УДК 524.527

ОБЗОР ОБЛАСТЕЙ ОБРАЗОВАНИЯ МАССИВНЫХ ЗВЕЗД В ЛИНИЯХ ДЕЙТЕРИРОВАННЫХ МОЛЕКУЛ

© 2020 г. Е. А. Трофимова^{1,*}, И. И. Зинченко^{1,**}, П. М. Землянуха^{1,***}, М. Томассон^{2,****}

¹ Институт прикладной физики РАН, Нижний Новгород, Россия ² Чалмерский технологический университет, Обсерватория Онсала, СІТҮ, Швеция

*E-mail: pani.trofimova@gmail.com **E-mail: zin@appl.sci-nnov.ru ***E-mail: g.pzemlyan@gmail.com ****E-mail: magnus.thomasson@chalmers.se Поступила в редакцию 06.08.2019 г. После доработки 22.11.2019 г. Принята к публикации 22.11.2019 г.

При помощи 20-м радиотелескопа Обсерватории Онсала (Швеция) выполнен обзор областей образования массивных звезд в линиях низших переходов дейтерированных молекул DCN, DNC, DCO⁺, N_2D^+ в диапазоне длин волн 4 мм. Всего наблюдалось около 60-ти источников. Линии DCN, DNC и DCO⁺ зарегистрированы примерно в трети из них, линии N_2D^+ только в двух. Получены оценки относительного содержания молекул, степени обогащения дейтерированных молекул молекул от температуры и от дисперсии скоростей. Найдено, что относительное содержание DCN и DNC и отношение DCN/HCN примерно постоянны в интервале температуры. Среднее отношение DCN/HCN примерно постоянны в интервале температуры. Среднее отношение DCN/HCN ~ 10^{-2} для источников, зарегистрированных в линии DCN. Выявлена корреляция между отношениями содержаний некоторых молекул и дисперсией скоростей. При этом существует корреляция между шириной линии и температурой.

DOI: 10.31857/S0004629920030044

1. ВВЕДЕНИЕ

Эффект обогащения молекулярного газа дейтерием в межзвездных облаках (т.е. увеличение относительного содержания дейтерированных молекул) достаточно хорошо известен. Он связан с экзотермичностью реакций замены протона дейтерием в молекулах, которые лежат в основе цепочек химических реакций, ведущих к образованию большинства других молекул (например, [1]). В первую очередь это относится к реакции

$$H_3^+ + HD \rightleftharpoons H_2D^+ + H_2 + 232 \text{ K.}$$
 (1)

Помимо этого важную роль играет вымораживание на пылинках молекул, например CO, которые разрушают H_2D^+ , а также уменьшение при этом степени ионизации газа, что снижает ско-

рость рекомбинации H_2D^+ .

До сих пор этот эффект изучался в основном в холодных облаках сравнительно небольшой массы, где он оказывается особенно значительным. Исследования данного эффекта в областях образования массивных звезд, где температура заметно выше, пока очень ограничены. Обычно считается, что в таких областях он значительно слабее, поскольку должен быстро уменьшаться с ростом температуры. Тем не менее он наблюдался в ряде инфракрасных темных облаков и в других областях образования звезд большой массы [например, 2–5]. Недавно был выполнен обзор 59 таких областей в линиях некоторых дейтерированных молекул [6]. Были найдены признаки изменения степени обогащения дейтерием по мере эволюции объектов и корреляция со светимостью центрального источника. Имеются детальные химические модели, описывающие ожидаемое содержание дейтерированных молекул [7].

Исследования содержания дейтерированных молекул в межзвездных облаках проводятся по данным наблюдений их вращательного спектра. При этом низшие вращательные переходы J = 1 - 0 обычно не наблюдаются, поскольку для таких молекул, как DCN, DNC, DCO⁺, N₂D⁺ они попадают в диапазон длин волн 4 мм, который довольно плохо освоен в радиоастрономии. Это связано с наличием сильной полосы поглощения

атмосферного кислорода вблизи 60 ГГц. В то же время наблюдения низших вращательных переходов важны для более точного определения полного числа молекул на луче зрения.

В настоящее время диапазон длин волн 4 мм доступен на 20-м радиотелескопе обсерватории Онсала Чалмерского технологического университета в Швеции, благодаря недавно разработанному и установленному там высокочувствительному приемнику данного диапазона [8]. В данной работе мы приводим результаты обзора нескольких лесятков областей образования массивных звезд в линиях низших переходов дейтерированных молекул, выполненного с помощью этого инструмента. В разделе 2 приводится выборка наблюдавшихся источников, а также описываются процедуры наблюдений и обработки данных. В разделе 3 представлены результаты наблюдений и оценки содержания молекул. В разделе 4 дается анализ полученных результатов.

2. НАБЛЮДЕНИЯ И ОБРАБОТКА ДАННЫХ

Выборка объектов для обзора была в основном составлена из источников, ранее наблюдавшихся нами в различных линиях [9–16]. Они были отобраны по наличию тех или иных признаков образования массивных звезд, таких как мазеры H₂O, мощные ИК источники, зоны HII. Список источников приведен в табл. 1.

Наблюдения проводились на 20-м радиотелескопе обсерватории Онсала в Швеции с помощью приемника диапазона длин волн 4 мм [8] в рамках проекта О2016b-04. Для анализа спектра применялся спектроанализатор на основе быстрого преобразования Фурье, обеспечивающий одновременный анализ двух полос шириной по 2.5 ГГц (в двух поляризациях) с разрешением 76 кГц (что соответствует ~0.3 км/с). Использовались два варианта настройки приемника, при которых перекрывались следующие полосы частот: (1) 71.94-74.44 $\Gamma\Gamma\mu$, (2) 75.45-77.95 $\Gamma\Gamma\mu$, (3) 83.94-86.44 ГГц и (4) 87.45-89.95 ГГц. Одновременно наблюдались либо полосы (1, 3), либо (2, 4). Эти пары включают в себя нижнюю и верхнюю боковые полосы приемника соответственно. На этих частотах ширина диаграммы направленности на половинном уровне составляет от ≈50" до ≈40". Наблюдения проводились в основном в режиме диаграммной модуляции с разносом лучей около 11'. Часть данных получена в режиме частотной модуляции. Точность наведения проверялась периодически по наблюдениям мазерных источников SiO, она составляла ≤5".

Список линий дейтерированных молекул, которые попадают в указанные полосы частот, приведен в табл. 2. Кроме них, в этих диапазонах присутствуют линии основных изотопов HCN и HCO^+ , линии менее распространенных изотопов $H^{13}CN$, $HC^{15}N$ и $HC^{18}O^+$, а также линии ряда других молекул, включая CH_3CCH и CH_3CN , которые могут служить индикаторами температуры.

Минимальная шумовая температура системы в ходе наблюдений составляла около 150 К в ясную погоду. В неблагоприятных метеоусловиях шумовая температура возрастала до нескольких сотен К. Результаты представлены в шкале яркостных температур в главном лепестке диаграммы направленности с учетом коэффициента использования главного лепестка согласно документации на 20-м радиотелескоп.

Обработка данных проводилась при помощи пакета XS, разработанного Пером Бергманом в Обсерватории Онсала, а также пакета GILDAS, разработанного в Институте миллиметровой радиоастрономии¹. Оценка параметров выполнялась с помощью онлайн версии программы RA-DEX² [17] и пакета CASSIS³. Оценка коэффициентов корреляции и линейной регрессии с учетом данных, представленных верхними и нижними пределами, выполнялась с помощью программы ASURV Rev. 1.2 [18, 19]. Частоты переходов брались из баз данных NIST⁴ и SPLATALOGUE⁵.

3. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

В результате обработки данных были определены параметры линий, приведенные в табл. 3 и 4. В табл. 3 показаны значения скорости (км/с), ширины линии (км/с) и интенсивностей (мК) для дейтерированных молекул, а в табл. 4 – такие же параметры для изотопов H¹³CN и HC¹⁸O⁺. Молекулы DCO⁺ обнаружены в 16 источниках из 50 наблюдавшихся в полосе (1). Также в этой полосе частот в 17 источниках видны линии молекулы DCN. Полоса частот (2) наблюдалась в 47 источниках. В 15 из них видны молекулы DNC и только в двух – N₂D⁺. В 15 источниках из 50 наблюдавшихся в полосе частот (3) присутствует линия молекулы NH₂D. Результаты наблюдений NH₂D булут обсужлаться в отлельной публикании. В 4 источниках были обнаружены рекомбинационные линии водорода, которые также не будут подробно рассмотрены в данной работе. Ряд источников, таких как NGC2264, G202.99+2.11, S100 и G81.50+0.14 отсутствуют в табл. 3 и 4, поскольку в них не было обнаружено линий, интересных для настоящего исследования. Также в дальнейших расчетах не учитывались данные для источника

¹ http://www.iram.fr/IRAMFR/GILDAS

² http://var.sron.nl/radex/radex.php

³ http://cassis.irap.omp.eu

⁴ https://physics.nist.gov/cgi-bin/micro/table5/start.pl

⁵ http://www.cv.nrao.edu/php/splat/

Таблица 1. Список источников

Истонник	RA(J2000)	Dec(J2000)	$V_{\rm LSR}$	Пол	юсы	
источник	(h)(m)(s)	(°)(′)(″)	(км/с)	1+3	2+4	примечания
G121.30+0.66	00:36:47.50	+63:29:02.1	-17.7	+	+	IRAS00338+6312
S184	00:52:25.15	+56:33:53.3	-30.4	+	+	G123.07-6.31, IRAS00494+5617
G125.52+2.03	01:15:43.03	+64:46:38.1	-54.5	+	+	IRAS01123+6430
$S187(N_2H^+)$	01:23:15.38	+61:49:43.1	-14.0	+	+	G126.68–0.81, IRAS01194+6136
G126.72-0.82	01:23:36.30	+61:48:47.1	-14.0	_	+	IRAS01202+6133
G133.69+1.22	02:25:28.23	+62:06:57.7	-43.1	+	+	
G133.71+1.22	02:25:40.56	+62:05:53.2	-38.9	+	+	IRAS02219+6152, AFGL326
G133.75+1.20	02:25:53.50	+62:04:10.7	-38.9	+	+	
G133.95+1.07	02:27:04.68	+61:52:25.5	-47.7	+	+	IRAS02232+6138, AFGL3314
S199	02:57:35.60	+60:17:22.0	-38.0	+	+	IRAS02575+6017, AFGL4029
S201	03:03:17.90	+60:27:52.0	-37.0	+	+	G138.5+1.6, IRAS02593+6016
AFGL490	03:27:31.51	+58:44:28.8	-12.0	+	+	IRAS03236+5836
G142.00+1.83	03:27:38.77	+58:47:00.1	0.0	+	+	
Per4	03:29:18.00	+31:27:31.0	7.6	+	+	G158.27-20.37
G170.66-0.27	05:20:16.14	+36:37:21.1	-18.8	+	+	IRAS05168+3634
G174.20-0.08	05:30:45.62	+33:47:51.6	-3.5	+	+	AFGL5142 45
G173.17+2.35	05:37:57.85	+35:58:40.5	-19.5	+	+	IRAS05345+3556
S231	05:39:12.90	+35:45:54.0	-16.6	+	+	G173.48+2.45, IRAS05358+3543
G173.58+2.44	05:39:27.94	+35:40:41.4	-16.0	+	+	IRAS05361+3539
S235	05:40:53.32	+35:41:48.7	-17.0	+	+	G173.72+2.70, IRAS05375+3540
G205.11-14.11	05:47:05.45	+00:21:50.0	9.8	+	_	AFGL818, NGC2071, IRAS05445+0016
G189.78+0.35	06:08:35.41	+20:39:02.9	9.1	+	+	
AFGL6366	06:08:41.00	+21:31:01.0	3.0	+	—	G189.03+0.78, IRAS06056+2131
S247	06:08:53.94	+21:38:36.6	3.3	+	+	G188.95+0.89, IRAS06058+2138
S255N	06:12:53.64	+18:00:26.8	7.1	+	+	G192.58-0.04
S255IR	06:12:54.00	+17:59:23.1	7.1	+	—	G192.60-0.05
G202.99+2.11	06:40:44.59	+09:48:12.6	18.0	+	_	
NGC2264	06:40:58.00	+09:53:42.0	18.0	+	—	G202.94+2.19
W217	06:41:10.96	+09:29:31.8	18.0	+	+	IRAS06384+0932, AFGL989
W40	18:31:15.75	-02:06:49.3	5.0	_	+	
G34.40+0.23	18:53:17.41	+01:24:54.6	59.4	_	+	IRAS18507+0121
G34.26+0.15	18:53:18.80	+01:14:55.6	60.4	_	+	IRAS18507+0110
G37.43+1.51	18:54:14.30	+04:41:39.0	44.0	_	+	IRAS18517+0437
G58.47+0.43	19:38:58.12	+22:46:32.2	37.3	+	+	IRAS19368+2239
S88B	19:46:47.32	+25:12:45.6	22.7	_	+	G61.48+0.10
S100	20:01:45.59	+33:32:41.1	-23.8	+	_	G70.29+1.60, IRAS19598+3324
G65.78-2.61	20:07:06.74	+27:28:52.9	8.0	+	_	IRAS20050+2720
G69.54-0.98	20:10:09.13	+31:31:37.3	11.8	+	_	IRAS20081+3122
G77.46+1.76	20:20:38.54	+39:38:18.9	3.1	+	+	IRAS20188+3928, JC20188+3928
G75.78-0.34	20:21:43.89	+37:26:38.6	-0.4	+	+	
G79.27+0.39	20:31:57.50	+40:18:30.0	1.2	+	+	
G79.34+0.33	20:32:21.80	+40:20:08.0	0.0	+	+	
W75N	20:38:36.93	+42:37:37.0	10.7	+	+	G81.87+0.78
W75(OH)	20:39:00.60	+42:22:48.8	-3.8	+	+	G81.72+0.57

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 3 2020

Истонник	RA(J2000)	Dec(J2000)	V _{LSR}	Пол	юсы	Применация
источник	(h)(m)(s)	(°)(′)(″)	(км/с)	1+3	2+4	примечания
W75S3	20:39:03.43	+42:25:53.0	2.1	+	+	G81.77+0.60
G81.50+0.14	20:40:08.30	+41:56:26.0	-4.5	+	+	
G92.67+3.07	21:09:21.74	+52:22:37.6	-15.2	+	+	
G99.98+4.17	21:40:42.36	+58:16:09.7	1.8	+	+	IRAS21391+5802, L1121
S140	22:19:18.20	+63:18:51.2	-7.0	+	+	G106.80+5.31
G109.87+2.11	22:56:18.10	+62:01:49.4	0.0	+	+	
G108.76-0.95	22:58:42.71	+58:47:09.2	-50.4	+	+	JC22566+5830
S153	22:58:47.66	+58:45:00.7	-51.0	+	+	G108.76–0.99, IRAS22566+5828
S152(OH)	22:58:49.60	+58:45:15.3	-52.7	+	—	G108.77-0.98
S156	23:05:09.90	+60:14:31.0	-50.6	+	+	G110.11+0.04
G111.54+0.78	23:13:44.72	+61:28:09.7	-57.6	+	+	IRAS23116+6111
S158	23:13:44.84	+61:26:50.7	-55.5	+	+	G111.53+0.76

Таблица 1. Окончание

Таблица 2. Наблюдаемые линии

Молекула	Переход	Частота, МГц	<i>E</i> _{up} , K
DCO^+	1-0	72039.312	3.457
DCN	$1 - 0 F_1 = 1 - 1$	72413.484	3.475
	$1 - 0 F_1 = 2 - 1$	72414.905	3.475
	$1 - 0 F_1 = 0 - 1$	72417.030	3.476
CH ₃ CN	4(3)-3(3)	73577.451	73.132
	4(2)-3(2)	73584.543	37.511
	4(1)-3(1)	73588.799	15.975
	4(0)-3(0)	73590.217	8.83
DNC	1-0	76305.697	3.662
$N_2 D^+$	1 - 0 F ₁ = $1 - 1$ F = $2 - 1, 2$	77107.798	3.701
	$1 - 0 F_1 = 2 - 1 F = 3 - 2$	77109.632	3.701
	1 - 0 F ₁ = $0 - 1$ F = $1 - 0, 1, 2$	77112.130	3.701
$HC^{18}O^+$	1-0	85162.223	4.087
CH ₃ CCH	5(3)-4(3)	85442.600	77.11
	5(2)-4(2)	85450.765	41.107
	5(1)-4(1)	85455.665	19.505
	5(0)-4(0)	85457.299	12.304
NH_2D	$1(1,1)^+ - 1(0,1)^- F = 2-2$	85926.263	20.679
H ¹³ CN	1 - 0 F = 1 - 1	86338.737	4.144
	1 - 0 F = 2 - 1	86340.176	4.144
	1 - 0 F = 0 - 1	86342.255	4.144
HCN	1 - 0 F = 1 - 1	88630.416	4.254
	1 - 0 F = 2 - 1	88631.847	4.254
	1 - 0 F = 0 - 1	88633.936	4.254
HCO^+	1-0	89188.526	4.280

G133.71+1.22 из-за слишком большой ширины линии.

Для расчетов количества дейтерированных молекул на луче зрения и определения степени обогащения дейтерием в исследовавшихся объектах необходимо знать кинетическую температуру газа в этих областях. Температуры некоторых наблюдавшихся источников известны и были взяты для расчетов из работ [11, 13, 15, 16, 20-24]. В нескольких источниках видны линии молекул типа симметричного волчка СН₃СN или CH₃CCH, которые являются хорошими индикаторами температуры достаточно плотного газа (например, [13]). Параметры линий этих молекул приведены в табл. 5. По вращательным диаграммам таких молекул с помощью пакета CASSIS были определены температуры источников, содержаших эти молекулы. Для этих расчетов были использованы параметры линий молекул СН₃ССН, поскольку они были зарегистрированы в большем числе источников. Однако кинетические температуры. полученные с использованием данных линий молекул CH₃CN, вполне соответствуют температурам источников, полученным по вращательным диаграммам молекул CH₃CCH. Например, для источника W75(OH) кинетическая температура, полученная по вращательной диаграмме молекул CH₃CN, составила 22.4 (7.2) К, в то время как температура этого источника, полученная по вращательной диаграмме молекул CH₃CCH, равна 29.6 К. В табл. 6 приведены кинетические температуры наблюдавшихся областей образования звезд с указанием способа их получения. В источниках, в которых температуры неизвестны и не было обнаружено линий молекул, по которым можно определить температуру, кинетические температуры газа были приняты равными 20 К.

Таблица 3. Параметры зарегистрированных линий дейтерированных молекул. В скобках приведены среднеквадратичные погрешности для последних знаков. Для источников, не зарегистрированных в данных линиях, использовались средние ширины линий других дейтерированных молекул и других узких линий, обнаруженных в конкретном источнике (см. п. 3. РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ).

Источник		DC0 ⁺			DCN	
источник	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с
G121.30+0.66	-16.98(02)	470(10)	1.69(05)	-17.17(04)	230(10)	2.09(09)
S184		<54	3.29		<54	3.29
G125.52+2.03		<68	2.22		<68	2.22
$S187(N_2H^+)$	-12.97(01)	1270(20)	0.95(02)	-13.30(04)	250(20)	0.97(06)
G126.72-0.82						
G133.69+1.22		<92	4.99		<92	4.99
G133.71+1.22		<58	13.3		<58	13.3
G133.75+1.20		<151	3.25		<151	3.25
G133.95+1.07		<83	5		<83	5
S199		<76	1.93		<76	1.93
S201		<64	2.83		<64	2.83
AFGL490	-12.40(01)	1210(20)	1.23(02)	-12.57(07)	150(10)	1.76(13)
G142.00+1.83		<118	2.04		<118	2.04
Per 4						
G170.66-0.27	-15.95(02)	690(30)	0.92(05)		<87	0.92
G174.20-0.08	-4.39(05)	580(40)	1.57(13)		<154	1.71
G173.17+2.35	-20.02(05)	500(20)	2.47(12)		<70	2.47
S231		<50	2.85	-16.56(09)	250(20)	2.47(15)
G173.58+2.44	-16.72(02)	640(30)	1.20(06)		<85	1.24
S235		<62	2.37		<62	2.37
G205.11-14.11		<127	1.85	8.66(04)	530(40)	0.9(08)
G189.78+0.35		<91	2.48		<91	2.48
AFGL6366		<78	2.53		<78	2.53
S247		<68	2.94		<68	2.94
S255N		<44	2.97	6.34(07)	250(10)	2.86(17)
S255IR		<154	2.32		<154	2.32
W217	5.89(04)	920(30)	2.90(09)	7.25(08)	370(30)	2.42(20)
W40						
G34.40+0.23						
G34.26+0.15						
G37.43+1.51						
G58.47+0.43		<64	2.59		<64	2.59
S88B						
G65.78–2.61		<80	3.07		<80	3.07
G69.54–0.98		<65	3.88		<65	3.88
G77.46+1.76	2.14(07)	350(30)	1.97(16)	2.02(10)	250(20)	2.28(19)
G75.78–0.34		<42	4.13	0.86(12)	210(10)	4.06(21)
G79.27+0.39	2.20(04)	930(30)	2.18(09)		<113	2.26
G79.34+0.33	1.39(05)	730(30)	2.29(12)		<165	1.85
W75N		<64	3.86	9.08(10)	400(20)	3.73(18)
W75(OH)		<79	4.65	-2.77(17)	560(24)	5.21(24)

Истонник		DCO^+		DCN			
источник	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с	
W75S3	-3.49(03)	550(20)	2.14(07)	-3.77(04)	390(10)	2.35(08)	
G92.67+3.07		<63	2.21		<63	2.21	
G99.98+4.17	1.13(03)	1430(60)	1.54(07)		<119	1.72	
S140		<79	2.52	-6.74(06)	390(20)	2.42(11)	
G109.87+2.11		<75	4.01		<75	4.01	
G108.76-0.95	-49.42(01)	810(10)	1.89(03)	-49.87(04)	180(10)	1.30(09)	
S153	-50.01(03)	890(30)	2.02(07)		<77	2.59	
S152(OH)	-49.91(02)	1420(30)	1.68(04)	-50.17(10)	290(20)	2.41(17)	
S156		<91	5.04		<91	5.04	
G111.54+0.78		<58	3.76	-56.46(07)	420(20)	3.63(12)	
S158		<32	4.66	-54.85(08)	430(20)	4.51(14)	
Источник		DNC			N_2D^+		
нето шик	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с	
G121.30+0.66	-17.53(02)	330(10)	2.22(06)				
S184		<97	3.29				
G125.52+2.03		<106	2.22				
$S187(N_2H^+)$	-13.34(03)	470(20)	1.32(07)				
G126.72-0.82							
G133.69+1.22		<66	4.99				
G133.71+1.22		<31	13.3				
G133.75+1.20		<62	3.25				
G133.95+1.07		<67	5				
S199		<121	1.93				
S201		<104	2.83				
AFGL490	-12.57(01)	630(10)	1.39(02)	-12.50(05)	100(10)	1.99(09)	
G142.00+1.83		<112	2.04				
Per 4	7.25(03)	930(05)	1.11(06)				
G170.66-0.27		<131	0.92				
G174.20-0.08	-3.99(06)	360(30)	1.85(15)				
G173.17+2.35		<96	2.47				
S231		<39	2.85				
G173.58+2.44	-16.60(04)	380(30)	1.29(10)				
S235		<114	2.37				
G205.11-14.11							
G189.78+0.35		<122	2.48				
AFGL6366							
S247		<108	2.94				
S255N		<90	2.97				
S255IR							
W217	7.02(07)	520(20)	3.53(16)				
W40							
G34.40+0.23							

Таблица 3. Продолжение

Таблица 3. Окончание

Истоиник		DNC			N_2D^+	
источник	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с
G34.26+0.15						
G37.43+1.51						
G58.47+0.43		<83	2.59			
S88B						
G65.78-2.61						
G69.54-0.98						
G77.46+1.76	1.90(06)	460(30)	1.90(15)			
G75.78-0.34		<38	4.13			
G79.27+0.39	1.89(02)	640(10)	2.33(04)	1.54(07)	140(10)	2.09(11)
G79.34+0.33	0.65(04)	440(30)	1.41(10)			
W75N		<96	3.86			
W75(OH)	-2.83(06)	460(10)	4.96(13)			
W75S3	-4.08(02)	80(20)	2.02(05)			
G92.67+3.07		<56	2.21			
G99.98+4.17	0.88(06)	460(40)	1.19(13)			
S140		<63	2.52			
G109.87+2.11		<63	4.01			
G108.76-0.95	-50.22(03)	530(20)	2.18(07)			
S153	-50.74(05)	480(20)	2.51(12)			
S152(OH)						
S156		<47	5.04			
G111.54+0.78		<43	3.76			
S158		<56	4.66			

Скорее всего, это холодные объекты и принятое значение представляет собой верхний предел. Для некоторых источников существуют разные оценки кинетической температуры газа и они приведены в табл. 6. Первыми указаны те, которые были использованы при расчетах.

Лучевые концентрации дейтерированных молекул на луче зрения оценивались в не-ЛТР модели с помошью программы RADEX путем подгонки модельной интенсивности линии к измеренному значению. В случае, когда в базе данных отсутствовала нужная молекула, подбиралась наиболее близкая к ней по составу. Например, вместо отсутствующей в базе данных молекулы DCN бралась молекула HC¹⁵N, а вместо DNC бралась молекула HNC. Концентрация газа принималась равной 10⁵ см⁻³. Эта величина близка к так называемой критической концентрации газа для данных молекул, при которой скорости радиационных и столкновительных переходов сравниваются (например, [25]). В результате получаются оценки лучевых концентраций, близкие к

минимальным. Изменение предполагаемой концентрации газа в любую сторону в оптически тонком случае приводит к росту оценки лучевой концентрации молекул. В качестве примера на рис. 1 показана зависимость от полной концентрации газа лучевой концентрации DCO⁺, нормированной на величину N₀, соответствующую лучевой концентрации DCO+, полученной при параметрах $n(H_2) = 10^5$ см⁻³ и $T_k = 30$ К. Изменение предполагаемой концентрации газа на порядок величины в любую сторону приводит к росту оценки лучевой концентрации DCO⁺ не более, чем в 3 раза. Для DCN и DNC критические концентрации газа должны быть в несколько раз выше, чем для DCO⁺, как и для основных изотопов этих молекул [25]. Соответственно для них подобные зависимости сдвинуты в сторону более высоких концентраций. В любом случае принятое значение концентрации газа дает оценки числа этих молекул на луче зрения, близкие к минимальным. Поря-

Таблица 4.	Параметр	ы линий 🛛	Н ¹³ СN и	$HC^{18}O^+$
------------	----------	-----------	----------------------	--------------

Иотонный		H ¹³ CN			$HC^{18}O^+$	
источник	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с
G121.30+0.66	-17.93(06)	154(6)	2.92(10)	-17.63(09)	129(13)	1.84(21)
S184	-31.36(06)	302(10)	3.29(10)			
G125.52+2.03						
$S187(N_2H^+)$		<58	1.08			
G126.72-0.82						
G133.69+1.22						
G133.71+1.22						
G133.75+1.20						
G133.95+1.07	-48.03(10)	504(17)	5.00(18)			
S199	-38.67(0.05)	262(14)	1.93(11)			
S201						
AFGL490	-12.75(07)	94(8)	1.58(03)			
G142.00+1.83						
Per 4						
G170.66-0.27						
G174.20-0.08						
G173.17+2.35						
S231	-16.21(05)	360(10)	3.24(08)			
G173.58+2.44						
S235	-16.76(02)	729(11)	2.37(04)			
G205.11-14.11	10.38(05)	414(13)	2.81(08)			
G189.78+0.35	10.01(03)	443(12)	2.48(08)			
AFGL6366	3.13(03)	423(12)	2.53(07)			
S247						
S255N	7.47(02)	540(8)	3.08(04)			
S255IR	10.09(10)	355(30)	2.32(19)			
W217	9.05(03)	722(18)	2.64(06)			
W40						
G34.40+0.23						
G34.26+0.15						
G37.43+1.51						
G58.47+0.43						
S88B						
G65.78-2.61	5.51(07)	319(14)	3.07(12)			
G69.54-0.98	11.17(08)	341(13)	3.88(13)			
G77.46+1.76	1.33(06)	371(16)	2.56(10)			
G75.78-0.34	-3.99(03)	230(8)	4.20(14)			
G79.27+0.39						
G79.34+0.33						
W75N	8.96(03)	812(11)	3.79(05)	8.78(12)	172(10)	4.07(29)
W75(OH)	-3.94(05)	958(16)	4.67(08)	-3.49(18)	257(26)	3.76(44)
W75S3	-4.62(03)	439(8)	2.71(05)	-4.28(09)	184(18)	1.93(22)
G92.67+3.07	-6.77(03)	527(13)	2.21(06)			

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 3 2020

ОБЗОР ОБЛАСТЕЙ ОБРАЗОВАНИЯ МАССИВНЫХ ЗВЕЗД

Истонник		H ¹³ CN		$\mathrm{HC^{18}O^{+}}$			
источник	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с	
G99.98+4.17	0.11(04)	388(13)	2.43(08)				
S140	-7.31(02)	724(9)	2.63(03)				
G109.87+2.11	-3.67(08)	402(15)	4.01(14)				
G108.76-0.95	-51.68(07)	122(6)	2.56(13)				
S153	-52.09(10)	228(14)	3.24(17)				
S152(OH)	-52.27(08)	268(13)	2.95(22)				
S156							
G111.54+0.78	-58.62(03)	736(12)	3.89(06)				
S158	-57.67(04)	795(11)	4.81(07)				

Таблица 4. Окончание

Таблица 5. Параметры линий CH_3CN и CH_3CCH . Для обеих молекул приведены параметры компонент K = 0

Источник	CH ₃ CN		CH ₃ CCH			
neromik	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с	<i>V</i> , км/с	<i>I</i> , мК	ΔV , км/с
G121.30+0.66	-17.54(09)	97(08)	2.05(17)	-17.63(02)	330(07)	1.95(04)
S184				-30.96(09)	183(11)	2.87(14)
G133.75+1.20				-39.16(10)	286(23)	2.35(16)
G133.95+1.07				-47.17(08)	340(17)	3.00(14)
S231				-16.34(09)	161(11)	2.71(16)
S235				-16.66(11)	138(11)	2.59(16)
G205.11-14.11				9.88(06)	269(16)	2.15(15)
AFGL6366				2.76(04)	321(13)	2.06(08)
S255N	7.12(13)	156(11)	3.52(22)	7.30(11)	272(08)	2.82(08)
W217				9.10(05)	449(18)	2.25(08)
G69.54-0.98				11.29(04)	575(12)	3.34(06)
G75.78-0.34				-0.01(07)	235(08)	3.79(10)
W75N				9.17(07)	316(11)	3.58(10)
W75(OH)	-3.29(12)	413(19)	4.55(19)	-3.38(05)	624(13)	4.11(07)
W75S3	-3.77(09)	180(09)	3.28(14)	-4.36(03)	346(09)	2.14(05)
G92.67+3.07				-6.10(05)	303(13)	2.20(09)
S140				-6.94(02)	555(01)	2.43(05)
S152(OH)				-51.72(09)	218(12)	3.17(15)
G111.54+0.78				-57.99(09)	233(12)	3.08(14)
S158	-55.78(12)	307(14)	4.81(19)	-56.78(06)	424(12)	4.07(09)

док количества молекул на луче зрения для дейтерированных молекул составил $\sim 10^{11} - 10^{12}$ см⁻².

Следующим шагом исследований стали расчеты относительного содержания дейтерированных молекул, т.е. отношения количества дейтерированных молекул на луче зрения к количеству молекул H₂. Количество молекулярного водорода рассчитывалось, исходя из данных о молекулах С¹⁸О, представленных в работе [12]. Относительное содержание С¹⁸О принято равным 1.7×10^{-7} [26]. Таким образом, выразив из этого соотношения лучевую концентрацию молекулярного водорода, можно рассчитать относительное содержание дейтерированных молекул.

Для всех полученных отношений были построены графики зависимостей и ко всем этим за-

Таблица 6. Количество молекул на луче зрения

Истонны	$\text{DCO}^+ \times$	DCN ×	DNC ×	$N_2D^+ \times$	$\rm H^{13}CN \times$	$C^{18}O \times$	$\mathrm{HC}^{18}\mathrm{O}^{+} \times$	
источник	$\times 10^{11}$, см ⁻²	$\times 10^{11}$, см ⁻²	$\times 10^{12}$, см ⁻²	$\times 10^{12}$, см ⁻²	$\times 10^{11}$, см ⁻²	$\times 10^{15}$, см ⁻²	\times 10 ¹¹ , см ⁻²	$I_{\rm kin}, {\bf K}$
G121.30+0.66	8.46	15.9	1.6		14.6	8.89	2.01	21.1 [23]; 34.4 ^{<i>a</i>}
S184	<1.81	<4.85	< 0.63		28.7	5.53		29 [23]; 30 ^a
G125.52+2.03	<1.58	<4.93	< 0.51					20^{b}
$S187(N_2H^+)$	13.2	7.19	1.33		<2.42			15 [23]
G126.72-0.82								26.7 [20]
G133.69+1.22	<4.73	<12.5	< 0.64			15.4		30.7 [13]
G133.71+1.22	<7.9	<22.5	< 0.83					25.1 [20]
G133.75+1.20	<5.38	<10.8	< 0.36					55.2 ^{<i>a</i>}
G133.95+1.07	<4.35	<14.1	<0.74		96.0	14.1		18.6 ^{<i>a</i>}
S199	<1.52	<4.23	< 0.474		15.1			26.4 [20]
S201	<1.86	<4.95	< 0.58					29.7 [20]
AFGL490	16.7	9.05	2.10	1.58	4.89			20 [23]
G142.00+1.83	<2.52	<7.97	< 0.49					20^{b}
Per 4			2.33					30.1 [20]
G170.66-0.27	6.85	<2.64	< 0.26			3.12		20^{b}
G174.20-0.08	9.67	<7.59	1.38					27 [20]
G173.17+2.35	13.1	<5.62	< 0.51			6.44		20^{b}
S231	<1.46	18	< 0.22		35.6	6.31		26.5 [23]; 40.2 ^{<i>a</i>}
G173.58+2.44	8.35	<3.6	1.62					18.6 [23]
S235	<1.55	<3.57	< 0.51		46.8	7.23		40.4^{a}
G205.11-14.11	<2.47	12.5			29.8			40.5 ^{<i>a</i>}
G189.78+0.35	<2.33	<6.12	< 0.59		31.9			30.6 [20]
AFGL6366	<2.05	<4.92			28.4			37.1 ^{<i>a</i>}
S247	<2.04	<5.5	< 0.63			5.86		28.5 [20]
S255N	<1.36	18.6	< 0.51		46.5	17.5		34.8 ^{<i>a</i>}
S255IR	<3.68	<9.31			22.8	16.9		34.5 [15]
W217	28.8	27.9	4.01		64.9			25 [23]; 37.1 ^a
W40								20^{b}
G34.40+0.23						51.4		30 [23]
G34.26+0.15								30 [23]
G37.43+1.51								20^{b}
G58.47+0.43	<1.73	<5.43	< 0.46					20^{b}
S88B						9.82		38 [11]
G65.78-2.61	<2.57	<8.1			34.1			20^{b}
G69.54-0.98	<2.6	<8.02			45.3	13.6		20.8 [23]; 32.5 ^a
G77.46+1.76	7.15	16.5	1.85		27.9	9.72		29 ^{<i>a</i>}
G75.78-0.34	<1.8	21.6	< 0.3		25	18.4		36.8 ^{<i>a</i>}
G79.27+0.39	22.2	<8.37	3.57	2.20				20^{b}
G79.34+0.33	19.1	<1.23	1.74					14.6 [24]
W75N	<2.59	37.4	<0.69		83.8	30.5	5.86	41.2 ^{<i>a</i>}
W75(OH)	<3.78	87.2	4.75		147	35.8	8.28	29.6 ^{<i>a</i>}
W75S3	12.6	22.9	3.32		30.3	18.8	2.97	41.6 ^{<i>a</i>}
G92.67+3.07	<1.44	<3.78	< 0.24		34.4	7.65		30.7 ^{<i>a</i>}
G99.98+4.17	12.4	<5.4	1.14		26.2	10.1		33 ^a

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 3 2020

234

 $DCO^+ \times$ DCN × DNC × $N_2D^+ \times$ $H^{13}CN \times$ $C^{18}O \times$ $HC^{18}O^+ \times$ $T_{\rm kin}, {\rm K}$ Источник $\times 10^{11}$, cm⁻² $\times 10^{12}$, cm⁻² $\times 10^{12}$, cm⁻² $\times 10^{11}, \text{ cm}^{-2}$ $\times 10^{11}$, cm⁻² $\times 10^{15}$, cm⁻² $\times 10^{11}$, см⁻² S140 <2.04 25.9 < 0.31 56.7 32.6^a 20^{b} G109.87+2.11 <3.13 <9.8 < 0.54 57.3 G108.76-0.95 17 2.85 9.43 8.68 10.4 17 [23] S153 20.3 <7.28 2.98 28.2 16.4 [22] S152(OH) 28 26.7 30.5 17.7 16.4 [23]; 31.4^a <4.8 S156 <15.5 < 0.51 18.8 [22] 47.7^{a} G111.54+0.78 <2.33 36.4 < 0.29 72.4 30.4 S158 <1.56 49.8 < 0.48 106 26.6 39.3^a

Таблица 6. Окончание

^{*а*} – температуры, полученные по вращательным диаграммам молекул CH₃CCH;

^{*b*} – принятое значение.

висимостям были применены статистические методы анализа с учетом данных, представленных верхними и нижними пределами. Наличие корреляции было определено методом Кендалла [27], а коэффициенты линейной регрессии (они же коэффициенты наклона) получались с помощью метода Бакли-Джеймса [27]. Расчеты производились в программе ASURV. Критерием наличия корреляции считался уровень значимости $p < \alpha$. Здесь α – это порог уровня значимости, который задавался равным 0.05, что означает допустимую вероятность ошибки первого рода не более 5%. Согласно этим методам были получены результаты, показанные в табл. 7. В табл. 7 показаны лишь те зависимости, в которых обнаружена корреляция. На рис. 2б явно имеется корреляция, но метод линейной регрессии Бакли-Джеймса к нему неприменим, поскольку данная зависимость нелинейна. На некоторых рисунках показана прямая линия, построенная с учетом коэффициента наклона и сдвига, полученных методом Бакли-Джеймса.

На рис. 3 представлены зависимости относительного содержания молекул на луче зрения от кинетической температуры для молекул DCO⁺, DCN и DNC. Здесь красными кружками показа-

Таблица 7. Коэффициенты корреляции и линейной регрессии

Рисунок	Уровень значимости (р)	Коэффициент линейной регрессии
3a	0.0264	-0.066 ± 0.021
4a	0.0002	-0.030 ± 0.013
4Γ	0.0005	0.059 ± 0.022
2a	0.0018	-0.953 ± 0.363
26	0.0021	-0.261 ± 0.154
2д	0.0009	0.488 ± 0.140

ны полученные оценки, а треугольниками показаны значения, при расчетах которых были использованы пределы обнаружения соответствующих молекул. Пределы обнаружения определялись так же, как и количество молекул на луче зрения для измеренных данных, только для расчетов в этом случае брались средние ширины линий обнаруженных дейтерированных молекул в конкретном источнике. В случае, когла таких молекул не было обнаружено, использовались средние ширины других узких линий, обнаруженных в источнике, таких как H_2CO и HC_3N , оптическая толщина в которых, скорее всего, мала. Для источников, зарегистрированных в линиях дейтерированных молекул, такие средние ширины очень близки к ширинам линий дейтерированных молекул (в пределах 40% для наиболее узких линий и практически совпадают для наиболее широких линий), что естественно, поскольку и те, и другие определяются дисперсией скоростей сравнительно плотного газа. Кинетические температуры брались для каждого источника, в которых обнаружены эти молекулы соответственно табл. 6. В качестве верхнего предела интенсивности линии для расчетов брался параметр $3\sigma/\sqrt{N}$, где σ – среднеквадратичная величина шумов в каналах, а N — число спектральных каналов, определяемое как отношение ширины линии для предела к ширине спектрального канала.

Из этих зависимостей видно, что относительное содержание молекул DCO⁺ падает с ростом кинетической температуры. Это означает, что молекулы DCO⁺ в большей степени присутствуют в более холодных областях образования звезд и с ростом кинетической температуры эффект обога-

щения дейтерием в DCO⁺ ослабевает. Относительное содержание молекул DCN и DNC практически не зависит от кинетической температуры. На рис. 3в показаны оценки относительного

Рис. 1. Зависимость количества молекул DCO⁺ на луче зрения, нормированного на N_0 , от концентрации газа H₂ при различных кинетических температурах.

содержания молекулы DNC всего лишь для 6 источников из 15, в которых обнаружена эта молекула. Связано это с тем, что для некоторых из этих источников в работе [12] отсутствуют данные о молекуле С¹⁸О.

На рис. 4 показаны зависимости различных отношений количеств молекул на луче зрения от кинетической температуры. Например, на рис. 4а показана зависимость отношения количества молекул на луче зрения DCO⁺ к количеству молекул DCN на луче зрения от кинетической температуры. Видно, что с ростом температуры это отношение убывает, что соответствует результатам, представленным на рис. 3.

Надежное определение отношения количеств молекул DCO⁺ и HCO⁺ на луче зрения в большинстве случаев не представляется возможным, поскольку оптическая толщина в линиях молекул HCO⁺, как правило, велика, и оценки количества молекул HCO⁺ на луче зрения будут весьма неточными.

Молекулы изотополога HC¹⁸O⁺ были обнаружены всего лишь в 4 источниках из 56 наблюдавшихся. Количество этих молекул на луче зрения определялось так же, как и лучевые концентрации других молекул, и составило ~10¹¹ см⁻². Из четырех источников, в которых обнаружена молекула HC¹⁸O⁺, лишь в двух присутствует молекула DCO⁺. Это источники W75S3 и G121.30+0.66 с кинетическими температурами 41.6 К и 21.1 К соответственно. Отношение количества молекул DCO⁺ и HCO⁺ для них получилось 8.5×10^{-3} и 8.4×10^{-3} соответственно. Для других двух источников (W75N и W75(OH) с соответствующими кинетическими температурами 41.2 К и 29.6 К) были определены пределы обнаружения молекул DCO⁺ и отношение количества молекул DCO⁺ и HCO⁺ составило $< 8.8 \times 10^{-4}$ и $< 9.1 \times 10^{-4}$ соответственно. Эти отношения определялись с использованием земного отношения содержания изотопов ¹⁶O/¹⁸O ~ 500 [26].

Для определения степени обогащения дейтерием для молекулы DCN необходимо знать количество молекул HCN на луче зрения. Поскольку оптическая толщина в линиях HCN велика, для этих оценок использовались линии молекул H¹³CN и с учетом соотношения $^{12}C/^{13}C = 65$ [28] определялись количества молекул HCN на луче зрения. Отношение DCN и HCN в зависимости от температуры показано на рис. 4в. Это отношение практически не зависит от кинетической тем-

пературы газа и составляет в среднем $\sim 10^{-2}$ для зарегистрированных линий. Также не зависит от кинетической температуры и соотношение количеств молекул DCO⁺ и DNC (рис. 46).

С ростом кинетической температуры с учетом верхних и нижних пределов заметно растет отношение содержаний DCN/DNC (рис. 4г).

Также была рассмотрена взаимосвязь между отношением количеств различных молекул на луче зрения и средней шириной узких линий в источнике (см. рис. 2). Например, на рис. 2а показана зависимость относительного содержания молекул DCO⁺ от средней ширины линий в источнике. Из этого графика видно, что с увеличением средней ширины линии относительное содержание молекул DCO⁺ сильно спадает. Ни в одном источнике с шириной линий >3 км/с излучение DCO⁺ не зарегистрировано, в то время как линия DCN присутствует в части таких объектов (рис. 2г). Этот факт сам по себе говорит о падении относительного содержания DCO⁺ с ростом дисперсии скоростей. Отношение содержаний DCO⁺ к DCN, соответственно, также уменьшается с ростом средней ширины линий (рис. 2б), хотя коэффициент наклона для линейной регрессии определяется с большой погрешностью. При аппроксимации не учитывался выброс (самая верхняя точка на рисунке). Отношения количества молекул DCO⁺ к DNC и DCN к HCN остаются постоянными с увеличением средней ширины линий в источнике (рис. 2в и 2г соответственно). Отношение же DCN к DNC напротив, с ростом ширины линии молекулы DCN растет (рис. 2д). В свою очередь ширины линий молекул растут с ростом кинетической температуры (рис. 5).

Рис. 2. Зависимость отношений лучевых концентраций от средней ширины узких линий (включая такие молекулы, как HC₃N и H₂CO) в источнике а) $N(\text{DCO}^+)/N(\text{H}_2)$, б) $N(\text{DCO}^+)/N(\text{DCN})$, в) $N(\text{DCO}^+)/N(\text{DNC})$, г) N(DCN)/N(HCN), д) N(DCN)/N(DNC). На всех зависимостях треугольники, направленные вверх, – нижние пределы; треугольники, направленные вниз, – верхние пределы. Фиолетовая линия – прямая линейной регрессии с учетом верхних и нижних пределов (табл. 7).

Рис. 3. Зависимость от кинетической температуры относительного содержания следующих молекул: a) DCO⁺, б) DCN, в) DNC. Треугольники – верхние пределы обнаружения соответствующих молекул. Фиолетовая линия – прямая линейной регрессии с учетом верхних пределов (табл. 7).

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Излучение дейтерированных молекул DCO⁺, DCN и DNC зарегистрировано нами примерно в трети наблюдавшихся источников, а излучение N_2D^+ только в двух из них. Как отмечалось выше, наиболее обширный обзор дейтерированных молекул в подобных объектах представлен в работе [6]. Выборки источников, которые наблюдались нами, и в работе [6] почти не пересекаются. Есть лишь несколько общих источников. Поскольку нами наблюдались разные молекулярные переходы, непосредственное сравнение результатов наблюдений невозможно. Доля объектов, в которых зарегистрированы линии указанных молекул в этом обзоре, выше, чем у нас, что может объясняться более высокой чувствительностью. Тем не менее качественно результаты похожи. В работе [6] доля источников, в которых удалось зарегистрировать N₂D⁺, также значительно меньше, чем для других дейтерированных молекул.

В работе [6] нет данных о температуре источников. Наши данные позволяют анализировать зависимость содержания дейтерированных молекул от температуры. Относительное содержание молекул DCO⁺ спадает с ростом кинетической температуры. В то время как рис. Зб четко указывает на отсутствие зависимости содержания DCN от кинетической температуры, график на рис. Зв допускает понижение содержания DNC с ростом температуры, но данных недостаточно для однозначного вывода. В то же время отношение DCN/DNC заметно растет с ростом температуры (рис. 4г). Надо отметить, что наборы данных, по которым строились зависимости на рис. Зв и 4г, несколько различны. В первом случае использовались данные только по тем объектам, где есть

также данные наблюдений $C^{18}O$. Во втором случае этого не требовалось. Эти результаты согласуются с выводами о том, что молекулы DCO^+ и DNC образуются при низких температурах, а мо-

Рис. 4. Зависимость отношений лучевых концентраций от кинетической температуры для следующих молекул: а) $N(\text{DCO}^+)/N(\text{DCN})$, б) $N(\text{DCO}^+)/N(\text{DNC})$, в) N(DCN)/N(HCN), г) N(DCN)/N(DNC). На всех зависимостях треугольники, направленные вверх, — нижние пределы; треугольники, направленные вниз, — верхние пределы. Фиолетовая линия — прямая линейной регрессии с учетом верхних и нижних пределов (табл. 7).

лекулы DCN могут образовываться и при высоких (~80 K [7, 29]).

Оценка отношения DCO⁺/HCO⁺ не очень надежна из-за большой оптической толщины в линии HCO⁺, однако с использованием данных молекулы HC¹⁸O⁺ для двух источников, где одновременно зарегистрированы молекулы DCO⁺ и HC¹⁸O⁺, получены значения отношения DCO⁺/HCO⁺ 8.4 × 10⁻³ и 8.5 × 10⁻³. Среднее отношение DCN/HCN ~ 10⁻² для источников, зарегистрированных в линиях DCN, что близко к результатам работы [6].

Наши данные демонстрируют резкое спадание относительного содержания молекул DCO⁺ с ростом средней ширины узких линий в источнике (рис. 2a), более плавное спадание отношения количества молекул DCO⁺ и DCN с ростом средней ширины узких линий (рис. 2б), а так же рост от-

ношения количества молекул DCN и DNC с ростом средней ширины узких линий в источнике (рис. 2д). Надо отметить, что в работе [6] намек на подобную зависимость был найден для N_2D^+/N_2H^+ . Наши данные показывают также некоторую корреляцию между шириной линий и кинетической температурой. Это естественно, поскольку температура определяется главным образом светимостью центрального источника. Источники же с большей светимостью сильнее воздействуют на окружающее вещество, увеличивая турбулентность газа.

5. ЗАКЛЮЧЕНИЕ

В данной работе был проведен обзор 56 источников в областях образования массивных звезд в линиях низших переходов дейтерированных молекул DCN, DNC, DCO^+ , N_2D^+ с целью изучения

Рис. 5. Зависимость ширин линий от кинетической

температуры дейтерированных молекул DCO⁺ (треугольники, направленные вверх), DCN (треугольники, направленные вниз) и DNC (круги).

эффекта обогащения молекулярного газа дейтерием в таких областях. Основные результаты таковы.

1. Молекулы DCO⁺ обнаружены в 16 источниках из 50 наблюдавшихся, DCN − в 17 из 50, DNC − в 15 из 47, N₂D⁺ − в 2 из 47.

2. Относительное содержание молекул DCO⁺ спадает с ростом кинетической температуры, а относительное содержание молекул DCN остается постоянным в интервале температур от ~15 К до ~50 К. По имеющимся данным, нет статистически значимой зависимости относительного содержаниея молекул DNC от кинетической температуры газа, однако для однозначного определения данной зависимости недостаточно данных. В то же время отношение DCN/DNC заметно растет с ростом температуры. Эти результаты соответствует имеющимся химическим моделям, которые предсказывают высокую эффективность образования молекул DCN при температурах до ~80 К.

3. Надежные оценки отношения DCO^+/HCO^+ получены только для двух источников. Они составляют 8.4 × 10⁻³ и 8.5 × 10⁻³. Среднее отношение DCN/HCN ~ 10⁻² для источников, зарегистрированных в линиях DCN.

4. Наши данные демонстрируют резкое спадание относительного содержания молекул DCO⁺ с ростом средней ширины узких линий в источнике, плавное спадание отношения количества молекул DCO⁺ и DCN с ростом средней ширины узких линий в источнике, а так же рост отношения количества молекул DCN и DNC с ростом средней ширины узких линий в источнике.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке гранта РФФИ 18-02-00660, а также частично в рамках госзадания ИПФ РАН 0035-2019-0005. Национальная исследовательская инфраструктура Обсерватории Онсала финансируется за счет гранта Шведского исследовательского совета № 2017-00648.

БЛАГОДАРНОСТИ

Авторы выражают благодарность за поддержку со стороны Обсерватории Онсала (Швеция) в предоставлении ее оборудования и поддержки наблюдений и рецензенту за полезные замечания.

СПИСОК ЛИТЕРАТУРЫ

- 1. E. Roueff, B. Parise, and E. Herbst, Astron. and Astrophys. 464, 245 (2007).
- 2. T. Pillai, F. Wyrowski, J. Hatchell, A. G. Gibb, and M. A. Thompson, Astron. and Astrophys. 467, 207 (2007), astro-ph/0702548.
- 3. T. Pillai, J. Kauffmann, F. Wyrowski, J. Hatchell, A. G. Gibb, and M. A. Thompson, Astron. and Astrophys. 530, A118 (2011), 1105.0004.
- F. Fontani, A. Palau, P. Caselli, Á. Sánchez-Monge, M. J. Butler, J. C. Tan, I. Jiménez-Serra, G. Busquet, S. Leurini, and M. Audard, Astron. and Astrophys. 529, L7 (2011), 1103.5636.
- 5. O. Miettinen, M. Hennemann, and H. Linz, Astron. and Astrophys. **534**, A134 (2011), 1108.5691.
- 6. T. Gerner, Y. L. Shirley, H. Beuther, D. Semenov, H. Linz, T. Albertsson, and T. Henning, Astron. and Astrophys. **579**, A80 (2015), 1503.06594.
- T. Albertsson, D. A. Semenov, A. I. Vasyunin, T. Henning, and E. Herbst, Astrophys. J. Supp. Ser. 207, 27 (2013), 1110.2644.
- 8. G. W. Walker, E. Kalinauskaite, D. N. McCarthy, N. A. Trappe, A. Murphy, L. Helldner, M. G. Pantaleev, and J. Flygare, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII (2016), vol. 9914 of Proc. SPIE, p. 99142V.
- A. B. Burov, A. G. Kislyakov, A. A. Krasilnikov, E. P. Kukina, A. V. Lapinov, L. E. Pirogov, V. F. Vdovin, and I. I. Zinchenko, Soviet Astronomy Letters 14, 209 (1988).
- 10. I. I. Zinchenko, A. V. Lapinov, and L. E. Pirogov, Soviet Astronomy 33, 590 (1989).
- 11. I. Zinchenko, T. Henning, and K. Schreyer, Astron. and Astrophys. 124, 385 (1997).
- 12. *I. Zinchenko, C. Henkel, and R. Q. Mao*, Astron. and Astrophys. **361**, 1079 (2000).
- 13. S. Y. Malafeev, I. I. Zinchenko, L. E. Pirogov, and L. E. B. Johansson, Astronomy Letters **31**, 239 (2005).

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 3 2020

241

- L. Pirogov, I. Zinchenko, P. Caselli, L. E. B. Johansson, and P. C. Myers, Astron. and Astrophys. 405, 639 (2003), astro-ph/0304469.
- 15. *I. Zinchenko, P. Caselli, and L. Pirogov*, Monthly Not. Roy. Astron. Soc **395**, 2234 (2009), 0903.1209.
- L. E. Pirogov, V. M. Shul'ga, I. I. Zinchenko, P. M. Zemlyanukha, A. N. Patoka, and M. Tomasson, Astronomy Reports 60, 904 (2016), 1608.08446.
- F. F. S. van der Tak, J. H. Black, F. L. Schöier, D. J. Jansen, and E. F. van Dishoeck, Astron. and Astrophys. 468, 627 (2007), 0704.0155.
- T. Isobe and E. D. Feigelson, in Bulletin of the American Astronomical Society (1990), vol. 22 of BAAS, pp. 917– 918.
- M. P. Lavalley, T. Isobe, and E. D. Feigelson, in Bulletin of the American Astronomical Society (1992), vol. 24 of BAAS, pp. 839–840.
- 20. K. Schreyer, T. Henning, C. Koempe, and P. Harjunpaeae, Astron. and Astrophys. **306**, 267 (1996).

- L. E. Pirogov and I. I. Zinchenko, Astronomy Reports 37, 484 (1993).
- 22. J. Harju, C. M. Walmsley, and J. G. A. Wouterloot, Astronomy and Astrophysics Supplement Series **98**, 51 (1993).
- 23. J. Jijina, P. C. Myers, and F. C. Adams, Astrophys. J. Supp. Ser. 125, 161 (1999).
- 24. T. Pillai, F. Wyrowski, S. J. Carey, and K. M. Menten, Astron. and Astrophys. **450**, 569 (2006), astroph/0601078.
- 25. Y. L. Shirley, Proc. Astron. Soc. Pacif. 127, 299 (2015), 1501.01629.
- 26. M. A. Frerking, W. D. Langer, and R. W. Wilson, 262, 590 (1982).
- 27. T. Isobe, E. D. Feigelson, and P. I. Nelson, **306**, 490 (1986).
- 28. *T. Liu, Y. Wu, and H. Zhang*, Astrophys. J. Lett. **775**, L2 (2013), 1306.0046.
- 29. B. E. Turner, Astrophys. J. Supp. Ser. 136, 579 (2001).