. 492.

- ГОСТ Р ИСО 6144-2008. Анализ газов. Приготовление градуировочных газовых смесей. Статический объемный метод. Москва: Стандартинформ, 2009. 24 с.
- 14. Надолинный В.А., Коломиец Ю.Н., Мардежова Г.А., Даниленко А.М., Пронин В.Г. Способ приготовления стандартных газовых смесей и устройство для его осуществления. Патент № 2410678 РФ. Заявка 2009137173/28 от 07.10.2009, опубл. 27.01.2011.
- 15. Грузнов В.М., Филоненко В.Г., Балдин М.Н., Шишмарёв А.Т. Портативные экспрессные газоаналитические приборы для определения следовых количеств веществ // Рос. хим. журн. 2002. Т. 46. № 4. С. 100.
- Koles J.Z., Lazar M.S., Zhou Z. Spatial patterns underlying population differences in the background EEG // Brain Topography. 1990. V. 2. № 4. P. 275.
- Hastie T., Tibshirani R., Friedman J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer, 2009. P. 745.

- Gao K., Zhuang L., Qin Z., Zhang B., Huang L., Wang P. In vivo bioelectronic nose using transgenic mice for specific odor detection // Biosens. Bioelectron. 2018. V. 102. P. 150.
- You K.J., Ham H.G., Lee H.J., Lang Y., Im Ch., Koh Ch. S., Kim M.-Y., Shin Hung-Cheul, Shin Hyun-Chool Odor discrimination using neural decoding of the main olfactory bulb in rats // IEEE Trans. Biomed. Eng. 2010. V. 58. № 5. P. 1208.
- Zhuang L., Guo T., Zhang B. In Vivo Bioelectronic Nose. Bioinspired Smell and Taste Sensors. Dordrecht: Springer, 2015. P. 167.
- Walker D.B., Walker J.C., Cavnar P.J., Taylor J.L., Pickel D., Hall S., Suarez J. Naturalistic quantification of canine olfactory sensitivity // Appl. Anim. Behav. Sci. 2006. V. 97. № 2–4. P. 241.
- 22. Patterson M.A., Lagier S., Carleton A. Odor representations in the olfactory bulb evolve after the first breath and persist as an odor afterimage // Proc. Natl. Acad. Sci. 2013. V. 110. № 35. P. E3340.