УДК 524.333

*ВVI*_с НАБЛЮДЕНИЯ И ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ ПЕРИОДА ЦЕФЕИДЫ V811 Oph

© 2020 г. Л. Н. Бердников^{1,*}, А. А. Белинский¹, Н. И. Шатский¹, М. А. Бурлак¹, Н. П. Иконникова¹, Е. О. Мишин¹, Д. В. Черясов¹, С. В. Жуйко¹

¹Московский государственный университет им. М.В. Ломоносова, Государственный астрономический институт им. П.К. Штернберга, Москва, Россия

* *e-mail: berdnik@sai.msu.ru* Поступила в редакцию 18.11.2019 г. После доработки 16.12.2019 г. Принята к публикации 20.12.2019 г.

На новом 60-см телескопе Кавказской горной обсерватории ГАИШ МГУ впервые получены BVI_c наблюдения цефеиды V811 Oph. Привлечение фотометрии из старых фотографических и современных обзоров неба позволило построить O-C диаграмму, охватывающую временной интервал 124 года. Эта диаграмма имеет вид параболы, что позволило впервые определить квадратичные элементы изменения блеска и вычислить скорость эволюционного уменьшения периода V811 Oph $dP/dt = -0.00375(\pm 0.00177)$ с/год, что согласуется с результатами теоретических расчетов для второго пересечения полосы нестабильности, если эта цефеида является классической. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном, подтвердил реальность уменьшения периода.

DOI: 10.31857/S0004629920040015

1. ВВЕДЕНИЕ

Обнаружение парабол на *О*–*С* диаграммах позволяет вычислить скорости наблюдаемых эволюционных изменений периодов. Сравнение их с теоретическими скоростями, посчитанными для разных пересечений полосы нестабильности, позволяет идентифицировать номер пересечения, что, в перспективе, даст возможность построить зависимость период—светимость отдельно для каждого пересечения, что, в свою очередь, приведет к более точному определению расстояний цефеид.

В 1994 г. мы начали долговременный проект по изучению изменяемости периодов цефеид. Наш опыт показал, что когда интервал времени, охваченный *О*–*С* диаграммой, достигает столетия, более 90% изученных цефеид (во всем диапазоне встречающихся в Галактике периодов) показывают эволюционные изменения их периодов [1]. Поэтому при изучении изменяемости периодов цефеид следует охватить наблюдениями как можно больший интервал времени.

В данной работе мы исследуем поведение пульсаций цефеиды V811 Oph, период изменения блеска которой составляет 1.744^d.

2. МЕТОДИКА И ИСПОЛЬЗУЕМЫЙ НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ

Для изучения изменяемости периодов цефеид мы применяем общепринятую методику анализа O-C диаграмм, а самым точным методом определения остатков O-C является метод Герцшпрунга [2], машинная реализация которого описана в работе Бердникова [3]. Для подтверждения реальности обнаруженных изменений периода мы используем метод, описанный Ломбардом и Коэном [4].

Переменность V811 Oph открыли Бойс и Хурухата [5]. Гетц [6] классифицировал ее как звезду типа RR Лиры с периодом 0.38861^d, однако в [7] ее отнесли к классическим цефеидам с периодом 1.7442^d.

Для изучения стабильности периода V811 Oph мы использовали оценки блеска на оцифрованных старых фотографических пластинках университета Гарварда (проект DASCH [8]) (США) и ГАИШ МГУ [9] (РФ). Мы также использовали ПЗС наблюдения из обзоров NSVS [10], ASAS-3 [11], ASAS-SN [12] и ZTF [13], полученные в полосах, близких к V и g.

Хорошо известно, что для пульсирующих переменных максимумы блеска наступают позже с ростом эффективной длины волны фотометрической полосы. Поэтому, когда используются данные, полученные в разных полосах, надо выбрать основную (в нашем случае это V) и по одновременным наблюдениям определить величины сдвига моментов максимального блеска в других полосах. В эпоху фотографических наблюдений никто не наблюдал V811 Oph в системе V, поэтому мы вынуждены были провести ПЗС наблюдения в полосах V и B, величины в которой близки к фотографическим (PG).

3. НОВЫЙ ФОТОМЕТРИЧЕСКИЙ ТЕЛЕСКОП КАВКАЗСКОЙ ГОРНОЙ ОБСЕРВАТОРИИ ГАИШ МГУ

На Кавказской горной обсерватории ГАИШ МГУ в 2019 г. установлен 60-см телескоп системы Ричи-Кретьена. Обсерватория расположена в 20 км от Кисловодска, на склоне горы Шатджатмаз, 2100 м над уровнем моря.

Телескоп приобретен в рамках Программы развития МГУ. Комплекс телескопа включает в себя:

 Зеркальный телескоп RC-600 производства австрийской компании ASA, диаметр главного зеркала 600 мм, фокусное расстояние 4200 мм;

 Немецкая монтировка с двигателями прямого привода и абсолютными энкодерами ASA DDM160;

- Щелевой купол ScopeDome 5.5 m;

 Сдвоенное колесо фильтров FLI CenterLine для установки 8 светофильтров 50 × 50 мм;

— Комплект фотометрических фильтров производства Astrodon: фильтры U, B, V, R_c, I_c [14], и фильтры g', r', i' [15];

– Камера Andor iKon-L, 2048 × 2048 пикселов, размер пиксела 13.5 микрон.

В рабочем режиме приемник охлаждается до –60...–75°С. При типичных условиях работы чтение полученных изображений производится на частоте 1 Мгц, при этом шум чтения составляет 6.4 электрона.

Поле зрения фотометрического телескопа с установленной камерой составляет 22 × 22 минуты дуги, масштаб — 0.67 угловой секунды на пиксел. Размер типичного FWHM звездных изображений в зависимости от состояния атмосферы [16] составляет от 0.95 до 2.0 угловых секунд.

Наблюдения на телескопе проводятся в полуавтоматическом режиме или в режиме удаленного управления.

Мы наблюдали V811 Oph с 14 мая по 29 июля 2019 г. (интервал JD 2458618–694). Было получено 624 кадра в фильтрах BVI_c фотометрической системы Крона-Казинса [14]. В этот период размер изображения составлял 1.3–2.2 угловой секунды.

Для перевода извлеченной PSF-фотометрии в стандартную систему мы использовали вторичные стандарты в полях недалеко расположенных переменных V534 Oph и ASAS182611+1212.6, когда они оказывались на близких воздушных массах с V811 Oph. Вынос за атмосферу производился

со средними коэффициентами экстикции 0.28^m,

 0.17^{m} и 0.09^{m} для фильтров *B*, *V* и *I_c* соответственно [17]. Заатмосферные инструментальные величины *b*, *v* и *i* переводились в стандартную систему Крона-Казинса *BVI_c* [14] по формулам:

$$B = b + \zeta_B (B - V) + \mu_B,$$

$$V = v + \zeta_V (V - I)_c + \mu_V,$$

$$I_c = i + \zeta_I (V - I)_c + \mu_I,$$

(1)

где осредненные коэффициенты трансформации ζ получились следующими: $\zeta_B = -0.017$, $\zeta_V = -0.032$, $\zeta_I = -0.040$ (с ошибками 0.003), а нуль-пункты μ определялись для каждого кадра индивидуально.

Перевод инструментальных величин в стандартную систему требует нескольких итераций. Во время первой итерации показатели цвета B-Vи $V-I_c$ звезд неизвестны, и они приравниваются нулю. После каждой итерации вычисляются показатели цвета, и, когда их изменения становятся менее $0.001^{\rm m}$, процесс вычислений останавливается.

В результате обработки всех фотометрических ночей был получен каталог положений и звездных величин всех объектов на лучших ПЗС кадрах. Из этого каталога были выбраны постоянные звезды, которые использовались затем в качестве звезд сравнения для получения дифференциальной фотометрии всех звезд на всех ПЗС кадрах, в том числе и полученных не в фотометрические ночи.

Результаты обработки всех наблюдений V811 Орh помещены в табл. 1. Здесь приведен лишь фрагмент таблицы, а полностью она представлена в электронном виде (http://cdsarc.ustrasbg.fr/viz-bin/Cat). Полученные кривые изменения блеска в фильтрах B, V и I_c приведены на рис. 1, для построения которого использовались определенные нами текущие элементы:

$$MaxHJD = 2458695.146 + 1.744233^{d}E.$$
 (2)

Рассеяние точек на кривых блеска говорит о том, что ошибки наблюдений менее 0.01^m.

4. ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Сведения о количестве использованных наблюдений приведены в табл. 2. Самая старая фо-

286

Таблица 1. BVI_c наблюдения V811 Oph

HJD, 2400000+	Фильтр	Блеск	HJD, 2400000+	Фильтр	Блеск	HJD, 2400000+	Фильтр	Блеск
58618.3434	В	14.030	58618.3445 V		13.616	58618.3455	I _c	13.027
58618.3467	В	14.021	58618.3478	V	13.617	58618.3488	I_c	13.025
58618.3500	В	14.025	58618.3511	V	13.609	58618.3521	I_c	13.016
58618.3918	В	13.951	58618.3930	V	13.573	58618.3941	I_c	12.990
58619.3567	В	14.696	58619.3578	V	14.093	58619.3587	I_c	13.275
58619.3597	В	14.697	58619.3607	V	14.100	58619.3616	I_c	13.284
58619.3626	В	14.702	58619.3637	V	14.105	58619.3645	I_c	13.296
58619.3999	В	14.727	58619.4011	V	14.118	58619.4020	I_c	13.302
58619.4032	В	14.719	58619.4044	V	14.115	58619.4053	I_c	13.304
58620.3248	В	14.118	58620.3261	V	13.686	58620.3271	I_c	13.023
58620.3284	В	14.115	58620.3296	V	13.675	58620.3306	I_c	13.019
58620.3319	В	14.139	58620.3331	V	13.684	58620.3342	I_c	13.035
58620.3354	В	14.129	58620.3366	V	13.681	58620.3377	I_c	13.048
58620.3389	В	14.136	58620.3402	V	13.697	58620.3412	I_c	13.036
58620.3425	В	14.128	58620.3437	V	13.689	58620.3447	I_c	13.036
58620.3460	В	14.141	58620.3472	V	13.691	58620.3483	I_c	13.040
58620.3495	В	14.142	58620.3507	V	13.701	58620.3518	I_c	13.042
58620.4078	В	14.200	58620.4089	V	13.736	58620.4099	I_c	13.061
58620.4110	В	14.213	58620.4121	V	13.739	58620.4131	I_c	13.061
58621.3254	В	14.782	58621.3267	V	14.182	58621.3277	I_c	13.352
58621.3290	В	14.774	58621.3302	V	14.183	58621.3312	I_c	13.357
58621.3325	В	14.781	58621.3337	V	14.181	58621.3348	I_c	13.349
58621.3360	В	14.783	58621.3372	V	14.168	58621.3383	I_c	13.356
58621.3925	В	14.817	58621.3937	V	14.215	58621.3948	I_c	13.394
58621.3960	В	14.818	58621.3973	V	14.210	58621.3983	I_c	13.380
58621.4389	В	14.830	58621.4399	V	14.215	58621.4408	I_c	13.399
58621.4418	В	14.806	58621.4428	V	14.223	58621.4437	I_c	13.402
58621.4448	В	14.818	58621.4458	V	14.219	58621.4467	I_c	13.400
58622.3303	V	13.845	58622.3314	I_c	13.105	58622.3326	В	14.383
58622.3339	V	13.847	58622.3349	I_c	13.104	58622.3362	В	14.361
58622.3374	V	13.855	58622.3384	I_c	13.083	58622.3397	В	14.399
58622.3409	V	13.858	58624.4247	В	14.618	58624.4260	V	14.030
58624.4270	I_c	13.231	58624.4283	В	14.624	58624.4295	V	14.042
58624.4306	I_c	13.232	58624.4318	В	14.624	58624.4330	V	14.043
58624.4341	I_c	13.222	58624.4354	В	14.626	58624.4366	V	14.038
58624.4377	I _c	13.234	58624.4389	В	14.635	58624.4402	V	14.048
58624.4412	I _c	13.227	58624.4425	В	14.637	58624.4437	V	14.045
58626.4290	В	14.747	58626.4302	V	14.128	58626.4312	I _c	13.322
58626.4324	В	14.738	58626.4336	V	14.143	58626.4346	I_c	13.317

топластинка с изображением V811 Oph, хранящаяся в Гарварде, была получена в 1895 г., а последние ПЗС наблюдения были сделаны в 2019 г. Следовательно, наши данные охватывают временной интервал 124 года. Результаты обработки сезонных кривых V811 Орh приведены в табл. 3. В первой и второй колонке даны моменты максимального блеска и ошибки их определения, в третьей — тип используемых наблюдений, в четвертой и пятой — номер

Рис. 1. ПЗС наблюдения V811 Oph в фильтрах BVI_c, свернутые с текущими элементами (2).

эпохи E и значение остатка O-C, а в шестой и седьмой — число наблюдений N и источник данных. Данные табл. 3 изображены на O-C диаграмме (рис. 2) пустыми и заполненными квадратиками для фотографических наблюдений Гарварда и ГАИШ соответственно и кружками для остальных наблюдений с вертикальными черточками, указывающими пределы ошибок определения остатков O-C.

Наблюдения в фильтрах g' и r' из [13] были переведены в величины B и V по формулам из [18], и результаты их обработки включены в табл. 3.

По моментам максимального блеска из табл. 3 получены квадратичные элементы изменения блеска цефеиды V811 Oph:

$$MaxHJD = 2437806.1175(\pm 0.0036) + + 1.744244197^{d}(\pm 0.00000036)E - (3) - 0.103610^{-9}(\pm 0.48910^{-10})E^{2},$$

линейная часть которых использована для вычислений остатков O-C в пятом столбце табл. 3. Элементы (3) использовались для проведения параболы на верхней части рис. 2, на нижней части которого показаны отклонения от этой параболы.

По фотоэлектрическим и ПЗС наблюдениям было найдено, что максимумы в фильтрах B и g' наступают раньше, чем в фильтре V, на 0.0038^d и 0.0093^d соответственно. Эти поправки учитывались при построении рис. 2 и определении элементов (3), которые, таким образом, относятся к системе V.

Для подтверждения реальности изменений периода пульсаций мы используем метод, опубликованный Ломбардом и Коэном [4]. Для этого мы вычислили разности D_i последовательных остатков O-C из табл. 2: $D_i = (O-C)_{i+1} - (O-C)_i$ и построили график зависимости D_i от $E'_i = (E_i + E_{i+1})/2$ (рис. 3). Разности D_i , которые имеют смысл отличий ис-

Источник данных	Число наблюдений	Полоса наблюдений	Интервал JD
DASCH	385	PG	2413346-2447760
ГАИШ	194	PG	2442867-2449949
Данная работа (табл. 1)	214	В	2458618-2458694
Данная работа (табл. 1)	208	V	2458618-2458694
NSVS	144	V	2451277-2451632
ASAS-3	217	V	2452179-2455107
ASAS-SN	966	V	2456016-2458391
ASAS-SN	639	g'	2458142-2458700
ZTF	38	g'	2458204-2458389

Таблица 2. Наблюдательный материал цефеиды V811 Oph

Таблица 3. Моменты максимума блеска V811 Oph

Максимум, HJD	Ошибка, сут	Фильтр	Е	0-С, сут	Ν	Источник данных
2416962.3770	0.0252	PG	-11950	-0.0186	26	DASCH
2425653.9676	0.0117	PG	-6967	0.0032	42	DASCH
2426792.9674	0.0222	PG	-6314	0.0115	15	DASCH
2426998.7921	0.0629	PG	-6196	0.0154	5	DASCH
2427830.7599	0.0062	PG	-5719	-0.0213	53	DASCH
2429048.2278	0.0128	PG	-5021	-0.0359	12	DASCH
2429151.1644	0.0084	PG	-4962	-0.0097	60	DASCH
2430623.3195	0.0111	PG	-4118	0.0034	63	DASCH
2431757.0684	0.0092	PG	-3468	-0.0065	36	DASCH
2432266.3933	0.0255	PG	-3176	-0.0009	21	DASCH
2432317.0034	0.0285	PG	-3147	0.0261	30	DASCH
2442923.7255	0.0083	PG	2934	-0.0007	67	ГАИШ
2443302.2264	0.0118	PG	3151	-0.0008	48	ГАИШ
2443715.6137	0.0411	PG	3388	0.0006	22	DASCH
2443919.6717	0.0110	PG	3505	-0.0180	31	ГАИШ
2445974.3915	0.0164	PG	4683	-0.0179	48	ГАИШ
2451317.0336	0.0160	V	7746	0.0006	73	NSVS
2451451.3280	0.0129	V	7823	-0.0119	71	NSVS
2452794.4277	0.0209	V	8593	0.0198	37	ASAS-3
2453136.2788	0.0422	V	8789	-0.0010	17	ASAS-3
2453542.6818	0.0214	V	9022	-0.0068	42	ASAS-3
2453868.8793	0.0226	V	9209	0.0170	29	ASAS-3
2454296.1816	0.0265	V	9454	-0.0205	38	ASAS-3
2454634.5597	0.0217	V	9648	-0.0258	34	ASAS-3
2455007.8451	0.0658	V	9862	-0.0087	20	ASAS-3
2456097.9911	0.0053	V	10 487	-0.0153	16	ASAS-SN
2456851.5025	0.0019	V	10919	-0.0174	124	ASAS-SN
2457167.2132	0.0019	V	11100	-0.0149	180	ASAS-SN
2457521.2987	0.0014	V	11303	-0.0109	224	ASAS-SN
2457899.7949	0.0022	V	11520	-0.0158	180	ASAS-SN
2457936.4385	0.0043	V	11541	-0.0013	100	ASAS-SN
2458173.6242	0.0028	g'	11677	-0.0235	62	ASAS-SN
2458264.3387	0.0026	g'	11729	-0.0097	48	ASAS-SN
2458273.0605	0.0018	g'	11734	-0.0091	127	ASAS-SN
2458278.2904	0.0027	V	11737	-0.0213	142	ASAS-SN
2458292.2431	0.0017	g'	11745	-0.0132	38	ZTF
2458299.2251	0.0012	В	11749	-0.0138	80	ZTF
2458299.2305	0.0009	V	11749	-0.0121	80	ZTF
2458351.5490	0.0058	g'	11779	-0.0115	34	ASAS-SN
2458599.2150	0.0055	g'	11921	-0.0283	45	ASAS-SN
2458607.9473	0.0028	g'	11926	-0.0172	82	ASAS-SN
2458607.9530	0.0073	g'	11926	-0.0115	44	ASAS-SN
2458621.9004	0.0034	g'	11934	-0.0180	107	ASAS-SN
2458639.3460	0.0020	g'	11944	-0.0149	90	ASAS-SN
2458651.5619	0.0004	В	11951	-0.0143	214	Данная работа
2458651.5640	0.0005	V	11951	-0.0160	208	Данная работа

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 4 2020

Рис. 2. *О*–*С* диаграмма для цефеиды V811 Oph относительно линейных (вверху) и квадратичных (внизу) элементов (3). Линия – парабола, соответствующая элементам (3).

Рис. 3. Зависимость разностей D_i последовательных остатков O-C из табл. 3: $D_i = (O-C)_{i+1} - (O-C)_i$ от $E'_i = (E_i + E_{i+1})/2$. Прямая линия (4) подтверждает уменьшение периода со временем.

тинного периода от среднего периода в интервале эпох $E_i \div E_{i+1}$, показывают уменьшение периода со временем (аппроксимация прямой линией):

$$D_i = 0.00114(\pm 0.00316) - - - 0.17010^{-6}(\pm 0.33910^{-6})E'_i.$$
(4)

Квадратичный член элементов (3) дает возможность вычислить скорость эволюционного уменьшения периода $dP/dt = -0.00375(\pm 0.00177)$ с/год, что соответствует теоретическим расчетам для второго пересечения полосы нестабильности [1, 19], если V811 Орh является классической цефеидой типа DCEP [7, 9]. Однако на восходящей

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 4 2020

ветви кривой блеска (рис. 1) заметен горбик, что не типично для классических цефеид.

Следует отметить, что полученные здесь результаты основаны на конкретных стандартных кривых. Поэтому мы приводим их в табл. 4 с тем, чтобы их можно было использовать в будущих исследованиях, а также для установления связи с нашими данными, если будут использоваться другие стандартные кривые. Таблица 4 содержит звездные величины V811 Oph для фаз от 0 до 0.995 с шагом 0.005 в системе g'BV; эти стандартные кривые, графически изображенные на рис. 4, построены по нашим (*BV*) и ZTF (g') [13] наблюдениям.

БЕРДНИКОВ и др.

Таблица 4. Стандартные кривые блеска V811 Oph в фильтрах *B*, *V* и g'

Phase	В	V	gʻ	Phase	В	V	<i>g</i> ′	Phase	В	V	g'
0.000	13.938	13.547	13.729	0.335	14.497	13.931	14.197	0.670	14.784	14.175	14.448
0.005	13.939	13.547	13.729	0.340	14.503	13.936	14.203	0.675	14.787	14.179	14.451
0.010	13.942	13.550	13.731	0.345	14.509	13.941	14.208	0.680	14.791	14.182	14.455
0.015	13.947	13.553	13.735	0.350	14.516	13.946	14.214	0.685	14.795	14.186	14.460
0.020	13.953	13.557	13.739	0.355	14.522	13.951	14.219	0.690	14.799	14.190	14.464
0.025	13.960	13.562	13.744	0.360	14.529	13.956	14.225	0.695	14.803	14.194	14.468
0.030	13.969	13.568	13.750	0.365	14.535	13.961	14.231	0.700	14.806	14.198	14.472
0.035	13.979	13.575	13.757	0.370	14.541	13.966	14.236	0.705	14.810	14.201	14.476
0.040	13.989	13.582	13.764	0.375	14.548	13.971	14.242	0.710	14.814	14.205	14.481
0.045	14.001	13.590	13.772	0.380	14.554	13.976	14.247	0.715	14.818	14.209	14.485
0.050	14.012	13.598	13.781	0.385	14.560	13.981	14.252	0.720	14.821	14.213	14.489
0.055	14.024	13.607	13.790	0.390	14.566	13.986	14.257	0.725	14.824	14.217	14.493
0.060	14.037	13.615	13.799	0.395	14.572	13.990	14.262	0.730	14.827	14.220	14.496
0.065	14.049	13.624	13.809	0.400	14.578	13.995	14.267	0.735	14.830	14.224	14.500
0.070	14.061	13.633	13.819	0.405	14.584	14.000	14.272	0.740	14.832	14.225	14.503
0.075	14.073	13.641	13.829	0.410	14.589	14.004	14.276	0.745	14.834	14.228	14.505
0.080	14.085	13.650	13.839	0.415	14.595	14.008	14.281	0.750	14.835	14.227	14.508
0.085	14.097	13.658	13.848	0.420	14.600	14.013	14.285	0.755	14.835	14.229	14.510
0.090	14.108	13.666	13.858	0.425	14.605	14.017	14.289	0.760	14.835	14.230	14.511
0.095	14.119	13.674	13.867	0.430	14.610	14.021	14.293	0.765	14.835	14.231	14.511
0.100	14.130	13.681	13.876	0.435	14.615	14.024	14.297	0.770	14.834	14.232	14.511
0.105	14.141	13.689	13.885	0.440	14.620	14.028	14.300	0.775	14.832	14.232	14.510
0.110	14.151	13.696	13.894	0.445	14.624	14.032	14.304	0.780	14.829	14.231	14.509
0.115	14.161	13.702	13.902	0.450	14.628	14.035	14.307	0.785	14.825	14.229	14.506
0.120	14.171	13.709	13.910	0.455	14.633	14.038	14.311	0.790	14.820	14.227	14.502
0.125	14.180	13.715	13.918	0.460	14.637	14.042	14.314	0.795	14.813	14.223	14.498
0.130	14.189	13.721	13.926	0.465	14.641	14.045	14.318	0.800	14.804	14.218	14.492
0.135	14.198	13.727	13.934	0.470	14.645	14.048	14.321	0.805	14.799	14.211	14.484
0.140	14.207	13.733	13.941	0.475	14.649	14.051	14.325	0.810	14.798	14.203	14.476
0.145	14.215	13.738	13.949	0.480	14.653	14.054	14.328	0.815	14.786	14.192	14.466
0.150	14.224	13.743	13.956	0.485	14.657	14.058	14.331	0.820	14.767	14.187	14.455
0.155	14.232	13.749	13.964	0.490	14.661	14.061	14.335	0.825	14.747	14.170	14.442
0.160	14.240	13.754	13.971	0.495	14.665	14.064	14.338	0.830	14.725	14.149	14.427
0.165	14.248	13.759	13.978	0.500	14.669	14.069	14.342	0.835	14.701	14.125	14.412
0.170	14.257	13.765	13.986	0.505	14.673	14.072	14.345	0.840	14.680	14.104	14.394
0.175	14.265	13.770	13.993	0.510	14.677	14.075	14.349	0.845	14.657	14.080	14.375
0.180	14.273	13.776	14.000	0.515	14.681	14.078	14.353	0.850	14.628	14.059	14.355
0.185	14.281	13.781	14.007	0.520	14.685	14.082	14.356	0.855	14.597	14.033	14.333
0.190	14.290	13.786	14.015	0.525	14.689	14.085	14.360	0.860	14.565	14.007	14.310
0.195	14.298	13.792	14.022	0.530	14.692	14.088	14.363	0.865	14.533	13.981	14.286
0.200	14.306	13.797	14.030	0.535	14.696	14.091	14.367	0.870	14.502	13.957	14.260
0.205	14.314	13.803	14.037	0.540	14.700	14.094	14.370	0.875	14.472	13.936	14.233
0.210	14.323	13.808	14.044	0.545	14.704	14.097	14.374	0.880	14.444	13.918	14.206
0.215	14.331	13.814	14.051	0.550	14.707	14.100	14.377	0.885	14.418	13.901	14.178
0.220	14.339	13.819	14.058	0.555	14.711	14.103	14.380	0.890	14.394	13.886	14.149

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 4 2020

290

Таблица 4. Окончание

Phase	В	V	<i>g</i> ′	Phase	В	V	<i>g</i> ′	Phase	В	V	g'
0.225	14.347	13.825	14.066	0.560	14.714	14.106	14.383	0.895	14.372	13.871	14.120
0.230	14.355	13.830	14.072	0.565	14.718	14.109	14.386	0.900	14.351	13.855	14.090
0.235	14.363	13.835	14.079	0.570	14.721	14.112	14.389	0.905	14.328	13.836	14.061
0.240	14.370	13.841	14.086	0.575	14.724	14.115	14.392	0.910	14.303	13.815	14.032
0.245	14.378	13.846	14.093	0.580	14.728	14.118	14.395	0.915	14.273	13.791	14.005
0.250	14.385	13.851	14.099	0.585	14.731	14.122	14.398	0.920	14.239	13.764	13.983
0.255	14.393	13.856	14.106	0.590	14.734	14.125	14.400	0.925	14.202	13.736	13.955
0.260	14.400	13.861	14.112	0.595	14.737	14.128	14.403	0.930	14.164	13.707	13.929
0.265	14.407	13.866	14.118	0.600	14.740	14.131	14.405	0.935	14.127	13.680	13.903
0.270	14.414	13.871	14.124	0.605	14.743	14.133	14.408	0.940	14.095	13.655	13.878
0.275	14.420	13.875	14.130	0.610	14.746	14.136	14.410	0.945	14.069	13.633	13.854
0.280	14.427	13.880	14.135	0.615	14.749	14.139	14.413	0.950	14.045	13.619	13.832
0.285	14.434	13.885	14.141	0.620	14.752	14.143	14.416	0.955	14.026	13.608	13.811
0.290	14.440	13.889	14.147	0.625	14.754	14.146	14.418	0.960	14.009	13.596	13.793
0.295	14.446	13.894	14.153	0.630	14.757	14.149	14.421	0.965	13.992	13.584	13.777
0.300	14.453	13.899	14.158	0.635	14.760	14.152	14.424	0.970	13.978	13.574	13.763
0.305	14.459	13.903	14.164	0.640	14.764	14.156	14.427	0.975	13.965	13.566	13.752
0.310	14.465	13.908	14.169	0.645	14.767	14.159	14.430	0.980	13.955	13.559	13.743
0.315	14.472	13.912	14.175	0.650	14.770	14.162	14.433	0.985	13.948	13.554	13.736
0.320	14.478	13.917	14.180	0.655	14.773	14.165	14.437	0.990	13.943	13.550	13.732
0.325	14.484	13.922	14.186	0.660	14.777	14.168	14.440	0.995	13.939	13.548	13.729
0.330	14.490	13.926	14.191	0.665	14.780	14.172	14.444				

5. ЗАКЛЮЧЕНИЕ

Для изучения изменяемости периода V811 Oph использовались 579 оценок блеска на старых фотопластинках университета Гарварда (США) и ГАИШ МГУ, а также 422 ПЗС снимка в фильтрах *BV*, полученных на новом 60-см телескопе Кавказской Горной Обсерватории ГАИШ МГУ; кроме

Рис. 4. Стандартные кривые цефеиды V811 Oph в системе g'BV.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 4 2020

того, было собрано 5077 опубликованных наблюдений. Все имеющиеся данные были обработаны методом Герцшпрунга [2], и были определены 46 моментов максимального блеска для построения O-C диаграммы, охватывающей временной интервал 124 года. Это позволило определить квадратичные элементы изменения блеска (3) и вычислить скорость эволюционного уменьшения периода $dP/dt = -0.00375 (\pm 0.00177)$ с/год, что согласуется с результатами теоретических расчетов для второго пересечения полосы нестабильности [1, 19]. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном [4], подтвердил реальность уменьшения периода.

БЛАГОДАРНОСТИ

Авторы выражают благодарность за помощь при наладке комплекса оборудования телескопа RC-600 специалистам ГАИШ МГУ В.А. Сенику и И.А. Горбунову.

ФИНАНСИРОВАНИЕ

Данная работа осуществлялась при поддержке Российского фонда фундаментальных исследований (проекты номер 18-02-00890 и 19-02-00611). Работа НИШ частично поддержана грантом РНФ 17-12-01241. Работа ААБ, ЕОМ и ДВЧ поддержана грантом Программы развития Московского государственного университета им. М.В. Ломоносова "Ведущая научная школа "Физика звезд, релятивистских объектов и галактик". Работа выполнена с использованием оборудования, приобретенного за счет средств Программы развития Московского государственного университета имени М.В. Ломоносова.

СПИСОК ЛИТЕРАТУРЫ

- 1. D. G. Turner, M. Abdel-Sabour Abdel-Latif, and L. N. Berdnikov, Publ. Astron. Soc. Pacif. **118**, 410 (2006).
- 2. E. Hertzsprung, Astron. Nachr. 210, 17 (1919).
- 3. Л. Н. Бердников, Письма в Астрон. журн. **18**, 519 (1992).
- 4. *F. Lombard and C. Koen*, Monthly Not. Roy. Astron. Soc. **263**, 309 (1993).
- 5. *H.T. Boyce and M. Huruhata*, Harv. Ann. **109**, 19 (1942).
- 6. W. Goetz, Veroeff. Sternwarte Sonneberg 4, № 2 (1957).

- 7. G. Pojmanski and G. Maciejewski, Acta Astron. 54, 153 (2004).
- J. Grindlay, S. Tang, E. Los, and M. Servilla, ASP Conf. Ser. 410, 101 (2009).
- 9. http://scan.sai.msu.ru/pl/
- P. R. Wozniak, W. T. Vestrand, C. W. Akerlof, et al., Astron. J. 127, 2436 (2004).
- 11. G. Pojmanski, Acta Astron. 52, 397 (2002).
- 12. T. Jayasinghe, K. Z. Stanek, C. S. Kochanek, et al., Monthly Not. Roy. Astron. Soc. 485, 961 (2019).
- 13. F. J. Masci, R. R. Laher, B. Rusholme, et al., Publ. Astron. Soc. Pacif. 131:018003 (2019).
- 14. A. W. J. Cousins, Mem. RAS 81, 25 (1976).
- 15. *M. Fukugita, T. Ichikawa, J. E. Gunn, et al.*, Astron. J. **111**, 1748 (1996).
- V. Kornilov, B. Safonov, M. Kornilov, et al., Publ. Astron. Soc. Pacif. 126, 482 (2014).
- 17. V. Kornilov, M. Kornilov, O. Voziakova, et al., Monthly Not. Roy. Astron. Soc. 462, 4464 (2016).
- R. Lupton, http://www.sdss3.org/dr8/algorithms/sdssUBVRITransform.php# Lupton2005.
- 19. *Ю. А. Фадеев*, Письма в Астрон. журн. **40**, 341 (2014).