УДК 521.1

ВЗАИМНАЯ ГРАВИТАЦИОННАЯ ЭНЕРГИЯ КОЛЕЦ ГАУССА И ПРОБЛЕМА ВОЗМУЩЕНИЙ В НЕБЕСНОЙ МЕХАНИКЕ

© 2020 г. Б. П. Кондратьев^{1, 2, 3, *}, В. С. Корноухов^{1, 2}

¹ Московский государственный университет им. М.В. Ломоносова, Физический факультет, Москва, Россия ² Московский государственный университет им. М.В. Ломоносова,

Государственный астрономический институт им. П.К. Штернберга, Москва, Россия

³ Главная (Пулковская) астрономическая обсерватория РАН, Санкт-Петербург, Россия

* *E-mail: work@boris-kondratyev.ru* Поступила в редакцию 06.12.2019 г. После доработки 24.01.2020 г. Принята к публикации 24.01.2020 г.

Развит новый подход к изучению долгопериодических и вековых возмущений в небесной механике. В отличие от традиционного использования аппарата возмущающей функции Лагранжа, мы опираемся на взаимную потенциальную энергию эллиптических колец Гаусса. Такой подход важен в связи с тем, что вместо усреднения выражения для возмущающей функции Лагранжа, полученного очень сложным образом, методически проще оказывается сразу вычислить взаимную энергию колец Гаусса. В данной работе рассматривается задача для двух колец Гаусса с одним общим фокусом, имеющих малые эксцентриситеты, небольшой угол взаимного наклона и произвольный угол между линиями апсид. Получено выражение для взаимной энергии такой системы колец в виде ряда с точностью до членов 4-го порядка малости включительно. Это выражение используется для вывода и решения системы дифференциальных уравнений, описывающих эволюцию колец в эклиптической системе отсчета. Метод применяется для детального изучения двупланетной задачи Солнце–Юпитер–Сатурн. Получены результаты, дополняющие и уточняющие результаты других авторов. Новое выражение возмущающей функции может применяться не только к планетной задаче, где все наклонения должны быть малыми, но и к задаче с кольцами непланетного типа, обнаруженными у малых небесных тел.

DOI: 10.31857/S0004629920060031

1. ВВЕДЕНИЕ

В небесной механике для нахождения возмущений основным является метод Лагранжа, в котором используется разложение возмущающей функции по наклонам и эксцентриситетам орбит [1]. Однако подход Лагранжа при всей его несомненной ценности является весьма трудоемким, поэтому актуальными остаются поиски других способов решения задач о возмущениях в небесной механике. Новый шаг в решении проблемы в 1818 г. сделал Гаусс, который ввел представление о специальных кольцах. Гауссово кольцо получается при "размазывании" точечной массы *m* по эллиптической орбите с одномерной плотностью вещества, обратной скорости движения спутника на данном участке траектории. Элемент массы кольца на угловом интервале dv равен

$$dm = \frac{m}{2\pi} \frac{(1-e^2)^{\frac{3}{2}}}{(1+e\cos v)^2} dv,$$
 (1)

где *v* — угол истинной аномалии, *e* — эксцентриситет орбиты.

Ньютоновский потенциал гауссова кольца выражается через полные эллиптические интегралы Лежандра и был найден в работе [2] (см. также книгу [3]). Отметим, что на практике указанный подход к нахождению возмущений может опираться на систему из нескольких колец Гаусса [4]. Подчеркнем, что в этом методе не рассматривается обратное влияние пробного тела на возмущающее кольцо. Условно назовем этот метод расчета возмущений прямым.

Однако в небесной механике часто встречаются и такие задачи, когда необходимо учитывать не только прямое влияние кольца на внешнее тело, но и обратное влияние возмущаемых тел на кольцо. Здесь основной интерес для нас представляет задача, в которой рассматривается взаимодействие между двумя (или несколькими) гравитирующими кольцами Гаусса. В таких задачах усреднение по быстрым переменным необходимо делать как *для возмущающего, так и для возмущае*- мого тела. Условно назовем этот второй подход методом полного усреднения.

В указанных задачах для изучения эволюции взаимодействующих колец Гаусса необходимо знать взаимный гравитационный потенциал (или взаимную гравитационную энергию W_{mut}) этих колец. Эффективность метода, основанного на применении функции W_{mut} , была показана на примере исследования упрощенного варианта двупланетной задачи Солнце–Юпитер–Сатурн [5, 6]. В этих работах был найден взаимный потенциал двух однородных гравитирующих круглых колец, пересекающихся по диаметру под углом α друг к другу. С точностью до квадрата угла наклона α^2 включительно это выражение взаимной энергии колец равно

$$W_{\rm mut} = W_0 + W_2 \cdot \alpha^2, \qquad (2)$$

где

$$W_{0} = -\frac{2Gm_{1}m_{2}}{\pi R_{1}} \mathbf{K}(k),$$

$$W_{2} = -\frac{Gm_{1}m_{2}}{2\pi R_{1}} \frac{\mathbf{K}(k) - \frac{1+k^{2}}{1-k^{2}} \mathbf{E}(k)}{1-k^{2}}, \quad k = \frac{R_{2}}{R_{1}} \le 1.$$
(3)

Здесь R_1 и R_2 – радиусы колец, а К (k) и E(k) – полные эллиптические интегралы Лежандра первого и второго рода соответственно. Через W_{mut} легко найти момент сил M между кольцами

$$M = -\frac{\partial W_{\text{mut}}}{\partial \alpha} = \frac{GM_1M_2}{\pi R_1} \frac{\mathbf{K}(k) - \frac{1+k^2}{1-k^2}\mathbf{E}(k)}{1-k^2} \alpha.$$
(4)

Момент сил между кольцами пропорционален углу α в первой степени, и этого достаточно при требуемой точности расчетов. Зная момент сил (4) и наделяя кольца соответствующим планетам угловым моментом, можно вычислить скорость прецессии узлов $\dot{\Omega} \approx 25.6''$ /год. Результат применения метода показал его адекватность (метод Лагранжа дает $\dot{\Omega} = 25.93''$ /год [7]) и позволил дать простое и наглядное объяснение явлению вековой прецессии плоскостей орбит планет-гигантов.

Развивая данную тему, в работе [8] авторы отказались от упрощающего предположения о круговых кольцах. Предполагая кольца Гаусса компланарными слабо сжатыми эллипсами, выражение для взаимной гравитационной энергии было найдено в квадратичном по эксцентриситетам e_1 и e_2 приближении

$$W_{\text{mut}} = -\frac{Gm_1m_2}{\pi a_1} [W_0 + W_1e_1 + W_2e_2 + W_{11}e_1^2 + W_{22}e_2^2 + W_{12}e_1e_2],$$
(5)

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 5 2020

где использованы обозначения:

$$W_{0} = 2K(n);$$

$$W_{1} = W_{2} = 0;$$

$$W_{11} = \frac{(1+n^{2})E(n) - (1-n^{2})K(n)}{2(1-n^{2})^{2}};$$

$$W_{22} = \frac{(1+n^{2})E(n) - (1-n^{2})K(n)}{2(1-n^{2})^{2}};$$
(6)

$$W_{12} = \frac{(1-n^2)(2-n^2)K(n) - 2(1-n^2+n^4)E(n)}{n(1-n^2)^2}\cos\beta.$$

Здесь $n = a_2/a_1 \le 1$ есть отношение больших полуосей колец, а β – угол между линиями их апсид. Заметим, что в (5) и (6) от угла β зависит только коэффициент при смешанном члене $W_{12}(n)$.

Предлагаемая работа продолжает указанную тематику: в ней задача о взаимной потенциальной энергии двух гауссовых колец решается в более общей постановке, когда оба кольца являются слабо эллиптическими и некомпланарными друг другу. Это позволяет применить новый метод для детального изучения вековой и долгопериодической эволюции орбит Юпитера и Сатурна в рамках двупланетной задачи. В разделе 2 дана постановка задачи. В разделе 3 получено выражение для взаимной энергии колец Гаусса, имеющих малые эксцентриситеты и небольшой наклон плоскостей друг к другу; результат представлен в виде ряда с точностью до членов четвертого порядка малости включительно. В разделе 4 выражение для взаимной энергии используется для вывода системы пяти дифференциальных уравнений. описывающих вековую эволюцию колец Гаусса. Получено решение этих уравнений эволюции. В разделе 5 разработанный математический аппарат применяется для более тщательного, чем ранее, исследования двупланетной задачи Солнце–Юпитер–Сатурн. В разделе 6 обсуждаются полученные результаты.

2. ПОСТАНОВКА ЗАДАЧИ

Даны два эллиптических кольца Гаусса с параметрами:

$$a_{1}, e_{1}, i_{1}, \omega_{1}, \Omega_{1}, \mu_{1}(v_{1}), m_{1};$$

$$a_{2}, e_{2}, i_{2}, \omega_{2}, \Omega_{2}, \mu_{2}(v_{2}), m_{2}.$$
(7)

Здесь α_i , e_i — большая полуось и эксцентриситет *i*-го кольца, v_i — угол истинной аномалии на нем, $(i_i, \omega_i, \Omega_i)$ — углы наклона, аргументы перицентра и восходящего узла; $\mu_i(v_i)$ — распределение одномерной плотности вдоль кольца, m_i — масса кольца. Вклад во взаимную энергию колец от двух элементарных точечных масс dm_1 и dm_2 равен

$$dW_{\rm mut} = -\frac{Gdm_1dm_2}{r_{12}},\tag{8}$$

где G — универсальная гравитационная постоянная; dm_1 и dm_2 — элементарные массы на участках колец, представленные формулой (1). Расстояние r_{12} между этими элементарными массами выражается следующим образом:

$$r_{12} = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos\phi},$$

$$r_1 = \frac{a_1(1 - e_1^2)}{1 + e_1\cos v_1}; \quad r_2 = \frac{a_2(1 - e_2^2)}{1 + e_2\cos v_2},$$
(9)

где ϕ — угол между r_1 и r_2 .

Выражение для взаимной энергии двух эллиптических колец Гаусса можно получить теперь методом двукратного усреднения по средним движениям исходного выражения (8):

$$W_{\rm mut} = -G \int_{(m_1)} dm_1 \int_{(m_2)} \frac{dm_2}{r_{12}}.$$
 (10)

Введем декартову вспомогательную систему координат $O\xi\eta\zeta$, в которой ось η направлена вдоль общей линии узлов колец Гаусса на восходящий узел, ось ζ – вдоль вектора углового мо-мента 1-го кольца, а плоскость *О*ξη совпадает с плоскостью внешнего кольца под номером 1. В этой системе координат удобно находить взаимную энергию двух колец Гаусса, а также компоненты вектора М момента действующих сил. Радиус-вектор точки на k-ом кольце Гаусса (k = 1, 2) можно записать в виде $\mathbf{r}_k = r_k \{\cos u_k, \sin u_k \cos i_k,$ $\sin u_k \sin i_k$. Обозначим угол взаимного наклона плоскостей колец через $\Delta i = i_2 - i_1$ (хотя в системе $O\xi\eta\zeta$ угол $i_1 = 0$, но для симметрии в формулах мы его формально сохраним), тогда косинус угла между этими радиус-векторами будет равен cos φ = $= \cos u_1 \cos u_2 + \sin u_1 \sin u_2 \cos(\Delta i)$, где $u_k = v_k + \omega_k$, а ω_k – аргумент перицентра k-го кольца. С учетом закона распределения массы на каждом кольце (1), взаимную энергию (10) колец Гаусса можно представить двойным интегралом [5]

$$W_{\text{mut}} = -\frac{Gm_1m_2(1-e_1^2)^{3/2}(1-e_2^2)^{3/2}}{4\pi^2} \times \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{dv_1dv_2}{r_{12}(1+e_1\cos v_1)^2(1+e_2\cos v_2)^2}.$$
(11)

3. ВЗАИМНАЯ ЭНЕРГИЯ КОЛЕЦ. РАЗЛОЖЕНИЕ В РЯД

3.1. Случай некомпланарных колец

Далее для преобразования (11) введем новые переменные интегрирования (θ , u_2)

$$v_1 = u_2 - \theta - \omega_1, \quad u_1 = u_2 - \theta, \quad v_2 = u_2 - \omega_2,$$

после чего интеграл (11) примет вид

$$W_{\text{mut}} = \frac{Gm_{1}m_{2}(1-e_{1}^{2})^{3/2}(1-e_{2}^{2})^{3/2}}{4\pi^{2}} \times \int_{\omega_{2}}^{2\pi+\omega_{2}} \left(\int_{u_{2}-\omega_{1}}^{u_{2}-\omega_{1}-2\pi} \frac{(1+e_{2}\cos(u_{2}-\omega_{2}))^{-2} d\theta}{r_{12}(1+e_{1}\cos(u_{2}-\omega_{1}-\theta))^{2}}\right) du_{2}.$$
 (11a)

Так как в силу периодичности подынтегральной функции пределы интегрирования в (11а) можно сместить (см. также [9]), в итоге приводим (11) к виду

$$W_{\text{mut}} = \frac{Gm_{1}m_{2}(1-e_{1}^{2})^{3/2}(1-e_{2}^{2})^{3/2}}{4\pi^{2}} \times \\ \times \int_{\omega_{2}}^{2\pi_{2}} \int_{0}^{2\pi} \frac{(1+e_{2}\cos(u_{2}-\omega_{2}))^{-2} d\theta du_{2}}{r_{12}(1+e_{1}\cos(u_{2}-\theta-\omega_{1}))^{2}},$$
(12)

где входящие в выражение для r_{12} радиусы-векторы эллиптических орбит и косинус угла между ними равны

$$r_{1} = \frac{a_{1}(1 - e_{1}^{2})}{1 + e_{1}\cos(u_{2} - \theta - \omega_{1})};$$

$$r_{2} = \frac{a_{2}(1 - e_{2}^{2})}{1 + e_{2}\cos(u_{2} - \omega_{2})},$$

$$cos \phi = cos \theta - (1 - cos(\Delta i)) sin(u_{2} - \theta) sin u_{2}.$$
(13)

Полагая далее, что эксцентриситеты колец e_1 , e_2 и угол взаимного наклона Δi малы, разложим подынтегральное выражение в (12) по степеням указанных трех малых параметров в ряд Тейлора. Это разложение в ряд проведем до 4-й степени включительно. В итоге, после большого объема работы, (12) можно представить в виде

$$W_{\text{mut}} = -\frac{Gm_{1}m_{2}}{\pi a_{1}} \{W_{000} + W_{200}(e_{1}^{2} + e_{2}^{2} - \Delta i^{2}) + W_{110}e_{1}e_{2} + W_{400}e_{1}^{4} + W_{310}e_{1}^{3}e_{2} + W_{220}e_{1}^{2}e_{2}^{2} + (14) + W_{130}e_{1}e_{2}^{3} + W_{040}e_{2}^{4} + \Delta i^{2}[W_{202}e_{1}^{2} + W_{022}e_{2}^{2} + W_{112}e_{1}e_{2}] + W_{004}\Delta i^{4}\}.$$

Найдены все четырнадцать коэффициентов W_{klm} , которые входят в выражение взаимной энергии колец Гаусса (14):

$$W_{000} = \frac{2}{1+n} K(k); \tag{15}$$

$$W_{200} = W_{020} = -W_{002} =$$

$$= \frac{1}{4(1+n)} \left(\frac{1+n^2}{(1-n)^2} E(k) - K(k) \right);$$
(16)

$$W_{110} = -\frac{1}{n(1+n)} \times \left(\frac{1-n^2+n^4}{(1-n)^2} E(k) - (1+n^2)K(k)\right) \cos(\omega_2 - \omega_1);$$
(17)

$$W_{202} = \frac{1}{16(1+n)(1-n^2)^2} \times \left(\left(\frac{1-3n^2+23n^4+3n^6}{(1-n)^2} E(k) - (1-n^2+3n^4)K(k) \right) \times 2\cos^2(\omega_1) - (18) \right)$$

$$-\left(\frac{1+21n^2+47n^4+3n^6}{(1-n)^2}E(k)-(1+5n^2+3n^4)K(k)\right)\right);$$

$$W_{022} = \frac{1}{16(1+n)(1-n^2)^2} \times \left(\left(\frac{3+23n^2-3n^4+n^6}{(1-n)^2} E(k) - (3-n^2+n^4)K(k) \right) \times 2\cos^2(\omega_2) - (19) \right)$$

$$-\left(\frac{3+47n^2+21n^4+n^6}{(1-n)^2}E(k)-(3+5n^2+n^4)K(k)\right);$$

$$W_{112} = -\frac{1}{16n(1+n)(1-n^2)^2} \times \left(\left(\frac{4-15n^2 - 25n^4 - 15n^6 + 4n^8}{(1-n)^2} E(k) - \frac{1}{(1-n)^2} \right) \right)$$

$$-(4-11n^{2}+4n^{4})(1+n^{2})K(k)\Bigg]\cos(\omega_{1})\cos(\omega_{2})+(20)$$

$$+\left(\frac{4-21n^2-110n^4-21n^6+4n^8}{(1-n)^2}E(k)-(4-n^2)(1-4n^2)(1+n^2)K(k)\right)\sin(\omega_1)\sin(\omega_2)\right);$$

$$W_{004} = -\frac{1}{96(1+n)(1-n^2)^2} \times \left(\frac{1-37n^2-37n^4+n^6}{(1-n)^2}E(k) - (21) - (1-3n-n^2)(1+3n-n^2)K(k)\right);$$

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 5 2020

$$W_{400} = \frac{1}{32(1+n)(1-n^2)^2} \times \left(\frac{3+23n^2-3n^4+n^6}{(1-n)^2} E(k) - (3-n^2+n^4)K(k)\right); (22) \times \left(\frac{3+23n^2-3n^4+n^6}{(1-n)^2} E(k) - (3-n^2+n^4)K(k)\right); (23) \times \left(\frac{1-3n^2+23n^4+3n^6}{(1-n)^2} E(k) - (1-n^2+3n^4)K(k)\right); (24) \times \left(\frac{9+50n^2-15n^4+4n^6}{(1-n)^2} E(k) - (9-7n^2+4n^4)K(k)\right) \times (24) \times \cos(\omega_2 - \omega_1); W_{130} = -\frac{1}{16n(1+n)(1-n^2)^2} \times (25) \times \left(\frac{4-15n^2+50n^4+9n^6}{(1-n)^2} E(k) - (4-7n^2+9n^4)K(k)\right) \times \cos(\omega_2 - \omega_1); W_{220} = \frac{3}{16(1+n)(1-n^2)^2} \times \left(\left(\frac{(1+n^2)(1-2n-n^2)(1+2n-n^2)}{(1-n)^2} E(k) - (1-n-n^2)(1+n-n^2)K(k)\right) \times 2\sin^2(\omega_2 - \omega_1) - (26) - \left(\frac{(1+n^2)(1-4n+n^2)(1+4n+n^2)}{(1-n)^2} E(k) - (1-5n^2+n^4)K(k)\right)\right).$$

1

Модуль полных эллиптических интегралов первого и второго рода, входящих в компоненты W_{klm} , симметричен относительно перестановки индексов у колец и равен

$$k = \frac{2\sqrt{a_1a_2}}{a_1 + a_2} = \frac{2\sqrt{n}}{1+n} \le 1, \quad n = \frac{a_2}{a_1} \le 1.$$
 (27)

Выражения всех коэффициентов W_{klm} из (15)–(26) были нами тщательно проверены.

Отметим, что формула для взаимной энергии (14), записанная в виде ряда по степеням малых эксцентриситетов и малого взаимного наклона колец Гаусса, не содержит членов *нечетных степеней по совокупности малых величин*. Проверено, что член пятого порядка тождественно равен нулю, а шестого порядка не равен нулю, поэтому следующая поправка к выражению для взаимной энергии будет иметь сразу 6-й порядок малости.

3.2. Случай компланарных колец

В более простом случае, когда оба кольца расположены в одной плоскости, полагая в (14) угол взаимного наклона колец $\Delta i = 0$ равным нулю, получим выражение взаимной энергии колец (с точностью до членов четвертого порядка малости) в виде:

$$W_{\text{mut}} = -\frac{Gm_1m_2}{\pi a_1} \{ W_{000} + W_{200}(e_1^2 + e_2^2) + W_{110}e_1e_2 + (28) \} + W_{400}e_1^4 + W_{310}e_1^3e_2 + W_{220}e_1^2e_2^2 + W_{130}e_1e_2^3 + W_{040}e_2^4 \}.$$

Кроме того, в квадратичном по эксцентриситетам e_1 и e_2 приближении формула (28) еще более упрощается

$$W_{\rm mut} = -\frac{Gm_1m_2}{\pi a_1} \{W_{000} + W_{200}(e_1^2 + e_2^2) + W_{110}e_1e_2\}.$$
(29)

Для контроля заметим, что выражение (29) эквивалентно полученному ранее выражению (5). В этом можно убедиться, сделав в (29) преобразования Ландена [10] для эллиптических интегралов

$$K\left(\frac{2\sqrt{n}}{1+n}\right) = (1+n)K(n);$$

$$E\left(\frac{2\sqrt{n}}{1+n}\right) = \frac{2E(n) - (1-n^2)K(n)}{1+n}.$$
(30)

Нетривиально также, что в общем *некомпланарном* случае взаимная энергия колец (14) зависит не только от разности углов $\Delta \omega = \omega_2 - \omega_1$, но и от каждого угла ω_1 и ω_2 в отдельности.

4. УРАВНЕНИЯ ЭВОЛЮЦИИ КОЛЕЦ ГАУССА

Под действием взаимных возмущений два гравитирующих кольца Гаусса не будут стационарными — они должны эволюционировать. Здесь нас интересует долгопериодическая и вековая эволюция эллиптических колец Гаусса (а значит, и соответствующих этим кольцам орбит).

4.1. Уравнения Лагранжа и уравнения для компонентов момента сил

Как известно, система уравнений Лагранжа для оскулирующих элементов имеет вид:

$$\frac{da}{dt} = \frac{2}{n_0 a} \frac{\partial R}{\partial M},$$
$$\frac{de}{dt} = \frac{1 - e^2}{e n_0 a^2} \frac{\partial R}{\partial M} - \frac{\sqrt{1 - e^2}}{e n_0 a^2} \frac{\partial R}{\partial \omega},$$

$$\frac{di}{dt} = \frac{\cos i}{n_0 a^2 \sqrt{1 - e^2} \sin i} \frac{\partial R}{\partial \omega} - \frac{1}{n_0 a^2 \sqrt{1 - e^2} \sin i} \frac{\partial R}{\partial \Omega}, \quad (31)$$
$$\frac{d\omega}{dt} = \frac{\sqrt{1 - e^2}}{e n_0 a^2} \frac{\partial R}{\partial e} - \cos i \frac{d\Omega}{dt},$$
$$\frac{d\Omega}{dt} = \frac{1}{n_0 a^2 \sqrt{1 - e^2} \sin i} \frac{\partial R}{\partial i}.$$

В (31) опущено уравнение для \dot{M}_0 , так как в нашем случае возмущающая функция не содержит явно угол средней аномалии M_0 . Поэтому $\frac{\partial R}{\partial M_0} = 0$ и, как следствие,

$$\frac{da}{dt} = 0. \tag{32}$$

В (32) получен первый важный результат: в ходе эволюции колец Гаусса их большие полуоси остаются неизменными.

Переходя далее к другой системе оскулирующих элементов (*a*, *e*, *i*, ε , π , Ω) и полагая $\omega = \pi - \Omega$; $\varepsilon = \pi + M$, с учетом очевидного равенства $\frac{\partial R}{\partial \varepsilon} = 0$, третье из уравнений (31) можно записать в другом виде

$$\frac{di}{dt} = -\frac{1}{n_0 a^2 \sqrt{1 - e^2}} \left(\frac{1}{\sin i} \frac{\partial R}{\partial \Omega} + \operatorname{tg} \frac{i}{2} \frac{\partial R}{\partial \pi} \right).$$
(33)

Замечание 1. Вариант (33) для уравнения эволюции наклона используется далее для того, чтобы во втором уравнении в системе уравнений (42) в знаменателе исчез "опасный" член Δi .

4.2. Уравнения, описывающие компоненты момента сил

Для дальнейших преобразований уравнений Лагранжа (31) рассмотрим основное уравнение вращающихся тел [11]

$$\frac{d\mathbf{L}}{dt} = \mathbf{M},\tag{34}$$

где L — угловой момент тела, M — момент внешних сил, действующих на него. В нашей задаче, во введенной в разделе 2 вспомогательной системе координат $O\xi\eta\zeta$ векторное уравнение (34) в про-екциях дает

$$L\frac{di}{dt} = M_{\xi}, \quad L\sin i\frac{d\Omega}{dt} = M_{\eta}, \quad \frac{dL}{dt} = M_{\zeta}.$$
 (35)

С учетом известного выражения для углового момента тела на эллиптической орбите $L = m\sqrt{\mu p}$, где $p = a(1 - e^2)$, формулы (35) при условии (32) примут вид:

$$\frac{di}{dt} = \frac{M_{\xi}}{L}, \quad \sin i \frac{d\Omega}{dt} = \frac{M_{\eta}}{L}, \quad -\frac{e}{1-e^2} \frac{de}{dt} = \frac{M_{\zeta}}{L}.$$
 (36)

Принимая во внимание выражение для эволюции истинной аномалии *v*, выраженной только через оскулирующие элементы ([12], стр. 504)

$$-\left(\frac{dv}{dt}\right) = \frac{d\omega}{dt} + \cos i \frac{d\Omega}{dt},\tag{37}$$

а также указанное выше условие независимости возмущающей функции от средней аномалии, из уравнений Лагранжа (31) получим следующую вспомогательную систему уравнений

$$\frac{M_{\xi}}{L} = -\frac{1}{n_0 a^2 \sqrt{1 - e^2}} \left(\frac{1}{\sin i} \frac{\partial R}{\partial \Omega} + \operatorname{tg} \frac{i}{2} \frac{\partial R}{\partial \pi} \right),$$

$$\frac{M_{\eta}}{L} = \frac{1}{n_0 a^2 \sqrt{1 - e^2}} \frac{\partial R}{\partial i},$$

$$\frac{1 - e^2}{e} \frac{M_{\zeta}}{L} = \frac{\sqrt{1 - e^2}}{e n_0 a^2} \frac{\partial R}{\partial \omega},$$

$$-\left(\frac{dv}{dt}\right) = \frac{\sqrt{1 - e^2}}{e n_0 a^2} \frac{\partial R}{\partial e}.$$
(38)

Заметим, что третье уравнение в (38) для компонента $\frac{M_{\eta}}{L}$ эквивалентно полученному ранее в работе [2] моменту сил $M = -\frac{\partial W_{\text{mut}}}{\partial \alpha}$, см. выше формулу (4). Проведение такой аналогии важно для понимания физического смысла уравнений (38).

4.3. Запись уравнений для оскулирующих элементов через компоненты момента сил

Теперь надо учесть, что при поворотах системы координат инвариантными остаются: модуль и направление углового момента L, модуль и направление момента действующих сил M, а также изменение истинной аномалии. Кроме того, не изменяется при этом и форма эллипса. Эти условия запишем в виде (штрихами отмечены величины в новой системе отсчета)

$$L' = L, \qquad M' = M, \qquad a' = a,$$

$$e' = e, \qquad \frac{dv'}{dt} = \frac{dv}{dt}.$$
 (39)

С учетом инвариантности величин (39) уравнения эволюции оскулирующих элементов в инерциальной системе отсчета можно представить в виде:

$$\frac{da}{dt} = 0, \quad \frac{de}{dt} = -\frac{1-e^2}{e} \frac{M_{\zeta'}}{L},$$

$$\frac{di'}{dt} = \frac{M_{\zeta'}}{L}, \quad \frac{d\Omega'}{dt} = \frac{1}{\sin i'} \frac{M_{\eta'}}{L},$$

$$\frac{d\omega'}{dt} = -\left(\frac{dv}{dt}\right) - \cos i' \frac{d\Omega'}{dt}.$$
(40)

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 5 2020

4.4. Уравнения взаимной эволюции колец Гаусса

Рассмотрим вначале эволюцию 2-го кольца под действием 1-го. Исходим из того, что возмущающая функция связана с взаимной потенциальной энергией выражением

$$R = -\frac{W_{\text{mut}}}{m_2}.$$
 (41)

Сама же функция W_{mut} была получена выше, см. формулу (14).

Подставляя (41) во вспомогательную систему уравнений (38), с учетом (14) после многих расчетов получим

a (2)

$$\frac{1-e_2^2}{e_2} \frac{M_{\zeta}^{(2)}}{L^{(2)}} = \frac{Gm_1}{16\pi a_1^3 n_2 n^3 (1+n)(1-n^2)^2} \times \\ \times \sum_{k+l+m=1}^3 e_{klm}^{(2)} e_1^k e_2^l \Delta i^m, \\ \frac{M_{\xi}^{(2)}}{L^{(2)}} = -\frac{Gm_1 \Delta i}{8\pi a_1^3 n_2 n^3 (1+n)(1-n^2)^2} \sum_{k+l=2}^2 i_{kl}^{(2)} e_1^k e_2^l, \\ \frac{1}{\sin(\Delta i)} \frac{M_{\eta}^{(2)}}{L^{(2)}} = -\frac{Gm_1}{8\pi a_1^3 n_2 n^3 (1+n)(1-n^2)^2} \times$$
(42)
$$\times \sum_{k+l+m=0}^2 \Omega_{klm}^{(2)} e_1^k e_2^l \Delta i^m, \\ \left(\frac{dv_2}{dt}\right) = \frac{Gm_1}{16\pi a_1^3 n_2 n^3 (1+n)(1-n^2)^2} \times \\ \times \sum_{k+l+m=1}^3 \overline{v}_{klm}^{(2)} e_1^k e_2^{l-1} \Delta i^m.$$

Здесь все индексы k, l, m – неотрицательные числа и, кроме того, под знаками суммы в (42) мы обозначили следующие коэффициенты:

$$e_{102}^{(2)} = \left(\left(\frac{4 - 15n^2 - 26n^4 - 15n^6 + 4n^8}{(1 - n)^2} E(k) - \frac{4 - 11n^2 + 4n^4(1 + n^2)K(k)}{(1 - n)^2} \right) \cos \omega_1 \sin \omega_2 - \frac{4 - 21n^2 - 110n^4 - 21n^6 + 4n^8}{(1 - n)^2} E(k) - \frac{4 - 21n^4 - 21n^4 + 21n^4}{(1 - n)^2} E(k) - \frac{4 - 21n^4 - 21n^4 + 21n^4}{(1 - n)^2} E(k) - \frac{4 - 21n^4 - 21n^4}{(1 - n)^2} E(k) - \frac{4 - 21n^4 - 21n^4}{(1 - n)^2} E(k) - \frac{4 - 21n^4 - 21n^4 + 21n^4}{(1 - n)^2} E(k) - \frac{4 - 21n^4 - 21n^4 + 21n^4}{(1 - n)^2} E(k) - \frac{4 - 21n^4 - 21n^4 + 21n^4}{(1 - n)^2} E(k) -$$

$$e_{300}^{(2)} = \left(\frac{9+50n^2-15n^4+4n^6}{(1-n)^2}E(k) - (45)\right) - (9-7n^2+4n^4)K(k) n^2 \sin(\omega_2-\omega_1);$$

$$e_{210}^{(2)} = \left(\frac{(1+n^2)(1-2n-n^2)(1+2n-n^2)}{(1-n)^2}E(k) - (1-n-n^2)(1+n-n^2)K(k)\right) \times (46) + 12n\sin(\omega_2-\omega_1)\cos(\omega_2-\omega_1);$$

$$e_{120}^{(2)} = -\sin(\omega_2-\omega_1) \times \left(\frac{4-9n^2-18n^4-33n^6+8n^8}{(1-n)^2}E(k) - (47)\right) + 12n\sin(\omega_2-\omega_1) \times (46) + 12n\sin(\omega_2-\omega_1) + 12n\sin(\omega_2-\omega_2-\omega_1) + 12n\sin(\omega_2-\omega_2-\omega_2) + 12n\sin(\omega_2-$$

$$-(4-n^2-17n^4+8n^6)K(k)$$
;

$$e_{100}^{(2)} = \left(\frac{1-n^2+n^4}{(1-n)^2}E(k) - (1+n^2)K(k)\right) \times (48) \times 16(1-n^2)^2\sin(\omega_2 - \omega_1);$$

остальные коэффициенты $e_{klm}^{(2)} = 0$.

Замечание 2. В правых частях уравнений (42) присутствуют 22 коэффициента; в дополнение к шести коэффициентам (43–48), 16 других коэффициентов $i_{kl}^{(2)}$, $\overline{v}_{klm}^{(2)}$, $\Omega_{klm}^{(2)}$ даны в Приложении Б.

4.5. Уравнения взаимной эволюции колец Гаусса в эклиптической системе отсчета

Теперь необходимо записать уравнения эволюции колец в основной, инерциальной системе отсчета. В качестве таковой естественно взять эклиптическую систему координат. Чтобы перейти в (40) от вспомогательной системы координат $O\xi\eta\zeta$ к эклиптической $O\xi'\eta'\zeta'$, необходимо выполнить преобразования, связанные с вращением первой системы отсчета вокруг оси ζ на угол $\Delta \overline{\omega}_2$, который может быть найден с помощью сферического треугольника, показанного на рис. 1 (соответствующие формулы см. в Приложении А).

Итак, используя вспомогательные формулы (А2), уравнения эволюции (40) запишем в виде

$$\frac{da_2}{dt} = 0,$$
$$\frac{de_2}{dt} = -\frac{1 - e_2^2}{e_2} \frac{M_{\zeta}^{(2)}}{L^{(2)}},$$

Рис. 1. Сферический треугольник в задаче о переходе к эклиптической системе координат. Здесь Δi – угол между кольцами Гаусса; $\Delta \Omega' = \Omega'_2 - \Omega'_1$ – разность долгот восходящих узлов колец Гаусса, отсчитываемая в некоторой плоскости (в нашем случае это плоскость эклиптики); i'_1 и i'_2 – наклонения, соответственно, первого и второго колец Гаусса к плоскости эклиптики; $\Delta \overline{\omega}_i$ – угол между линией узлов *i*-го кольца, лежащей в плоскости эклиптики, и общей линией узлов двух колец.

$$\frac{di_2'}{dt} = \frac{M_{\xi}^{(2)}}{L^{(2)}} \cos\left(\Delta\overline{\omega}_2\right) - \frac{M_{\eta}^{(2)}}{L^{(2)}} \sin\left(\Delta\overline{\omega}_2\right), \quad (49)$$

$$\frac{d\Omega_2'}{dt} = \frac{1}{\sin i_2'} \left(\frac{M_{\xi}^{(2)}}{L^{(2)}} \sin\left(\Delta\overline{\omega}_2\right) + \frac{M_{\eta}^{(2)}}{L^{(2)}} \cos\left(\Delta\overline{\omega}_2\right)\right),$$

$$\frac{d\omega_2'}{dt} = -\left(\frac{dv_2}{dt}\right) - \cos i_2' \frac{d\Omega_2'}{dt}.$$

Подставляя в уравнения (49) величины (42) и делая замены

 $\omega_1 = \omega'_2 - \Delta \overline{\omega}_1, \quad \omega_2 = \omega'_2 - \Delta \overline{\omega}_2,$

 $\Delta i = \arccos(\cos i_1' \cos i_2' + \sin i_1' \sin i_2' \cos \Delta \Omega') \equiv (50)$

$$\equiv \Delta i(i_1',i_2',\Delta\Omega'),$$

получаем систему дифференциальных уравнений эволюции для оскулирующих элементов 2-го кольца под действием 1-го:

$$\frac{da_2}{dt} = 0,$$

$$\frac{de_2}{dt} = -\frac{Gm_1}{16\pi a_1^3 n_2 n^3 (1+n)(1-n^2)^2} \times$$

$$\times \sum_{\substack{k+l+m=1\\ \omega_1 = \omega_1^i - \Delta\overline{\omega}_1\\ \omega_2 = \omega_2^i - \Delta\overline{\omega}_2}}^{3} e_1^k e_2^l \Delta i^m (i_1^i, i_2^i, \Delta\Omega^i),$$

$$\frac{di_{2}}{dt} = -\frac{Gm_{1}\Delta i(i_{1}^{\prime}, i_{2}^{\prime}, \Delta\Omega^{\prime})}{8\pi a_{1}^{3}n_{2}n^{3}(1+n)(1-n^{2})^{2}} \times$$

$$\times \sum_{k+l=2}^{2} i_{kl}^{(2)} \bigg|_{\substack{\omega_{1}=\omega_{1}^{i}-\Delta\overline{\omega}_{1}\\\omega_{2}=\omega_{2}^{i}-\Delta\overline{\omega}_{2}}} e_{1}^{k} e_{2}^{l} \cos\left(\Delta\overline{\omega}_{2}\right) + \\ + \sin\left(\Delta\overline{\omega}_{2}\right) \frac{Gm_{1}}{8\pi a_{1}^{3} n_{2} n^{3} (1+n)(1-n^{2})^{2}} \times \\ \times \sum_{k+l+m=0}^{2} \Omega_{klm}^{(2)} \bigg|_{\substack{\omega_{1}=\omega_{1}^{i}-\Delta\overline{\omega}_{1}\\\omega_{2}=\omega_{2}^{i}-\Delta\overline{\omega}_{2}}} e_{1}^{k} e_{2}^{l} \Delta i^{m+1} (i_{1}^{i}, i_{2}^{i}, \Delta\Omega^{i}), \quad (51)$$

$$\frac{d\Omega_{2}^{i}}{dt} = -\frac{Gm_{1}\Delta i(i_{1}^{i}, i_{2}^{i}, \Delta\Omega^{i})}{8\pi a_{1}^{3} n_{2} n^{3} (1+n)(1-n^{2})^{2} \sin i_{2}^{i}} \times \\ \times \sum_{k+l=2}^{2} i_{kl}^{(2)} \bigg|_{\substack{\omega_{1}=\omega_{1}^{i}-\Delta\overline{\omega}_{1}\\\omega_{2}=\omega_{2}^{i}-\Delta\overline{\omega}_{2}}} e_{1}^{k} e_{2}^{l} \sin\left(\Delta\overline{\omega}_{2}\right) - \\ -\cos\left(\Delta\overline{\omega}_{2}\right) \frac{Gm_{1}}{8\pi a_{1}^{3} n_{2} n^{3} (1+n)(1-n^{2})^{2} \sin i_{2}^{i}} \\ \times \sum_{k+l=0}^{2} \Omega_{klm}^{(2)} \bigg|_{\substack{\omega_{1}=\omega_{1}^{i}-\Delta\overline{\omega}_{1}\\\omega_{2}=\omega_{2}^{i}-\Delta\overline{\omega}_{2}}} e_{1}^{k} e_{2}^{l} \Delta i^{m+1} (i_{1}^{i}, i_{2}^{i}, \Delta\Omega^{i}), \\ \times \sum_{k+l+m=0}^{2} \Omega_{klm}^{(2)} \bigg|_{\substack{\omega_{1}=\omega_{1}^{i}-\Delta\overline{\omega}_{1}\\\omega_{2}=\omega_{2}^{i}-\Delta\overline{\omega}_{2}}} e_{1}^{k} e_{2}^{l} \Delta i^{m+1} (i_{1}^{i}, i_{2}^{i}, \Delta\Omega^{i}), \\ \frac{d\omega_{2}^{i}}{\omega_{2}=\omega_{2}^{i}-\Delta\overline{\omega}_{2}}} \frac{Gm_{1}}{2} \times \sum_{k+l+m=0}^{2} \cos_{k}^{l} \frac{d\Omega_{2}^{i}}{\omega_{2}} - \frac{Gm_{1}}{2} + \cos_{k}^{i} \frac{d\Omega_{2}^{i}}{\omega_{2}} - \frac{Gm_{1}}{2} \times \sum_{k+l+m=0}^{2} \sum_{k=k+l+m=0}^{k} \frac{d\Omega_{2}^{i}}{\omega_{2}} - \frac{Gm_{1}}{2} \times \sum_{k=k+l+m=0}^{k} \frac{d\Omega_{2}^{i}}{\omega_{2}} + \frac{Gm_{1}}{2} + \cos_{k}^{i} \frac{d\Omega_{2}^{i}}{\omega_{2}} - \frac{Gm_{1}}{2} \times \sum_{k=k+l+m=0}^{k} \frac{d\Omega_{2}^{i}}{\omega_{2}} - \frac{Gm_{1}}{2} \times \sum_{k=k+l+m=0}^{k} \frac{d\Omega_{2}^{i}}{\omega_{2}} + \frac{Gm_{1}}{2} + \cos_{k}^{i} \frac{Gm_{1}}{\omega_{2}} + \frac{Gm_{1}}{2} +$$

$$\frac{du_{2}}{dt} = -\cos i_{2}^{*} \frac{du_{2}}{dt} - \frac{1}{16\pi a_{1}^{3} n_{2} n^{3} (1+n)(1-n^{2})^{2}} \times \sum_{\substack{k+l+m=1\\ \omega_{2}=\omega_{1}^{\prime}-\Delta \bar{\omega}_{1}}}^{3} \overline{v}_{klm}^{(2)} \Big|_{\substack{\omega_{1}=\omega_{1}^{\prime}-\Delta \bar{\omega}_{1}\\ \omega_{2}=\omega_{2}^{\prime}-\Delta \bar{\omega}_{2}}} e_{1}^{k} e_{2}^{l-1} \Delta i^{m} (i_{1}^{\prime}, i_{2}^{\prime}, \Delta \Omega^{\prime}).$$

Замечание 3. Уравнения (51) записаны в инерциальной (эклиптической) системе отсчета. Интересно, что в ней взаимный наклон колец $\Delta i' = i'_2 - i'_1$, вообще говоря, уже не равен (см. вторую формулу в (50)) разности наклонов во вспомогательной системе отсчета, то есть $i'_2 - i'_1 \neq i'_2 - i'_1$.

Замечание 4. Чтобы получить уравнения эволюции первого кольца под действием второго, нужно сделать перестановку индексов в уравнениях (51).

5. ПРИМЕНЕНИЕ МЕТОДА ВЗАИМНОЙ ЭНЕРГИИ К РЕШЕНИЮ ДВУПЛАНЕТНОЙ ЗАДАЧИ СОЛНЦЕ–ЮПИТЕР–САТУРН

Как известно, в небесной механике для изучения вековых и долгопериодических возмущений обычно применяется аналитический метод Лагранжа, основанный на разложении возмущающей функции в ряд по малым значениям эксцентриситетов и углов наклона орбит. Ранее этим методом Лаплас доказал замечательную теорему об устойчивости (в первом приближении) Солнечной системы. Численными расчетами было установлено, что в эволюции орбит планет и их спутников важную роль играют резонансы. Неожиданные эволюционные закономерности были открыты для орбит планет-гигантов. Оказалось, что на больших масштабах времени противоположные узлы орбит Юпитера и Сатурна на плоскости Лапласа совпадают и движутся вековым образом. Направление этого движения узлов попятное и скорость равна $\dot{\Omega} \approx 25.93''$ /год (Стокуэлл, в книге [7]). Характерным является синхронное движение узлов и периодические колебания в противофазе эксцентриситетов и наклонений орбит Юпитера и Сатурна. Согласно [13]. период изменения взаимного наклона орбит равен $T \approx$ ≈ 51 000 лет, а эксцентриситетов $T \approx 70000$ лет.

В целом метод Лагранжа является весьма объемистым и трудоемким, о чем можно судить, например, по монографии ([13], раздел 7.3). Поэтому полученные ранее результаты по эволюции орбит Юпитера и Сатурна важно проверить другим методом, основанным на применении взаимной энергии колец Гаусса. Проблема сводится к изучению эволюции оскулирующих элементов колец под действием их взаимного гравитационного возмущения.

Расчеты по полученным выше формулам (51) дали следующие результаты (штрихи теперь опущены). На рис. 2 показана долгопериодическая зависимость от времени эксцентриситетов колец Юпитера и Сатурна.

Мы нашли, что период и амплитуды этих долгопериодических колебаний эксцентриситетов имеют следующие значения:

$$T_e = 69.0 \times 10^3 \text{ лет},$$

 $A_{e_1} = 0.0311, \quad A_{e_2} = 0.0706.$ (52)

Углы наклона колец к эклиптике также имеют долгопериодические колебания, см. рис. 3а. Период и амплитуды этих колебаний равны:

$$T_i = 49.9 \times 10^3 \text{ лет},$$

 $A_{i_1} = 0.725^\circ, \quad A_{i_2} = 1.788^\circ.$ (53)

Интересно, что взаимный наклон колец в эклиптической системе отсчета имеет биения, которые показаны на рис. 36. Период биений равен $T \approx 68.1 \times 10^3$ лет.

/

Эволюция углов направления линий апсид у колец также имеет сложный характер (рис. 4а). Установлено, что эволюция перицентров характеризуется не только долгопериодическими колебаниями для долгот перицентров с периодом

$$T_{\rm m} = 69.0 \times 10^3 \text{ лет},$$
 (54)

но имеет также вековое вращение, причем периоды полного поворота линий апсид на 360° для

Рис. 2. Зависимость от времени эксцентриситета кольца Юпитера (сплошная линия) и Сатурна (штрихи), представляющие долгопериодическую эволюцию орбит планет под действием взаимного возмущения.

Рис. 3. а). Зависимость от времени наклона (к эклиптике) кольца Юпитера (сплошная линия) и Сатурна (штрихи); б) биения угла наклона между кольцами Гаусса планет-гигантов.

Юпитера и Сатурна сильно различаются и соответственно равны

$$T_{\overline{\omega}_1}^{\text{sec}} = 37.2 \times 10^4 \text{ лет}, \quad T_{\overline{\omega}_2}^{\text{sec}} = 58.2 \times 10^3 \text{ лет}.$$
 (55)

На рис. 46 показан график для разности углов $\Delta \overline{\omega} = \overline{\omega}_2 - \overline{\omega}_1$. Период этого вращения равен $T_{\Delta \overline{\omega}} = 69.0 \times 10^3$ лет.

Вычитая из ω и Δω соответствующие вековые компоненты эволюции, вместо рис. 4a, б мы получим графики, показанные на рис. 4в, г. В сущности, график на рис. 4г представляет собой разность двух кривых, данных на рис. 4в.

В двупланетной задаче важно также найти прецессионное движение самих плоскостей двух колец. На рис. 5а, б это прецессионное движение колец представлено эволюцией долготы восходящего узла. Важно подчеркнуть, что указанная прецессия имеет не вековой характер, а описывается долгопериодическими поворотными колебаниями. Особенно наглядно периодичность прецессионного движения орбит Юпитера и Сатурна показана на рис. 56. Период и амплитуды колебаний долгот восходящих узлов и их разности соответственно равны:

$$T_{\Omega} = 49.9 \times 10^{3} \text{ лет}, \quad T_{\Delta\Omega} = 49.9 \times 10^{3} \text{ лет};$$

 $A_{\Omega} = 19.5^{\circ}, \quad A_{\Omega} = 49.5^{\circ}, \quad A_{\Delta\Omega} = 66.7^{\circ}.$
(56)

Обратим внимание, что узлы в эклиптике у колец Юпитера и Сатурна не находятся строго в противофазе, как это имело бы место для узлов колец в плоскости Лапласа.

6. ОБСУЖДЕНИЕ И РЕЗУЛЬТАТЫ

В статье развит новый метод для изучения долгопериодических и вековых возмущений в динамической системе, которую можно моделировать двумя гравитирующими кольцами Гаусса. Установлено, что вместо усреднения полученного очень сложным образом выражения для возмущающей функции Лагранжа, проще и эффектив-

Рис. 4. а) зависимость долготы перицентра для орбиты Юпитера (сплошная линия) и Сатурна (штрихи); б) зависимость от времени угла $\Delta \overline{\omega} = \overline{\omega}_2 - \overline{\omega}_1$, в) зависимость от времени угла $\overline{\omega}$ (за вычетом векового компонента эволюции) для Юпитера (сплошная линия) и Сатурна (штрихи); г) зависимость $\Delta \overline{\omega}$ (также за вычетом векового компонента эволюции).

Рис. 5. а) Зависимость изменения долготы восходящего узла для Юпитера (сплошная линия) и Сатурна (штрихи), представляющие вековую прецессию плоскостей орбит планет-гигантов под действием взаимного возмущения; б) разность долгот узлов орбиты Юпитера и Сатурна как функция времени.

нее сразу вычислить взаимную энергию двух колец Гаусса.

Основное внимание в работе уделяется задаче, где два кольца Гаусса имеют малые эксцентриситеты, небольшой угол взаимного наклона и произвольный угол между линиями апсид. При этих предположениях получено выражение для взаимной энергии колец $W_{\rm B3}$ в виде ряда с точностью до членов 4-го порядка малости включительно. Найдены и тщательно проверены все четырнадцать сложных коэффициентов, которые входят в выражение (14) для взаимной энергии двух колец Гаусса. Установлено, что выражение для взаимной энергии, записанное в виде ряда по степеням малых эксцентриситетов и малого взаимного наклона колец Гаусса, не содержит членов нечетных степеней *по совокупности малых величин*. Проверено, что член пятого порядка тождественно равен нулю, а шестого порядка не равен нулю, поэтому следующая поправка к выражению для взаимной энергии будет иметь сразу 6-й порядок малости.

Важным элементом в проведенных расчетах является учет того, что взаимная энергия инвариантна к преобразованиям переноса и повороту системы отсчета, поэтому можно выбрать систему отсчета для изучения вековых возмущений наиболее удобным образом. Именно так мы и поступили в разделе 2 с выбором вспомогательной системы координат $O\xi\eta\zeta$. В этой системе координат удобно находить взаимную энергию двух колец Гаусса, а значит, и вектор момента действующих сил. Но для практических приложений важным является переход к инерциальной системе координат $O\xi'\eta'\zeta'$, связанной с плоскостью эклиптики.

Выражение взаимной энергии W_{mut} двух колец используется для вывода и решения системы пяти дифференциальных уравнений, описывающих их эволюцию. Решение уравнений эволюции также получено в виде степенных рядов.

Сравнение наших результатов с полученными традиционным методом разложения возмущающей функции Лагранжа на примере известной двупланетной задачи Солнце-Юпитер-Сатурн показало адекватность нового подхода. Более того, наши результаты в решении этой задачи дополняют и уточняют результаты других авторов. Дело в том, что, как уже говорилось, выражения для возмущающих функций получены у нас до членов 4-й степени малых величин, а в книге [13] только до членов 2-й степени малости. Кроме того, разработанный здесь принципиально новый метод получения возмущающей функции позволяет сразу изучать вековые и долгопериодические возмущения элементов орбит.

Новый метод позволил выявить неизвестные ранее особенности движений в двупланетной задаче. В частности, показано, что прецессионное движение плоскостей двух орбит описывается долгопериодическими поворотными колебаниями с периодом $T_{\Omega} = 49.9 \times 10^3$ лет, причем амплитуды колебаний долгот восходящих узлов у обоих планет заметно различаются $A_{\Omega_1} = 19.5^\circ$, $A_{\Omega_2} = 49.5^\circ$. Отметим, что узлы в эклиптике у колец Юпитера и Сатурна не находятся строго в противофазе, как это имело бы место для узлов колец в плоскости Лапласа. Отметим, наконец, что выражение возмущающей функции через взаимную гравитационную энергию может применяться не только к планетной задаче, где все наклонения должны быть малыми, но и к задаче с недавно обнаруженными у малых небесных тел кольцами уже не планетного типа [14–16].

ПРИЛОЖЕНИЕ А

. . . .

Из сферического треугольника на рис. 1 получаем формулы

$$\sin (\Delta \overline{\omega}_{l}) = \frac{\sin i'_{2} \sin (\Delta \Omega')}{\sin (\Delta i)},$$

$$\cos (\Delta \overline{\omega}_{l}) =$$

$$= \frac{-\sin i'_{l} \cos i'_{2} + \cos i'_{1} \sin i'_{2} \cos (\Delta \Omega')}{\sin (\Delta i)}$$

$$\sin (\Delta \overline{\omega}_{2}) = \frac{\sin i'_{1} \sin (\Delta \Omega')}{\sin (\Delta i)},$$

$$\cos (\Delta \overline{\omega}_{2}) =$$

$$= \frac{\sin i'_{2} \cos i'_{1} - \cos i'_{2} \sin i'_{1} \cos (\Delta \Omega')}{\sin (\Delta i)}.$$
(A1)

Тогда компоненты вектора момента сил (деленные на модуль углового момента 2-го кольца), действующего со стороны 1-го кольца на 2-е, преобразуются так

$$\frac{M_{\xi'}^{(2)}}{L^{(2)}} = \frac{M_{\xi}^{(2)}}{L^{(2)}} \cos(\Delta \overline{\omega}_2) - \frac{M_{\eta}^{(2)}}{L^{(2)}} \sin(\Delta \overline{\omega}_2),
\frac{M_{\eta'}^{(2)}}{L^{(2)}} = \frac{M_{\xi}^{(2)}}{L^{(2)}} \sin(\Delta \overline{\omega}_2) + \frac{M_{\eta}^{(2)}}{L^{(2)}} \cos(\Delta \overline{\omega}_2), \qquad (A2)
\frac{M_{\zeta'}^{(2)}}{L^{(2)}} = \frac{M_{\zeta}^{(2)}}{L^{(2)}}.$$

ПРИЛОЖЕНИЕ Б КОЭФФИЦИЕНТЫ $i_{kl}^{(2)}, \, \overline{v}_{klm}^{(2)} \, \Omega_{klm}^{(2)}$ В ПРАВЫХ ЧАСТЯХ УРАВНЕНИИ (39)

Приводим точные выражения для оставшихся шестнадцати коэффициентов:

$$i_{20}^{(2)} = \left(\frac{1 - 3n^2 + 23n^4 + 3n^6}{(1 - n)^2}E(k) - (1 - n^2 + 3n^4)K(k)\right) \times 2n\sin(\omega_1)\cos(\omega_1);$$
(B1)

$$i_{02}^{(2)} = \left(\frac{3+23n^2-3n^4+n^6}{(1-n)^2}E(k) - (3-n^2+n^4)K(k)\right) \times 2n\sin(\omega_2)\cos(\omega_2);$$
(B2)

$$i_{11}^{(2)} = \left(\left(\frac{4 - 15n^2 - 26n^4 - 15n^6 + 4n^8}{(1 - n)^2} E(k) - \frac{4 - 11n^2 + 4n^4(1 + n^2)K(k)}{(1 - n)^2} \right) \cos(\omega_1)\sin(\omega_2) \right)$$

$$- \left(\frac{4 - 9n^2 + 58n^4 - 9n^6 + 4n^8}{(1 - n)^2} E(k) - \frac{4 - 5n^2 + 4n^4(1 + n^2)K(k)}{(1 - n)^2} \sin(\omega_1)\cos(\omega_2) \right);$$

$$\overline{v}_{102}^{(2)} = \left(\frac{4 - 15n^2 - 26n^4 - 15n^6 + 4n^8}{(1 - n)^2} E(k) - \frac{4 - 11n^2 + 4n^4(1 + n^2)K(k)}{(1 - n)^2} \right) \times$$

 $\times \cos(\omega_1)\cos(\omega_2) + \sin(\omega_1)\sin(\omega_2) \times \qquad (B4)$

$$\times \left(\frac{4 - 21n^{2} - 110n^{4} - 21n^{6} + 4n^{8}}{(1 - n)^{2}}E(k) - - (4 - n^{2})(1 - 4n^{2})(1 + n^{2})K(k)\right);$$

$$\overline{v}_{012}^{(2)} = 2n \left(\frac{3 + 47n^{2} + 21n^{4} + n^{6}}{(1 - n)^{2}}E(k) - - (3 + 5n^{2} + n^{4})K(k)\right) - (B5)$$

$$- \left(\frac{3 + 23n^{2} - 3n^{4} + n^{6}}{(1 - n)^{2}}E(k) - (3 - n^{2} + n^{4})K(k)\right) \times x + 4n\cos^{2}(\omega_{2});$$

$$\overline{v}_{300}^{(2)} = \left(\frac{9 + 50n^{2} - 15n^{4} + 4n^{6}}{(1 - n)^{2}}E(k) - - (9 - 7n^{2} + 4n^{4})K(k)\right)n^{2}\cos(\omega_{2} - \omega_{1});$$

$$\overline{v}_{210}^{(2)} = 6n \left(\frac{(1 + n^{2})(1 - 4n + n^{2})(1 + 4n + n^{2})}{(1 - n)^{2}}E(k) - - (1 - 5n^{2} + n^{4})K(k)\right) - (B7)$$

$$((1-n)^2)$$

- $(1-n-n^2)(1+n-n^2)K(k)$ $> 12n\sin^2(\omega_2-\omega_1);$

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 5 2020

$$\overline{v}_{120}^{(2)} = \left(\frac{4 - 21n^2 + 118n^4 + 51n^6 - 8n^8}{(1 - n)^2}E(k) - (1 - 3n^2 + 8n^4)(4 - n^2)K(k)\right)\cos(\omega_2 - \omega_1);$$
(B8)

$$\overline{v}_{100}^{(2)} = \left(\frac{1-n^2+n^4}{(1-n)^2}E(k) - (1+n^2)K(k)\right) \times (B9) \times 16(1-n^2)^2\cos(\omega_2 - \omega_1);$$

$$\overline{v}_{030}^{(2)} = \left(\frac{1+n^2-25n^4-n^6}{(1-n)^2}E(k) - (1-3n^2-n^4)K(k)\right) \times 2n;$$
(B10)

$$\overline{v}_{010}^{(2)} = -\left(\frac{1+n^2}{(1-n)^2}E(k) - K(k)\right) \times 8n(1-n^2)^2; \quad (B11)$$

другие коэффициенты $\overline{v}_{klm}^{(2)} = 0;$

$$\Omega_{002}^{(2)} = \left(\frac{(1+n^2)(1-4n+n^2)(1+4n+n^2)}{(1-n)^2}E(k) - \frac{(1-5n^2+n^4)K(k)}{n}\right)n;$$
(B12)

$$\Omega_{200}^{(2)} = \left(\frac{1+21n^2+47n^4+3n^6}{(1-n)^2}E(k) - -(1+5n^2+3n^4)K(k)\right)n - \left(\frac{1-3n^2+23n^4+3n^6}{(1-n)^2}E(k) - -(1-n^2+3n^4)K(k)\right) \times 2n\cos^2(\omega_1);$$
(B13)

$$\Omega_{110}^{(2)} = \left(\frac{4 - 15n^2 - 26n^4 - 15n^6 + 4n^8}{(1 - n)^2}E(k) - \frac{4 - 11n^2 + 4n^4(1 + n^2)K(k)}{(1 - n)^2}E(k) - \frac{100}{(1 - 10)^2}E(k) - \frac{100}{(1 - 10)^2}E(k)$$

$$\Omega_{020}^{(2)} = \left(\frac{5 + 45n^2 + 19n^4 + 3n^6}{(1 - n)^2}E(k) - (5 + n^2 + 3n^4)K(k)\right)n - (B15)$$

$$-\left(\frac{3+23n^2-3n^4+n^6}{(1-n)^2}E(k)-(3-n^2+n^4)K(k)\right)\times \times 2n\cos^2(\omega_2);$$

$$\Omega_{000}^{(2)} = \left(\frac{1+n^2}{(1-n)^2}E(k) - K(k)\right) \times 4n(1-n^2)^2; \quad (B16)$$

другие коэффициенты $\Omega_{klm}^{(2)} = 0.$

СПИСОК ЛИТЕРАТУРЫ

- 1. Г. Н. Дубошин, Небесная механика. Основные задачи и методы (М.: Наука, 1975).
- 2. B. P. Kondratyev, Solar Sys. Res. 46, 352 (2012).
- 3. В. А. Антонов, И. И. Никифоров, К. В. Холшевников, Элементы теории гравитационного потенциала и

некоторые случаи его явного выражения (Изд-во СПбГУ, 2008).

- 4. *M. A. Vashkov'yak and S. N. Vashkov'yak*, Solar Sys. Res. **46**, 69 (2012).
- 5. Б. П. Кондратьев, Теория потенциала. Новые методы и задачи с решениями (М.: Мир, 2007).
- 6. B. P. Kondratyev, Solar Sys. Res. 48, 396 (2014).
- 7. К. Шарлье, Небесная механика (М.: Наука, 1966).
- 8. B. P. Kondratyev and V. S. Kornoukhov, Technical Physics 64, 1395 (2019).
- 9. B. P. Kondratyev, Technical Physics 61, 1097 (2016).
- М. Абрамович Справочник по специальным функциям (М.: Наука, 1979).
- 11. А. Г. Вебстер, Механика материальных точек, твердых, упругих и жидких тел (ГТТИ, Л.-М., 1933).
- 12. *М. Ф. Субботин Введение в теоретическую астрономию* (М.: Наука, 1968).
- К. Мюррей, С. Дермотт, Динамика Солнечной системы (М.: Физматлит, 2009).
- 14. F. Braga-Ribas, B. Sicardy, J. L. Ortiz, et al., Nature 508, 72 (2014).
- 15. J. L. Ortiz, P. Santos-Sanz, B. Sicardy, et al., Nature 550, 219 (2017).
- 16. *P. Goldreich and S. Tremaine*, Annu. Rev. Astron. and Astrophys. **20**, 249 (1982).