УДК 524.33

МУЛЬТИПЕРИОДИЧНОСТЬ В ИЗМЕНЕНИЯХ ОРБИТАЛЬНОГО ПЕРИОДА ЗАТМЕННО-ДВОЙНОЙ СИСТЕМЫ Z Per

© 2020 г. А. И. Халиуллина^{1,*}

¹ Московский государственный университет им. М.В. Ломоносова, Государственный астрономический институт им. П.К. Штернберга, Москва, Россия

**E-mail: hfh@sai.msu.ru* Поступила в редакцию 03.02.2020 г. После доработки 02.03.2020 г. Принята к публикации 02.03.2020 г.

Проведен анализ изменений орбитального периода затменно-двойной системы Z Per. Показано, что изменения периода можно представить суперпозицией векового уменьшения периода со скоростью 1.61×10^{-6} сут/год и трех его циклических изменений с периодами 22.6, 37.9 и 62.4 года. Наиболее вероятным является предположение, что Z Per — четырехкратная система с периодами дополнительных орбит, равными 22.6 и 62.4 года, а циклические колебания с периодом 37.9 года являются следствием магнитной активности вторичного компонента. Вековое уменьшение орбитального периода затменно-двойной системы может быть вызвано потерей углового момента вследствие магнитного торможения.

DOI: 10.31857/S000462992007004X

1. ВВЕДЕНИЕ

Переменность звезды **Z** Per (BD +41 0504, V == 9.7^m, *P* = 3.0563^d) обнаружил Вильямс [1], который определил ее как затменную переменную типа Алголя и нашел линейные элементы. Шепли [2, 3], используя визуальные наблюдения Нийланда, нашел фотометрические элементы орбиты. То же сделал Графф [4] по собственным визуальным наблюдениям, полученные им фотометрические элементы заметно отличаются от полученных Шепли. Фетлаар [5] также нашел фотометрические элементы орбиты из наблюдений Нийланда. Они близки к результатам Шепли. Спектральный класс главного компонента, А0, впервые был приведен в работе [6]. Азимов [7] из наблюдений с объективной призмой получил спектральные классы обоих компонентов: A0V + + G0 IV-V. Для этой системы нет ни кривой лучевых скоростей, ни современных высокоточных наблюдений кривой блеска. Однако М.А. Свечников с сотрудниками из совокупности всех имеющихся данных построили согласованную систему параметров орбиты и абсолютных размеров компонентов затменно-двойной системы Z Per. Ее последняя версия приведена в каталоге Сурковой и Свечникова [8].

Переменность орбитального периода Z Per была обнаружена в работе [9]. Жепановска [10] на основе довольно большого массива моментов минимумов пришла к выводу, что орбитальный период Z Per меняется беспорядочно. Подробное изучение орбитального периода Z Per выполнил Кван [11]. Он нашел вековое уменьшение орбитального периода со скоростью $dP/dt = -1.54 \times 10^{-6}$ сут/год (коэффициент при квадратичном члене $Q = -6.44 \times 10^{-9}$). Остаточные изменения после исключения параболы он представил в виде серии скачков периода.

В настоящей работе представлены результаты изучения изменений орбитального периода затменно-двойной системы Z Per на основе имеющихся к настоящему времени моментов минимумов.

2. ИЗМЕНЕНИЯ СО ВРЕМЕНЕМ ОРБИТАЛЬНОГО ПЕРИОДА Z Per

Для исследования изменений периода затменно-двойной системы Z Per были использованы моменты главного минимума из базы данных B. R. N. O. [12]. Всего имеется 219 моментов главного минимума: 191 визуальный, 11 фотографических и 17 из фотоэлектрических и ПЗС-наблюдений. На рис. 1 приведены отклонения $(O-C)_1$ наблюдаемых (O) моментов минимумов Z Per от вычисленных (C) с линейными элементами, полученными методом наименьших квадратов с использованием всех имеющихся моментов главного минимума:

$$C \equiv \text{HJD}(\text{Min I}) = 2445659.168(9) + + 3.0563160(15)^{d}T,$$
(1)

Рис. 1. Отклонения $(O-C)_1$ наблюдаемых (O) моментов минимумов Z Per от вычисленных (C) с линейными элементами (1). Фотографические наблюдения представлены в виде треугольников, визуальные – маленькими точками, фотоэлектрические и ПЗС – большими точками.

где T – эпоха наблюдения. На этом рисунке фотографические наблюдения обозначены треугольниками, визуальные – маленькими точками, фотоэлектрические и ПЗС – большими точками. Из рисунка видно, что в системе наблюдается монотонное уменьшение периода, на которое накладываются некоторые колебания. Поэтому изменения периода Z Рег были представлены квадратичной зависимостью, параметры которой также определялись методом наименьших квадратов:

На рис. 2 приведены отклонения (О-С), наблюдаемых моментов минимумов Z Per от вычисленных с линейными элементами из представления (2). Теоретическая парабола с параметрами из этого же представления показана на рисунке сплошной кривой. Остаточные разности, (О- $C)_3$, полученные после исключения параболы, приведены на рис. 3. Зависимость этих остатков от времени имеет довольно сложный вид и на первый взгляд кажется хаотичной. Кван [11] представил ее в виде серии скачков периода и изобразил некую пилообразную теоретическую кривую. Такое же представление этот автор предлагал для TU Her, Y Psc [13] и RT Per [14]. Однако впоследствии было показано, что изменения орбитальных периодов этих систем после учета векового изменения можно представить суперпозицией двух циклических изменений [15, 16]. В случае Z Per мы также попытались представить остаточные изменения периода суперпозицией двух циклических изменений. С помощью метода последовательных приближений, подробно описанного в работе [16], удалось выделить две волны. Однако остаточные значения О-С после вычитания этих двух колебаний показывали систематическое изменение, поэтому пришлось добавить третью волну. В результате изменения орбитального периода Z Рег были представлены суперпозицией его векового изменения и трех циклических изменений. Для удобства эти циклы были пронумерованы: 1 – цикл с наименьшим периодом; 2 – цикл со средним периодом и 3 – цикл с наибольшим периодом. Если интерпретировать разности (О-С) присутствием в системе третьего тела, то можно выразить их через параметры долгопериодической орбиты посредством так называемого светового уравнения:

$$(O-C) = \frac{a_3 \sin i_3}{c} (1 - e_3 \cos E) \sin(v + \omega_3), \quad (3)$$

где v и E – истинная и эксцентричная аномалии соответственно, a_3 – большая полуось, i_3 – наклонение, e_3 – эксцентриситет и ω_3 – долгота периастра орбиты затменной системы относительно центра тяжести тройной системы, c – скорость света. Циклические изменения орбитального периода Z Рег были представлены в виде световых уравнений, параметры которых определялись методом перебора в области их возможных значе-

Рис. 2. Отклонения $(O-C)_2$ наблюдаемых моментов минимумов Z Per от вычисленных с линейными элементами из представления (2). Теоретическая парабола с параметрами из этого же представления показана на рисунке сплошной кривой. Обозначения как на рис. 1.

Рис. 3. Зависимость от времени остатков $(O-C)_3$, полученных вычитанием из наблюдаемых моментов минимумов Z Рег теоретической параболы с параметрами из представления (2). Обозначения как на рис. 1.

ний. Одновременно (тоже перебором) уточнялись квадратичные элементы. Затем при фиксированных квадратичных элементах параметры световых уравнений уточнялись методом дифференциальных поправок [17]. Одновременно вычислялись ошибки определения параметров. Отметим, что хотя циклические изменения периода были аппроксимированы световыми уравнения-

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 7 2020

Рис. 4. Изменения со временем разностей, полученных вычитанием из (*O*-*C*)₃ суммы теоретических кривых 2 и 3. Сплошной линией изображена кривая 1. Подробности см. в тексте. Обозначения как на рис. 1.

ми, это еще не значит, что они действительно ими являются.

В табл. 1 приведены полученные нами значения параметров трех световых уравнений и квадратичных элементов: орбитального периода двойной системы P_2 , начальной эпохи JD₂ и коэффициента при квадратичном члене Q. Поскольку P_2 , JD₂ и Q определялись перебором, в скобках приведена величина шага перебора. В этой таблице $A_3 = (a_3 \sin i_3)/c$. На рис. 4–6 приведены изменения со временем разностей, полученных вычитанием из отклонений $(O-C)_3$ на-

Таблица 1. Параметры гипотетических световых уравнений в изменениях орбитального периода Z Per: 1 – ближайшая к двойной системе орбита дополнительного тела, 2 – средняя орбита, 3 – самая дальняя орбита. Определения параметров приведены в тексте

Параметр	Орбита			
	1	2	3	
<i>P</i> ₃	$(8270 \pm 70) \text{ cyr} =$	(13850 ± 150) cyr =	(22800 ± 200) сут =	
	$= (22.6 \pm 0.2)$ лет	$= (37.9 \pm 0.4)$ лет	$= (62.4 \pm 0.5)$ лет	
JD ₃	41650 ± 130	42800 ± 160	38600 ± 200	
<i>e</i> ₃	0.64 ± 0.16	0.0	0.90 ± 0.08	
ω ₃	$353^{\circ} \pm 4^{\circ}$	0.0	$342^{\circ} \pm 7^{\circ}$	
A_3	(0.012 ± 0.002) сут	(0.015 ± 0.001) сут	(0.034 ± 0.011) сут	
$a_3 \sin i_3$	$(3.1 \pm 0.5) \times 10^8 \text{ km} =$	$(3.9 \pm 0.2) \times 10^8$ KM =	$(9 \pm 3) \times 10^8 \text{ KM} =$	
	$= (2.1 \pm 0.3)$ a.e.	$= (2.6 \pm 0.2)$ a.e.	$= (6 \pm 2)$ a.e.	
$f(M_3)$	$0.0176 M_{\odot}$	$0.0122 M_{\odot}$	$0.0525 M_{\odot}$	
$M_3 \sin i_3$	$0.65 M_{\odot}$	$0.56 M_{\odot}$	$0.98 M_{\odot}$	
$L_3/(L_1 + L_2 + L_3)$	0.002	0.001	0.016	
P_2	3.0562692(1) сут			
JD ₂	2445 659.191(5)			
Q	$-6.74(1) \times 10^{-9} \mathrm{cyt}$			

Рис. 5. Изменения со временем разностей, полученных вычитанием из (*O*–*C*)₃ суммы теоретических кривых 1 и 3. Сплошной линией изображена кривая 2. Подробности см. в тексте. Обозначения как на рис. 1.

Рис. 6. Изменения со временем разностей, полученных вычитанием из (*O*–*C*)₃ суммы теоретических кривых 1 и 2. Сплошной линией изображена кривая 3. Подробности см. в тексте. Обозначения как на рис. 1.

блюдаемых моментов от вычисленных с квадратичными элементами из табл. 1, суммы теоретических кривых 2 и 3 (рис. 4); суммы теоретических кривых 1 и 3 (рис. 5); суммы теоретических кривых 1 и 2 (рис. 6). Сплошные линии на этих рисунках — теоретические кривые для световых уравнений с параметрами, приведенными в табл. 1, для циклов 1, 2 и 3 соответственно.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 7 2020

Рис. 7. Изменения со временем отклонений (*O*-*C*)₃ наблюдаемых моментов минимумов Z Per от вычисленных с квадратичными элементами из табл. 1. Сплошная линия на этом рисунке – сумма 3 теоретических кривых с параметрами из табл. 1. Обозначения как на рис. 1.

На рис. 7 приведены изменения со временем отклонений $(O-C)_3$ наблюдаемых моментов минимумов Z Per от вычисленных с квадратичными элементами из табл. 1. Сплошная линия на этом рисунке — сумма 3 теоретических кривых с параметрами из табл. 1. Из рисунка видно, что эта кривая неплохо описывает изменения орбитального периода Z Per.

На рис. 8 приведены остатки после вычитания из $(O-C)_3$ всех трех теоретических кривых для световых уравнений. На первый взгляд, на этом рисунке не видно систематических изменений. Однако фотоэлектрические точки намекают на возможность существования еще одной волны с маленькими периодом и амплитудой. Возможно, на наблюдаемый большой разброс визуальных точек влияют и эти дополнительные колебания, а не только неточность наблюдений. К сожалению, фотоэлектрических наблюдений пока очень мало, однако благодаря малому периоду предполагаемых колебаний дальнейшие наблюдения могут очень быстро подтвердить (или опровергнуть) их достоверность.

3. ВОЗМОЖНЫЕ ПРИЧИНЫ ИЗМЕНЕНИЙ ОРБИТАЛЬНОГО ПЕРИОДА Z Per

Обратная парабола в зависимости от времени отклонений $(O-C)_2$ наблюдаемых моментов минимумов Z Per от вычисленных с линейными эле-

ментами означает, что происходит вековое уменьшение периода. Его скорость вычисляется по формуле: dP/dt = 2Q/P, где Q – коэффициент при квадратичном члене в представлении моментов минимумов [18]. Для Z Рег мы получили $Q = -6.74 \times 10^{-9}$ и $dP/dt = -1.61 \times 10^{-6}$ сут/год, что близко к значениям, полученным в работе [11]. Вековое уменьшение периода может быть вызвано потерей углового момента системы, наиболее эффективный механизм потери углового момента – магнитное торможение [19, 20].

Полученные параметры долгопериодических орбит позволяют нам вычислить функцию масс для каждого светового уравнения в предположении, что в системе имеется только одно дополнительное тело:

$$f(M_3) = \frac{a_3^3 \sin^3 i_3}{P_3^2} = \frac{M_3^3 \sin^3 i_3}{(M_1 + M_2 + M_3)^2}.$$
 (4)

Здесь массы выражены в массах Солнца, большие полуоси орбит — в астрономических единицах и периоды — в годах, M_1 и M_2 — массы компонентов затменно-двойной системы, M_3 — масса дополнительного компонента. Значения функции масс для каждой дополнительной орбиты также приведены в табл. 1.

Используя массы компонентов затменнодвойной системы из каталога Сурковой и Свечникова: $M_1 = 2.37 M_{\odot}$, $M_2 = 0.90 M_{\odot}$, можно вычислить минимальную массу соответствующего тре-

Рис. 8. Остатки после вычитания из $(O-C)_3$ всех трех теоретических кривых для световых уравнений с параметрами из табл. 1. Обозначения как на рис. 1.

тьего тела для каждого светового уравнения. Значения этих масс также приведены в табл. 1. Считая эти дополнительные компоненты звездами Главной последовательности, можно найти их светимости из соотношения масса-светимость в соответствующем диапазоне масс [21]. Светимости компонентов затменно-двойной системы определим, исходя из оценок массы и относительной светимости главного компонента, приведенных в [8]. Главный компонент затменнодвойной системы является звездой главной последовательности, и его светимость можно найти из соотношения масса-светимость в соответствующем диапазоне масс [21]: $L_1 = 41.7 L_{\odot}$. Согласно [8], его относительная светимость равна 0.768, тогда абсолютная светимость вторичного компонента получается равной $L_2 = 12.6L_{\odot}$. Теперь можно найти относительную светимость каждого предполагаемого третьего тела: $L_3/(L_1 + L_2 + L_3)$. Эти величины также приведены в табл. 1.

Для иерархической четырехкратной системы функция масс связана с массами компонентов следующим соотношением:

$$f(M_4) = \frac{a_4^3 \sin^3 i_4}{P_4^2} = \frac{M_4^3 \sin^3 i_4}{\left(M_1 + M_2 + M_3 + M_4\right)^2}.$$
 (5)

В табл. 2 приведены функции масс и минимальные массы дополнительных тел на внешних орбитах для возможных конфигураций кратной системы. Одновременное присутствие дополнительных тел на орбитах 1 и 2 вряд ли возможно, так как они находятся практически на одинаковом расстоянии от двойной системы.

В качестве альтернативы гипотезе о третьем теле может служить предположение, что модуляции периода, наблюдаемые в системах типа Алголя и затменных двойных некоторых других типов, являются проявлением магнитной активности звезд. Эпплгейт [22] предложил модель, в которой гравитационное квадрупольное взаимодействие обеспечивает механизм, посредством которого орбита реагирует на изменения внутренней структуры активной звезды. Для работы такого механизма необходимо, чтобы у звезды была конвективная оболочка.

Таблица 2. Функции масс, минимальные массы и соответствующие относительные светимости тел на внешних орбитах для возможных четырехкратных систем. Обозначения орбит такие же, как в табл. 1

Параметр	Возможные сочетания орбит		
Параметр	1 + 3	2 + 3	
$f(M_4) (M_\odot)$	0.0525	0.0525	
$M_4 \sin i_4 (M_\odot)$	1.10	1.08	
$L_4/(L_1 + L_2 + L_3 + L_4)$	0.027	0.025	

Величина	Значение				
P _{mod}	8270 сут	13850 сут	22800 сут		
$\Delta(O-C)$	0.012 сут	0.015 сут	0.034 сут		
ΔP	2.41 c	1.80 c	2.47 c		
ΔJ	$1.22 \times 10^{48} (\Gamma \text{см}^2)/\text{c}$	$9.15 \times 10^{47} (\Gamma \text{см}^2)/\text{c}$	$1.26 \times 10^{48} (\Gamma \text{см}^2)/\text{c}$		
ΔE	3.58 × 10 ⁴¹ эрг	$2.00 imes 10^{41}$ эрг	3.78 × 10 ⁴¹ эрг		
В	$4.16 \times 10^3 \Gamma c$	$2.78 \times 10^3 \Gamma c$	$2.54 \times 10^3 \Gamma c$		
ΔL	$1.57 \times 10^{33} \text{ spr/c} = 0.41 L_{\odot} =$ = $0.032L_2$	$5.34 \times 10^{32} \text{ spr/c} = 0.14 L_{\odot} =$ = 0.011 L ₂	$6.03 \times 10^{32} \operatorname{spr/c} = 0.16 L_{\odot} =$ = 0.013 L ₂		

Таблица 3. Величины, характеризующие циклы магнитной активности вторичного компонента затменно-двойной системы Z Per. Определения величин приведены в тексте

Согласно [8], вторичный компонент в затменно-двойной системе Z Per имеет спектральный класс G2 IV, следовательно он попадает в число звезд, имеющих конвективную оболочку. На основании приведенных выше величин можно оценить возможные характеристики магнитной активности вторичной компоненты, которые могут вызывать такие изменения периода. Согласно Эпплгейту, амплитуда модуляций орбитального периода ΔP и амплитуда осцилляций $\Delta(O-C)$ на диаграмме O-C связаны соотношением: $\Delta P/P_0 =$ $= 2\pi \Delta(O-C)/P_{mod}$ [22]. Для приведенных выше оценок масс компонентов из третьего закона Кеплера находим величину большой полуоси относительной орбиты двойной системы: а = = 13.15 R_{\odot} . Из каталога [8] берем величину радиуса вторичного компонента $R_2 = 3.81 R_{\odot}$. Далее, используя последовательность формул, приведенную в [22], для каждого значения модулирующего периода находим оценки величины переносимого (от ядра звезды к ее оболочке и обратно) углового момента ΔJ , количества энергии, необходимого для переноса углового момента во внешнюю часть звезды, ΔE , напряженности магнитного поля В активного компонента и изменений его светимости ΔL . Эти величины приведены в табл. 3.

Оценка напряженности магнитного поля согласуется с данными о магнитных полях звезд с конвективными оболочками, которые должны быть порядка 10³ Гс. Изменения светимости вторичного компонента получаются небольшими. Кроме того, Ланца и др. [23, 24] показали, что за счет использования большей скорости вращения звезды или более эффективного механизма превращения вращательной кинетической энергии в магнитную и обратно, затраты энергии и соответствующие изменения светимости могут быть заметно меньше, чем дают соотношения Эпплгейта, так что полученные по ним оценки следует считать верхним пределом.

4. ЗАКЛЮЧЕНИЕ

Из рассмотрения табл. 1-3 можно сделать следующие выводы. Если допустить, что только одно из циклических изменений орбитального периода является следствием светового уравнения, то для этого подходит любое из трех: относительная светимость третьего тела мала, и заметить третий свет трудно. Что касается сочетания орбит, то одновременное наличие орбит 1 и 2 вряд ли возможно, так как они находятся практически на одинаковом расстоянии от двойной системы. Таким образом, Z Per может быть четырехкратной системой с орбитами дополнительных тел 1 + 3 или 2 + 3, а третий цикл в каждом случае может быть обусловлен магнитными колебаниями. Из табл. 3 следует, что, в принципе, любой цикл можно объяснить магнитными колебаниями, однако наиболее энергозатратным является цикл с наименьшим периодом (№ 1). В результате наиболее вероятным кажется предположение, что Z Per является четырехкратной системой с периодами дополнительных тел, равными 22.6 и 62.4 года, а циклические колебания с периодом 37.9 года являются следствием магнитной активности вторичного компонента. Не исключено также, что только один цикл (вероятнее всего, с наименьшим периодом) объясняется световым уравнением, а два других – магнитными колебаниями. Вековое уменьшение орбитального периода затменно-двойной системы может быть вызвано потерей углового момента вследствие магнитного торможения.

Поскольку для абсолютных размеров компонентов затменно-двойной системы Z Per имеются лишь приближенные оценки, а основная масса моментов минимумов получена из визуальных наблюдений, полученные в настоящей работе числовые оценки следует считать предварительными. Необходимы новые высокоточные фотометрические наблюдения этой системы для получения кривой блеска и моментов минимумов, а также кривая лучевых скоростей.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке гранта Программы развития МГУ "Ведущая научная школа "Физика звезд, релятивистских объектов и галактик".

СПИСОК ЛИТЕРАТУРЫ

- 1. S. Williams, Astron. Nachr. 160, 63 (1903).
- 2. H. Shapley, Astrophys. J. 38, 158 (1913).
- 3. *H. Shapley*, Contr. from the Princeton Univer. Obs., Contr. № 3, 1 (1915).
- 4. K. Graff, Astron. Nachr. 221, 89 (1924).
- 5. *J. Fetlaar*, Bull. of the Astronomical Institutes of the Netherlands **3**, 195 (1926).
- 6. A. A. Wachman, "Spektral-Durchmusterung von Milchstrassenfeldern". Teil 1, Vol. 1 (1939).
- С. М. Азимов, Сообщения Шемахинской специальной астрофизической обсерватории, вып. 4, 30 (1969).
- 8. *L. P. Surkova, M. A. Svechnikov*, Vizier On-line Data Catalog: Semi-detached eclipsing binaries (2004).
- 9. *E. J. Woodward*, Bull. of Harvard College Observatory, № 917, 7 (1943).

- 10. A. Szczepanowska, Acta Astron. B, 2, 134 (1955).
- 11. S. Qian, Astron. J. 122, 1561 (2001).
- 12. B. R. N. O. Project Eclipsing Binaries database, http://var2.astro.cz/EN/brno/index.php.
- 13. S. Qian, Astron. J. 119, 901 (2000).
- 14. S. Qian, Astron. J. 122, 2686 (2001).
- 15. А. И. Халиуллина, Астрон. журн. 95, 550 (2018).
- 16. А. И. Халиуллина, Астрон. журн. 96, 196 (2019).
- 17. А. И. Халиуллина и Х. Ф. Халиуллин, Астрон. журн. **61**, 393 (1984).
- 18. *Х. Ф. Халиуллин*, Астрон. журн. **51**, 395 (1974).
- 19. N. Ivanova and R. E. Taam, Astrophys. J. 599, 516 (2003).
- 20. N. Nanouris, A. Kalimeris, E. Antonopolou, and H. Rjvithis-Livaniou, Astron. Astrophys. 535, 126 (2011).
- Z. Eker, F. Soudugan, E. Soydugan, S. Bilir, E. Yaz Gökçe, I. Steer, M. Tüysüz, T. Şenyüz, and O. Demircan, Astron. J. 149, 131 (2015).
- 22. J. H. Applegate, Astrophys. J. 385, 621 (1992).
- 23. F. Lanza, M. Rodono, and R. Rosner, Monthly Not. Roy. Astron. Soc. 296, 893 (1998).
- 24. E. Lanza and M. Rodono, Astron. Astrophys. 349, 887 (1999).