УДК 524.354.4

КЛАССИФИКАЦИЯ МОЛОДЫХ ПУЛЬСАРОВ И ЭМПИРИЧЕСКАЯ ЭВОЛЮЦИЯ РЕГУЛЯРНОГО ПАРАМЕТРА ТОРМОЖЕНИЯ

© 2020 г. А. П. Глушак^{1, *}

¹Физический институт им. П.Н. Лебедева РАН, Пущинская радиоастрономическая обсерватория АКЦ ФИАН, Пущино, Россия *E-mail: glushak@prao.ru Поступила в редакцию 11.12.2019 г. После доработки 03.03.2020 г. Принята к публикации 30.03.2020 г.

Проанализировано распределение на диаграмме $\log(dP/dt) - \log(tc)$ молодых пульсаров, имеющих характеристический возраст $tc < -5 \times 10^6$ лет и производную периода $dP/dt > -10^{-16}$. Впервые выявлено 6 кластеров-полос, вдоль которых проходят пути долговременной эволюции индивидуальных пульсаров. Средний путь в полосе соответствует долговременной регулярной эволюции для типового пульсара данной полосы. Проанализирован состав населения по типам объектов в кластерахполосах. Вращающиеся радиотранзиенты (RRATs) присутствуют во всех кластерах-полосах при $tc > 10^5$ лет. Оказалось, что три полосы содержат объекты только одного из следующих 3 многочисленных (≥10) известных типов: магнитары, пульсары с сильным магнитным полем и Vela-подобные. В трех других кластерах-полосах объекты предыдущих 3 типов не найдены. Предложена классификация объектов в составе шести кластеров-полос: магнитары (М), с сильным магнитным полем (HB), с субсильным магнитным полем (S-HB), Vela (V), суб-Vela (S-V) и со слабым магнитным полем (LB). Четыре пульсара вне полос отнесены к пекулярным. Даны аналитические формулы для расчета параметров эволюции на диаграмме log(dP/dt) - log(tc). В результате оптимального фитинга среднего пути кластеров-полос подходящей эмпирической функцией для 327 пульсаров впервые оценены долговременные регулярные величины параметра торможения и второй производной периода. Как следствие наличия кластеров-полос, "полосатое" распределение дипольного магнитного поля при рождении пульсаров указывает на интервальность в распределении масс звезд-прародителей пульсаров. Современные модели для взрывов сверхновых звезд также дают интервальное распределение масс прародителей, производящих нейтронные звезды, что подтверждает реальность кластеров-полос пульсаров и естественно объясняет их происхождение.

DOI: 10.31857/S0004629920080058

1. ВВЕДЕНИЕ

К настоящему времени "зоопарк" молодых пульсаров образуют две большие группы: магнитары (т.е. пульсары с сверхсильным магнитным полем) вероятно вместе с рентгеновскими уединенными нейтронными звездами (XINs, т.е. "Великолепная семерка") и пульсары, которые питаются потерей энергии вращения нейтронной звезды (RPPs). Все пульсары, за исключением миллисекундных, относят к обычным. В группу RPPs входят следующие типы пульсаров: с сильным магнитным полем (HB), RRATs [1, 2] и около 12 подобных пульсару Vela (Vela-like) [3-5]. На диаграмме (dP/dt)-P, где P – период пульсара, Vela-like пульсары расположены очень далеко от пульсаров других типов и фактически представляют собой еще один тип [7]. Большая доля остальных RPPs остается не типированной. Среди RPPs несколько объектов находятся в двойных системах. Три антимагнитара не входят в RPPs и относятся к малочисленной, вероятно, разнородной по составу группе так называемых центральных компактных объектов в остатках сверхновых (CCOs) [6].

Ранее предпринимались попытки при помощи метода анализа "течения" пульсаров [8, 9] найти эволюционные пути обычных пульсаров на диаграмме (dP/dt) - P [8–10]. Если бы удалось из наблюдений найти эволюционные пути не для всей совокупности обычных пульсаров, а для какоголибо типа, это позволило бы проследить для этого типа эволюцию долговременного параметра торможения

$$n = 2 - P \left(\frac{d^2 P}{dt^2}\right) / (\frac{dP}{dt})^2$$
(1)

и, вероятно, получить прямую информацию о механизме торможения [11]. Однако, как констатировано В.С. Бескиным, спустя 50 лет исследований все еще трудно получить прямую информацию об этом механизме из-за невозможности извлечь из наблюдений закон эволюции долговременного параметра торможения [11].

Так как в большинстве теоретических моделей основными эволюционными параметрами являются характерное время, равное 2tc, или характеристический возраст tc = P/(2dP/dt), которые прямо связаны с действительным возрастом пульсара [12], то в настоящей работе анализируется распределение молодых пульсаров на диаграмме (dP/dt) - tc. Ранее анализ различных параметров пульсаров в зависимости от tc проводился во многих публикациях [10, 13–16].

В разделе 2 приводятся данные наблюдений параметров молодых пульсаров ($tc < ~5 \times 10^6$ лет), а в разделе 3 — нужные в дальнейшем основные уравнения эволюции вращения. В разделе 4 на диаграмме (dP/dt) — tc выявляются эмпирические кластеры-полосы, и описан метод их выделения, в разделе 5 анализируется связь населения этих полос с пульсарами семи известных типов, и классифицируется население полос. В разделе 6 средние пути эволюции объектов в каждой полосе аппроксимируются эмпирическими зависимостями, и оцениваются регулярные средние величины n и d^2P/dt^2 для 327 пульсаров. Результаты, их следствия и происхождение кластеров-полос обсуждаются в разделе 7.

2. ИСТОЧНИКИ ДАННЫХ О МОЛОДЫХ ПУЛЬСАРАХ

Большинство значений параметров вращения dP/dt и tc (<~5 × 10⁶ лет) брались из каталога ATNF (http//www.atnf.csiro.au/research/pulsar/psrcat/; [20]). Для пульсара J0250+5854 данные взяты из [21], для J1412+7919 (Calvera) – из [22]. По магнитарам информация о классификации и координатах бралась из [21] (http://www.physics.mcgill.ca/pulsar/magnetar/main.html), по HB-пульсарам из [22], по Vela-like пульсарам из [3, 5]. Параметры приведены в Приложении, табл. (A1–A6).

3. ОСНОВНЫЕ УРАВНЕНИЯ

Общий закон замедления вращения для не аккрецирующих пульсаров [12]:

$$d\Omega/dt = -K\Omega^n,\tag{2}$$

где $\Omega = 2\pi/P$, *K* и *n* могут зависеть от времени (например, [17, 18]). Здесь *n* — показатель тор-

можения, определяемый из наблюдений по формуле (1). Из уравнения (2) следует, что

$$dP/dt = K(2\pi)^{(n-1)}P^{s1},$$
 (3)

где

$$s1 = -(n-2).$$
 (4)

Из (3) следует, что на диаграмме $\log(dP/dt) - \log P$ в данной точке траектории эволюции пульсара, заданной аналитически, тангенс угла наклона касательной *s*1 к этой траектории может быть рассчитан по формуле

$$s1 = d[\log(dP/dt)]/d(\log P).$$
(5)

Выражая период *P* через *tc* и dP/dt из уравнения tc = P/(2dP/dt), преобразуем уравнение (3) к виду

$$dP/dt = \pi (2K)^{1/(n-1)} t_c^s, \tag{6}$$

где

$$s = -(n-2)/(n-1).$$
 (7)

Из (6) следует, что на диаграмме $\log(dP/dt)$ — $\log tc$ в данной точке траектории эволюции пульсара, заданной аналитически, может быть рассчитан тангенс угла наклона касательной *s* к этой траектории:

$$s = d[\log(dP/dt)]/d(\log tc).$$
(8)

Если известно уравнение траектории эволюции пульсара на диаграмме log(dP/dt)-log tc, то по найденному *s* можно определить параметр торможения в данной точке траектории эволюции

$$n = 1 + 1/(1 + s).$$
 (9)

В дальнейшем будут использоваться оценки возраста *t* пульсаров, для чего приведем нижеследующие соотношения. В случае прямолинейной траектории эволюции, т.е. при n = const, интервал времени Δt , прошедшего между *P*1 и *P*2 или между *tc*1 и *tc*2,

$$\Delta t = \{2tc2/(n-1)\} [1 - (P1/2)]^{(n-1)}, \quad (n \neq 1) \quad (10)$$

(например, [19]), или (10) записывается иначе

$$\Delta t = [2/(n-1)](tc2 - tc1), \tag{11}$$

где $\Delta t = t2 - t1$; *P*1, *P*2 и *tc*1, *tc*2 – начальный и конечный период и характеристический возраст соответственно.

На диаграмме $\log(dP/dt) - \log tc$ в случае криволинейной траектории ($n \neq \text{const}$), которая является, например, параболой

$$Y_p = aX^2 + bX + c, \tag{12}$$

где

$$X = \log(tc), \tag{13}$$

время, прошедшее между tc2 и tc1,

$$\Delta t = 4a \left[\left(\frac{tc2}{1 \text{ год}} \right) X2 - \left(\frac{tc1}{1 \text{ год}} \right) X1 \right] - (14)$$

- 2(2a/ln10 - b - 1)(tc2 - tc1) год,

где X1 = X(tc1), X2 = X(tc2).

4. ДИАГРАММА log(*dp/dt*)—log *tc* И ЕЕ АНАЛИЗ

Если попытаться визуально найти некоторые кластеры пульсаров на диаграмме $\log(dP/dt)$ - $\log P$ (например, на рис. 6 в работе [7]), то мы уверенно найдем, что магнитары и НВ-пульсары концентрируются в двух отдельных почти вертикальных полосах до возраста $tc \sim 10^5$ лет, ширина зазора межлу которыми сравнима с шириной полосы для НВ-типа. Кроме того, если не брать в расчет присутствие двух точек (пульсары J0534+2200 и J0540-6919), то ясно видны еще две полосы концентрации с широким зазором. В начале одной находятся J1513-5908. J1124-5916. J1640-4631 и другие, а в начале другой – J1833-1034, J0205+6449, J1418-6058, J0835-4510 и другие пульсары Vela-like до возраста $tc \sim 5 \times 10^4$ (рис. 6 из [7]). Сравнение двух распределений молодых пульсаров на диаграмме $\log(dP/dt) - \log P$, которые даны на рис. 6 в работе [7] и на рис. 1 в работе [14], позволяет заключить, что с 2000 по 2015 г., несмотря на открытие многочисленных пульсаров, найденные выше зазоры остались пустыми, а концентрация объектов в полосах увеличилась. Это свидетельствует о реальности этих кластеровполос и о несущественном влиянии эффектов селекции.

В настоящей работе анализируется распределение молодых пульсаров на диаграмме $\log(dP/dt)$ — $\log tc$, представленное на рис. 1, где прямые ограничивают приблизительные края района диаграммы, занимаемой объектами. Видны характерные сгущения объектов как вблизи верхней и нижней линии, так и в средней части распределения точек (рис. 1), которые вытянуты приблизительно параллельно этим линиям. При $tc < ~10^5$ лет также видны как минимум 4 длинных зазора между этими вытянутыми сгущениями.

Легко показать, что эмпирический тренд, задаваемый верхней и нижними линиями, и тренд с близким наклоном, заметный в средней части распределения точек, близко следуют эволюционным путям, полученным в моделях магнитотепловой эволюции пульсаров, которые представлены на рис. 10 в работе [17]. Применение известного метода нахождения кластеров путем выделения областей повышенной плотности точек, дополненного учетом вышеуказанных трендов, а также учетом роста плотности точек с

Рис. 1. Диаграмма (dP/dt) - tc распределения всех молодых пульсаров при $tc \le 1.5 \times 10^5$ лет и $dP/dt \ge 5 \times 10^{-15}$ (186 объектов). Прямые ограничивают приблизительные края региона диаграммы, занимаемой объектами. Большинство значений параметров вращения взяты из каталога ATNF (http://www.atnf.csiro.au/research/pulsar/psrcat/; [20]).

уменьшением dP/dt при некотором фиксированном *tc*, дает в результате 6 кластеров-полос, показанных на рис. 2. Неслучайность наличия кластеров-полос поддерживается результатом анализа состава объектов по типам, проведенного в разделе 5. Кроме того, реальность кластеров-полос хорошо согласуется с недавними результатами многомерных физических моделей взрывов сверхновых (см. подраздел 7.4). Нужно отметить, что, как и на диаграмме $\log(dP/dt)$ —log *P*, пульсары известного типа, указанные в начале этого раздела, находятся на рис. 2 в начале найденных полос. "Полосатая" диаграмма на рис. 2 подтверждает сделанное выше заключение о наличии кластеров-полос на диаграмме $\log(dP/dt)$ —log *P*.

5. АНАЛИЗ И КЛАССИФИКАЦИЯ ПУЛЬСАРОВ ПО ТИПАМ В КЛАСТЕРАХ-ПОЛОСАХ

5.1. Анализ

На рис. 1 и 2 показано 186 объектов. В результате анализа состава кластеров-полос по типам пульсаров установлено, что в полосе 1 находятся

Рис. 2. То же, что на рис. 1. Сплошными линиями внутри региона на рис. 1 методом, описанным в разделе 4, очерчены шесть кластеров точек, обозначенных цифрами. Эти линии приблизительно параллельны. Кластеры образуют пять полос и одну область с номером 6. Только 4 объекта лежат между полосами (между третьей и четвертой). Пунктирная линия с тангенсом угла наклона ≈ -2 отмечает приблизительную феноменологическую линию рождения пульсаров. Ее наклон близок к наклону линии смерти для этой диаграммы. Три объекта находятся левее этой линии.

20 объектов, из которых 17 относятся к М-типу. В полосе 2 находится 21 пульсар, из них 10 принадлежат к НВ-типу [22]. В полосу 3 попадают 24 объекта, и среди них нет определенных типов. В полосе 4 находятся 67 пульсаров, из них около 12 Vela-like пульсаров [3–5] (за исключением J1811-1925, который лежит в начале полосы 5). В пятой полосе расположен 41 объект, среди которых нет определенных типов. В шестом кластере 9 объектов, среди которых также нет определенных типов. Четыре объекта находятся вне полос, между третьей и четвертой полосами: J0534+2200 (в Крабовидной туманности), J0540-6919 (в SNR 0540-69.3), J1023-5746 и J1909+0749. Остальные объекты из кластеров-полос 1-6 приведены в табл. А1-А6 соответственно. Кроме 186 объектов, показанных на рис. 2, в табл. А1-А6 включены пульсары, имеющие $tc \ge 1.5 \times 10^5$ лет. Они найдены экстраполяцией кластеров-полос

вместе с их огибающими линиями на большие значения *tc*, чем на рис. 2. Экстраполяция закончена при *tc*, где огибающие данного кластера пересекаются с огибающими соседних кластеров. Во всех кластерах-полосах присутствуют объекты RRATs лишь при *tc* > 10^5 лет. Полученное распределение объектов после экстраполяции показано на рис. 3, а сами они приведены в табл. A1–A6. Их обозначение символами на рис. 3 и занесение в эти таблицы сделаны согласно проведенной ниже классификации.

5.2. Классификация

В табл. А1-А6 звездочками отмечены пульсары известного типа. Невероятно, что нахождение значительного количества объектов каждого из трех типов M, HB и Vela-like (или, что то же самое, V) в разных полосах оказалось случайным. Это свидетельствует о принадлежности большинства (если не всех) пульсаров в каждой из трех полос только к одному из этих типов. Следовательно, классифицируем все (или почти все) пульсары в 1, 2 и 4-й полосах как пульсары M, HB и V-типа.

То, что в третьей полосе отсутствуют пульсары известного типа, а во второй их очень много и много в четвертой, определенно свидетельствует о том, что объекты в третьей полосе принадлежат к новому типу. Классифицируем их как пульсары sub-HB (S-HB).

Концентрация объектов в пятой полосе самая высокая, что свидетельствует о реальности данной полосы. В ней присутствуют пульсары, у которых начальный период $P_0 \approx P$ и tc $\approx (14-$ 20) t_{SNR} , где SNR — остаток сверхновой, что совсем не типично для объектов в других кластерах, а свойственно ССО-пульсарам. Кроме этого, в пятой полосе ряд объектов имеет свойства пульсаров в двойных системах. Так, в области с $tc \le 1.5 \times$ × 10⁵ лет J1811-1925 имеет микроквазарные джеты, и у него ожидается наличие аккреционного диска [23], J1906+0746 — в двойной [20]. В обла-сти с $tc \ge 1.5 \times 10^5$ лет (рис. 3) находится J2032+4127 – в двойной [20]. Там же – J0538+2817, прошел эволюцию в двойной с общей оболочкой [26]. В области с $tc \ge 10^6$ лет при экстраполяции полосы 5 (рис. 3) внутри нее находятся пульсары J1823-1115, J1141-6545 и J1755-2550 каждый в двойной [20], и J0953+0755 (В0950+08) прошел эволюцию в двойной [27]. Поэтому все (или почти все) объекты пятой полосы на рис. 2 и ее экстраполяции (рис. 3) классифицируем как объекты нового типа: sub-Vela (S-V).

Шестой кластер самый малочисленный (18 объектов, рис. 3, табл. Аб) и не содержит пульсаров известного типа. Дипольное магнитное поле у них наименьшее среди молодых пульсаров.

Рис. 3. Диаграмма (dP/dt)-tc для 331 пульсара. Разные значки обозначают объекты разных типов согласно классификации в разделе 5. Справа вверху звездочка при букве отмечает относящиеся к данному типу пульсары, которые в табл. А1–А6 (приложение) помечены звездочкой. "xins" обозначает объекты XINs, классифицированные как магнитары. Рес обозначает 4 пекулярных объекта (подраздел 5.2). Пунктирные линии представляют значения магнитной индукции *Bp* (Гс) поверхностного дипольного поля на полюсе нейтронной звезды, где *Bp* = $6.4 \times 10^{19} (dP/dt) (2tc)^{1/2}$. Штриховая линия (в соответствии с линией на рис. 2) – приблизительная эмпирическая линия рождения с наклоном, равным наклону линии смерти в модели с течением, ограниченным пространственным зарядом, в которой $dP/dt \propto P^2$ [42]. Сплошные линии – результат оптимального фитинга уравнения (15) в экстраполированные на $tc > 1.5 \times 10^5$ лет кластеры-полосы рис. 2. Правый конец кластеров HB, S-HB и V заканчивается там, где их огибающие линии пересекаются с огибающими линиями соседних кластеров. Огибающие линии полос S-V и LB (звездочки и треугольники) не пересекаются.

Одна из отличительных особенностей пульсаров этого кластера — повышенная доля объектов с высокой и очень высокой поперечной скоростью собственного движения 400—2000 км/сек, например, J0537-6910, J1952+3252, J1437-5959 и J1101-6101. Поэтому практически все объекты этого кластера мы классифицируем как объекты нового типа: LB (low B-field), т.е., со слабым дипольным магнитным полем.

Объекты типа RRATs не отмечены значком на рис. 3, но присутствуют во всех кластерах-полосах при $tc > 10^5$ лет (как это видно на диаграмме dP/dt-P из [23] в том же диапазоне dP/dt, как на рис. 3). Это подтверждает ранее сделанное предположение, что с большой вероятностью RRATs представляют результат поздней эволюции RPPs, а не являются отдельным типом [1]. Четыре пульсара, находящиеся вне полос (рис. 2), отнесены к пекулярным (Рес на рис. 3). Их *tc*(год) и *dP/dt*: J0534+2200 (1260, 4.21E-13), J0540-6919 (1670, 4.79E-13), J1023-5746 (4600, 3.84E-13) и J1909+0749 (24700, 1.52E-13). Однако, как видно из рис. 3, не исключено, что J1023-5746 может быть отнесен к типу S-HB, а J1909+0749 – к S-HB или V.

6. АППРОКСИМАЦИЯ СРЕДНИХ ТРЕНДОВ ДЛЯ КЛАСТЕРОВ-ПОЛОС

На диаграмме рис. 2 и рис. 3 с ростом *tc* средняя величина *s* изменяется приблизительно: от 0 до -1 для кластеров 4, 5 и для пограничной линии области 6; от -0.5 до -1 для кластеров 2, 3 и от -0.8 до -1 для кластера 1. Кроме того, линии, огибающие, т.е., ограничивающие каждый кластер снизу и сверху, следуют приблизительно параллельно друг другу. Лишь у кластера 5 они несколько расходятся с ростом *tc*. Поэтому для простоты анализа далее в статье будем полагать эти огибающие параллельными среднему треку.

Определяемая по уравнению (9) средняя величина регулярного параметра торможения $n(\text{рег.}) \rightarrow \infty$ при стремлении тангенса угла наклона *s* асимптотически к –1. Такой тренд для *n* был выведен в ряде исследований (например, в [14, 17, 18]). Для эмпирической аппроксимации средней эволюции dP/dt в каждой полосе указанным выше изменениям наклона *s* удовлетворяет функция гиперболы. Для дальнейшего использования удобно представить ее в виде

$$Y_h = Y_a - \left(\left(X - X_a \right)^2 + a^2 \right)^{1/2}, \tag{15}$$

где X — то же, что в уравнении (13), $Y_h = \log(dP/dt)$, и параметры a > 0, X_a и Y_a — константы. Тогда тангенс угла наклона

$$s = (X - X_a)/(Y_h - Y_a).$$
 (16)

6.1. Фитинг для первой полосы

Для оценки величин параметров оптимального фитинга полосы 1 были отобраны три опорных магнитара J1714-3810, J1841-0456 и J2301+5852, имеющих надежно определенный возраст ассоциированных с ними остатков сверхновых (ОСН). Здесь оптимальность фитинга состояла в достижении приемлемой близости рассчитанного возраста t_{PSR} к известному возрасту ассоциированного ОСН t_{SNR}. Не были использованы как опорные магнитары из пар с неуверенной ассоциацией пульсар—OCH, а также с $tc < t_{SNR}$ (так как в среднем дипольное магнитное поле магнитаров падает, что при n > -3 приводит к $tc > t_{SNR}$ [15, 29]), а именно, J0525-6607 (N49) ~ 5 × 10³ лет [29], J1635-4735 (G337.0-0.1) ~ 5 \times 10³ лет [29], J1834-0845 (W41) (130 \pm 70) \times 10³ лет [29], J1550-5418 (G327.2-0.1) 1840 ± 190 лет [29] (здесь дан возраст ассоциированного ОСН). Магнитар J0501+4516 (НВ9) 5850 ± 1850 лет [29] тоже не использован, так как новая оценка расстояния для него по впервые измеренной мере дисперсии 134.9 \pm 0.9 пк см⁻³ (Б.Я. Лосовский и А.П. Глушак; частное сообщение) составляет 2.50 кпк в модели [30]. Это заметно расходится с современной оценкой расстояния для НВ9 между 0.4 и 1.5 кпк, и вместе с очень большой поперечной скоростью собственного движения пульсара не поддерживает его ассоциацию с НВ9 [29].

Для 42 пульсаров из табл. А1 сначала был выполнен оптимальный фитинг уравнением ортогональной линейной регрессии $Y = s_L X + c_L$ и найдены $s_L = -0.951 \pm 0.008$, $c_L = -7.27 \pm 0.09$ с χ^2 /dof = $= 4.16 \times 10^{-2}$, коэффициентом корреляции R^2 =

= 0.978 и соответствующим средним регулярным $n(\text{рег.}) = 21.5 \pm 3.3$. Используя уравнение (11), в котором tc1 = tc0, а tc2 = tc для опорного магнитара, мы получили оценки tc0: < -2600, < -500 и 7.7 × 10^4 лет, соответственно для J1714–3810, J1841–0456 и J2301+5852. Так как должно быть tc0 > 0, следует заключить, что линейный фитинг неприемлем.

Возраст опорных магнитаров оценивался по нижеописанному алгоритму: вручную для величин *a* и X_a с шагом 0.1 в интервале (0.5–1.5), оцененном по рис. 2, путем итерации *a*, вложенной в итерации X_a , выполнялся фитинг гиперболы (15) для 42 пульсаров из табл. А1, вычислялся Y_a , и рассчитывались значения $Y_h(X)$. На каждом шаге итерации выполнялись две операции:

1) В полученный ряд значений $Y_h(X)$ делался фитинг двух парабол (12): для первой параболы – на интервале 1 ($tc1 = tc(t = 0) \approx 10^{Xa}$ лет, tc2 == tc(J1841-0456) = 4570 лет), включающем опорные пульсары J1714-3810 и J1841-0456; для второй – на интервале 2 (tc1 = 4570 лет, tc2 = $= tc(J2301+5852) = 235 \times 10^3$ лет), включающем опорный пульсар J2301+5852. В обоих фитингах отыскивались параметры *a*, *b* и *c*.

2) Возраст t_{PSR} опорных пульсаров при помощи (14) оценивались как $t_{PSR} = t1 + \Delta t_1$ для интервала 1 и $t_{PSR} = t2 + \Delta t_2$ для интервала 2, где $t1 \approx 0$, а t2 возраст, рассчитанный для J1841-0456. Затем найденные t_{PSR} сравнивались с t_{SNR} .

Далее, операции пунктов 1) и 2) повторялись, пока рассчитанные t_{PSR} и t_{SNR} для всех опорных пульсаров не оказались достаточно близкими. Так достигалась оптимальность фитинга.

В результате найдены следующие значения параметров (табл. 1 и 2). Для параболы 1: a = -0.0900, b = -0.3406 (с коэффициентом корреляции $R^2 = 0.9998$ при числе точек фитинга $N_{\text{fit}} = 10$). Для параболы 2: a = -0.0107, b = -0.8636 ($R^2 = 1.0000$ при $N_{\text{fit}} = 17$). Оцененный возраст для опорных пульсаров: 391, 709 и 14.5 × 10³ лет (табл. 2). Для гиперболы: $a = 1, X_a = 1, Y_a = -7.885 \pm 0.032, \chi^2/\text{dof} = 4.3 × 10^{-2}, R = 0.988$ (табл. 1).

Для 42 магнитаров средние величины для *s* и n(рег.), оцененные по формулам (16) и (9), даны в табл. А1. Средняя величина регулярной второй производной периода d^2P/dt^2 связана с *s*

$$d^{2}P/dt^{2} = [(dP/dt)/(2tc)](1+1/s)^{-1},$$
(17)

и ее значения, рассчитанные по (17), даны в табл. А1. Ошибки величин в табл. А1–А6 вычислялись стандартно.

587

Таблица 1. Значения параметров *a*, X_a , Y_a по результатам оптимального фитинга уравнением (15) для шести кластеров-полос. Приведены: $N_{\rm fit}$ – число точек фитинга, приведенный χ^2 , коэффициент корреляции *R*. $\langle Bp_0 \rangle$ – оценка для данной полосы средней величины магнитной индукции дипольного поля на линии рождения (рис. 3)

№ полосы	1	2	3	4	5	6
N_{fit}	1-42	137	1-24	5-76 (из 86)	1-120	1-18
а	1	1.2	2.6	1.4	2.27	1.12
X _a	1	2.667 ± 0.14	1.86 ± 0.23	3.93 ± 0.07	3.19 ± 0.14	3.31 ± 0.20
Y_a	-7.89 ± 0.03	-10.04 ± 0.12	-9.04 ± 0.15	-11.564 ± 0.03	-10.82 ± 0.10	-12.01 ± 0.16
χ^2/dof	4.3×10^{-2}	1.9×10^{-2}	0.8×10^{-2}	1.2×10^{-2}	1.6×10^{-2}	1.6×10^{-2}
R	0.988	0.968	0.957	0.844	0.918	0.983
$\langle Bp_0 \rangle \Gamma c$	3×10^{15}	7.0×10^{13}	2×10^{13}	4×10^{12}	_	2×10^{12}

Таблица 2. Измеренный n и рассчитанный регулярный параметр торможения n(per.), взятый из табл. 1а–4а. Также приведен рассчитанный путем оптимального фитинга возраст пульсара t(PSR) и известный возраст t(SNR)связанного с ним остатка сверхновой. Измеренные значения n взяты из [7, 34]. В круглых скобках дана ошибка в последней цифре

№ полосы	n, t (год)	Пу	Пульсар и связанный с ним остаток сверхновой								
1		J1714-3810 CTB 37B	J1841–0456 Kes73	J2301+5852 CTB 109							
	t(PSR)	383	701	14.5×10^{3}							
	t(SNR)	650 (-300, +2500) [29, 31]	750 ± 250 [29, 33]	$(15 \pm 5) \times 10^3$ [29, 32]							
2		J1846–0258 Kes75	J1119–6127 G292.2–0.5	J1208–6238	J1734–3333 G354.8–0.8						
	<i>n</i> (рег.)	2.19 ± 0.16	2.69 ± 0.29	2.93 ± 0.35	4.56 ± 0.99						
	п	2.65(1); 2.19(1)	2.684(2)	2.598(1)	0.9(2)						
3		J1513–5908 G320.4–1.2	J1640-4631 G338.3-0.0								
	<i>n</i> (рег.)	2.84 ± 0.23	3.17 ± 0.30								
	п	2.832(3)	3.15(3)								
4		J1833–1034 G21.5–0.9	J0835–4510 Vela XYZ	J1803–2137	J1826-1334						
	<i>n</i> (рег.)	1.856 ± 0.033	2.10 ± 0.06	2.24 ± 0.07	2.38 ± 0.08						
	п	1.8569(2)	1.7(2)	1.9(5)	2.2(6)						

6.2. Аппроксимация для 2—4-й полосы

В отличие от первой полосы, в полосах 2, 3 и 4 есть около десяти пульсаров с надежно измеренным n (табл. 2). Поэтому при фитинге гиперболы (15) измеренные величины n(изм.) использовались как опорные, чтобы добиться максимальной близости рассчитанных величин $n(per.) \kappa n(изм.)$. Делая вручную итерации величины a с некоторым шагом в интервале, длина которого оценивалась по рис. 2, при каждом значении параметра aмы осуществляли фитинг уравнением (15), находили X_a , Y_a , и по (7) и (9) оценивали соответствующие величины *s*, *n*. Максимальная близость была найдена при a = 1.2, 2.6 и 1.4 для полос 2, 3 и 4 соответственно. Количество N_{fit} значений *X*, использованных для фитинга, и результаты *n* для опорных пульсаров приведены в табл. 2. В табл. 1 даны результаты для X_a , Y_a , $\chi^2/\text{dof } u R$. Для остальных пульсаров из полос результаты для регулярных средних значений *s*, *n* и d^2P/dt^2 даны в табл. A2, A3 и A4a. Расчет сделан по тем же формулам, как для полосы 1 (раздел 6.1).

6.3. Аппроксимация для 5 и 6-й полос

В отличие от полос 2, 3 и 4, в полосе 5 и 6 отсутствуют пульсары с n(изм.) (кроме J0537-6910). Несмотря на это, удалось в полосе 5 и 6 выполнить оптимальный фитинг гиперболы (15) путем нахождения наименьшей из полученных величин χ^2 /dof. Последняя вычислялась на каждом шаге итерации параметра a. В результате для полосы 5 найдено: a = 2.27, $X_a = 3.192 \pm 0.145$, $Y_a = -10.82 \pm \pm 0.10$. Для полосы 6: a = 1.12, $X_a = 3.31 \pm 0.20$, $Y_a = -12.01 \pm 0.16$. Количество $N_{\rm fit}$ значений X, использованных для фитинга, наименьшая величина χ^2 /dof и R даны в табл. 1, а регулярные средние величины s, n и d^2P/dt^2 – в табл. А5 и А6.

Отметим, что, строго говоря, для пульсаров, которые относительно среднего тренда находятся ближе к нижней (верхней) огибающей кластераполосы, величина *n*(рег.) должна быть меньше (больше), чем дается в табл. А1–А6. Но эти различия не очень велики.

7. ОБСУЖДЕНИЕ

7.1. Сравнение оценок измеренных и регулярных величин п

Для магнитаров параметр торможения *n* пока еще не был измерен, а лишь оценен для восьми магнитаров, опираясь на t_{SNR} и tc пульсара по предложенному уравнению: уравнение (10) в работе [29]. Из сравнения величин *n*(per.) из табл. А1 с оценками *и* для этих восьми пульсаров [29] приходим к заключению, что лишь для двух магнитаров J1841-0456 и J2301+5852 величины согласуются в пределах ошибок, а для шести других – нет. Дополнительно, для J1846-0258 (НВпульсар) с надежно определенным возрастом [35] оценка по этому уравнению дает n = 3, что также совсем не согласуется с $n(per.) = 2.19 \pm 0.16$ (табл. 2 и А2), хотя такая же оценка *п* для пульсаров J0534+2200 (в Крабе), J0540-6919 и J0835-4510 (SNR Vela-XYZ) хорошо согласуется с n(изм.). Из этого следует заключить, что уравнение (10) из [29] не работает для оценки *n*(per.) для магнитаров и HB-пульсаров с не очень большим tc, но, по-видимому, работает для больших tc.

Среди пульсаров из 2, 3 и 4-й полос, имеющих n(изм.), n(per.) сильно расходится с n(изм.) только для пульсара J1734-3333 (табл. 2). Это легко объяснить тем, что величина его магнитного поля наибольшая среди HB-пульсаров (рис. 3), и он, как J1846-0258 (HB-пульсар) и магнитары, по-видимому, имеет в измерениях нестабильную величину n (табл. 2). В дальнейшем новые измерения его n позволят это проверить.

Для пульсаров в полосе 5 и 6 не были измерены *n*, за исключением J0537-6910 [7]. Расхождение его (а также J1734-3333) *n*(изм.) с *n*(рег.) можно объяснить в модели растущего поверхностного магнитного поля, например [36], хотя ошибка измерений велика [7]. Если J0537-6910 действительно типа LB, то в дальнейших измерениях его *п* можно ожидать сильно нерегулярным.

7.2. Пульсары в новой и в прежних классификациях

В результате новой классификации (раздел 5.2) тип М пополнен 17 новыми объектами, из них 6 – XINs. Это подтверждает сделанное в нескольких публикациях предположение об XINs, что они представляют собой очень вероятное эволюционное продолжение магнитаров. Типы HB и V пополнены 27 и 73 новыми объектами соответственно. Пульсар Ј1734-3333 отнесен к типу НВ, а не к пульсарам, переходящим в магнитары, что предполагалось в ряде публикаций (например, [7]). Пульсар Ј1811-1925 получил новую классификацию: из V в S-V. Ранее, среди Vela-like объектов он наименее соответствовал этому типу [3]. Не подтвердились ранее предложенные как Vela-like пульсары J0940-5428 [38], J1301-6305 [38], J0007+7303 [39], J1357-6429 [40], J1028-5819 [41]. Всего вместе с sub-V и LB-типами как новые классифицированы 255 пульсаров.

Сходство свойств нескольких объектов из популяции S–V со свойствами трех пульсаров типа CCO, имеющих не типичные для объектов из других кластеров $P0 \approx P$ и $tc \approx (14-20)t_{SNR}$, а также сходство нескольких пульсаров этой популяции с пульсарами, прошедшими эволюцию с вероятной общей оболочкой в двойной системе (раздел 5.2), позволяет предположить, что все или почти все объекты популяции S–V произошли из таких двойных систем.

Ранее выполненные классификации с применением модели композиции функций Гаусса, например [43], основаны на эмпирической функции, не соответствующей нашему распределению пульсаров в виде кластеров-полос. Поэтому сравнение их результатов с нашими затруднено.

7.3. Следствие для распределения Вр₀ и для распределения массы звезд прародителей

При движении вдоль линии рождения на рис. 3 по мере роста *tc* обнаруживаются пробелы в величине магнитной индукции Bp_0 , для которых пульсары отсутствуют в соответствии с зазорами на рис. 2. Это свидетельствует о том, что распределение магнитного поля при рождении пульсаров интервальное или многокомпонентное, а не гауссово, как обычно предполагалось в моделях популяционного синтеза (например, [37]). Согласно модели [37], при величине радиуса нейтронной звезды 10 км, индукция Bp_0 дипольного магнитного поля при рождении пульсано поля при рождении нейтронной звезды связана

с массой звезды-прародителя M_* (при на главной последовательности нулевого возраста):

$$M_* = 25.9 (Bp_0/10^{15} \ \Gamma c)^{1/5} M_{\odot}, \tag{18}$$

для $8M_{\odot} \leq M_* \leq 45M_{\odot}$.

Из интервальности в распределении Bp_0 (рис. 3) и соотношения (18) следует интервальность в распределении M_* . Заметим, что положение линии рождения на рис. 3 при разумном ее сдвиге и (или) наклоне не изменяет последнего утверждения.

7.4. Подтверждение и объяснение происхождения кластеров-полос

Из рис. 3 следует, что линии, огибающие кластеры и идущие параллельно линии фита, при пересечении с линией рождения вырезают на ней интервалы. Они для межкластерных зазоров соответствуют, в частности, величинам $Bp_0 >$ $> ~5.6 \times 10^{15}$ Гс, $~1 \times 10^{15} < Bp_0 < ~12.2 \times 10^{13}$ Гс и $~6.5 \times 10^{13} < Bp_0 < ~3 \times 10^{13}$ Гс. Для этих интервалов по (18) получаются интервалы для масс звездпрародителей M_* , соответствующие на рис. 3 интервалам в Bp_0 , связанным с межкластерными зазорами: $~(>37)M_{\odot}$, $~(17-26)M_{\odot}$ и $~(13-15)M_{\odot}$ соответственно. Последние величины удовлетворительно согласуются с интервалами масс предсверхновых звезд (при нулевом возрасте на главной последовательности), которые не рождают нейтронных звезд в современных моделях взрывов сверхновых [44], а именно, с полученными независимо от наших расчетов интервалами $M_* \sim (>38) M_{\odot}$, $(22-26) M_{\odot}$ и $(14-15.5) M_{\odot}$, представленными на рис. 12а в [44] для звезд с солнечной металличностью. Следовательно, модели взрывов сверхновых [44] подтверждают реальность межкластерных зазоров и кластеров и естественно объясняют их происхождение.

8. ЗАКЛЮЧЕНИЕ

Согласно предложенной классификации, шесть типов мололых пульсаров являются самостоятельными, не происходящими от других. Выявлено три новых типа пульсаров. Подтверждены: принадлежность XINs к магнитарам, не приналлежность RRATs с большой вероятностью к какому-то одному определенному типу. Для 327 пульсаров оценены регулярный параметр торможения и вторая производная периода, которые ранее не были известны. Полосы-кластеры на диаграмме $\log(dP/dt) - \log(tc)$ будут очень полезны для проверки физических моделей регулярной эволюции магнитного поля пульсаров, параметров пульсарного ветра, а также для верификации моделей взрывов сверхновых.

ПРИЛОЖЕНИЕ

Таблица А1. Пульсары, классифицированные как магнитары. Наименование, характеристический возраст tc и производная периода dP/dt взяты из каталога пульсаров ATNF. В третьем столбце звездочкой отмечены объекты, ранее известные как магнитары [21]. Даны оценки и ошибки тангенса угла наклона касательной s, регулярного параметра торможения n и регулярной второй производной периода

N⁰	Пульсар	М	<i>tc</i> , год	<i>dP/dt</i> , c/c	S	σs	п	σn	d^2P/dt^2 , c/c ²	$\sigma(d^2P/dt^2)$
1	J1808-2024	*	218	5.49×10^{-10}	-0.801	0.015	6.0	0.4	-1.6×10^{-19}	1.5×10^{-20}
2	J1907+0919	*	895	9.20×10^{-11}	-0.89	0.013	10.1	1.1	-1.3×10^{-20}	1.7×10^{-21}
3	J1714-3810	*	1030	5.88×10^{-11}	-0.896	0.013	10.6	1.2	-7.8×10^{-21}	1.1×10^{-21}
4	J1550-5418	*	1410	2.32×10^{-11}	-0.907	0.012	11.7	1.4	-2.5×10^{-21}	3.7×10^{-22}
5	J0525-6607	*	1960	6.50×10^{-11}	-0.917	0.012	13	1.7	-5.8×10^{-21}	8.8×10^{-22}
6	J1635-4735	*	2200	1.90×10^{-11}	-0.92	0.012	13.5	1.8	-1.6×10^{-21}	2.4×10^{-22}
7	J1050-5953	*	2680	3.81×10^{-11}	-0.925	0.011	14.3	2	-2.8×10^{-21}	4.5×10^{-22}
8	J1745-2900	*	3400	1.76×10^{-11}	-0.93	0.011	15.3	2.2	-1.1×10^{-21}	1.8×10^{-22}
9	J1841-0456	*	4570	4.09×10^{-11}	-0.936	0.011	16.6	2.6	-2.1×10^{-21}	3.6×10^{-22}
10	J1834-0845	*	4940	7.96×10^{-12}	-0.937	0.01	17	2.7	-3.8×10^{-22}	6.8×10^{-23}

Таблица А1. Окончание

N⁰	Пульсар	М	<i>tc</i> , год	<i>dP/dt</i> , c/c	S	σs	п	σn	d^2P/dt^2 , c/c ²	$\sigma(d^2 P/dt^2)$
11	J0100-7211	*	6760	1.88×10^{-11}	-0.943	0.01	18.5	3.1	-7.3×10^{-22}	1.4×10^{-22}
12	J1708-4008	*	8900	1.96×10^{-11}	-0.947	0.01	19.9	3.5	-6.2×10^{-22}	1.2×10^{-22}
13	J0501+4516	*	15700	5.82×10^{-12}	-0.954	0.009	22.9	4.4	-1.2×10^{-22}	2.6×10^{-23}
14	J1622-4950	*	24700	2.78×10^{-12}	-0.959	0.009	25.5	5.2	-4.2×10^{-23}	9.3×10^{-24}
15	J1809-1943	*	31000	2.83×10^{-12}	-0.961	0.008	26.9	5.7	-3.6×10^{-23}	8.2×10^{-24}
16	J1718-3718		33200	1.61×10^{-12}	-0.962	0.008	27.3	5.8	-1.9×10^{-23}	4.5×10^{-24}
17	J1833-0831	*	34900	3.43×10^{-12}	-0.962	0.008	27.6	5.9	-4×10^{-23}	9.2×10^{-24}
18	J0146+6145	*	69100	1.99×10^{-12}	-0.968	0.008	32	7.5	-1.4×10^{-23}	3.4×10^{-24}
19	J1847-0130		83300	1.27×10^{-12}	-0.969	0.008	33.2	7.9	-7.5×10^{-24}	1.9×10^{-24}
20	J1814—1744		84600	7.45×10^{-13}	-0.969	0.008	33.3	8	-4.4×10^{-24}	1.1×10^{-24}
21	J1819-1458	*	117 000	5.75×10^{-13}	-0.971	0.007	35.6	8.8	-2.6×10^{-24}	6.9×10^{-25}
22	J1924+1631		128000	3.64×10^{-13}	-0.972	0.007	36.2	9.1	-1.5×10^{-24}	4.1×10^{-25}
23	J0726-2612		186000	2.93×10^{-13}	-0.974	0.007	39	10	-9.2×10^{-25}	2.5×10^{-25}
24	J1647-4552	*	202000	8.33×10^{-13}	-0.974	0.007	39.6	10	-2.5×10^{-24}	6.8×10^{-25}
25	J2301+5852	*	235000	4.71×10^{-13}	-0.975	0.007	40.7	11	-1.2×10^{-24}	3.5×10^{-25}
26	J1846-0257	*	442000	1.61×10^{-13}	-0.978	0.007	45.7	13	-2.5×10^{-25}	7.6×10^{-26}
27	J1854+0303	*	498000	1.45×10^{-13}	-0.978	0.006	46.6	14	-2.1×10^{-25}	6.2×10^{-26}
28	J0736-6304	*	507000	1.52×10^{-13}	-0.978	0.006	46.8	14	-2.1×10^{-25}	6.5×10^{-26}
29	J0847-4316	*	745000	1.20×10^{-13}	-0.98	0.006	50	15	-1.2×10^{-25}	3.8×10^{-26}
30	J1308+2127	xins	1.46×10^{6}	1.12×10^{-13}	-0.982	0.006	55.8	18	-6.5×10^{-26}	2.2×10^{-26}
31	J0720-3125	xins	1.90×10^6	6.98×10^{-14}	-0.983	0.006	58.2	19	-3.3×10^{-26}	1.1×10^{-26}
32	J0420-5022	xins	1.98×10^{6}	2.76×10^{-14}	-0.983	0.006	58.6	19	-1.3×10^{-26}	4.3×10^{-27}
33	J1001-5939		2.05×10^6	5.99×10^{-14}	-0.983	0.006	58.9	19	-2.6×10^{-26}	9×10^{-27}
34	J1830-1135		2.06×10^6	4.77×10^{-14}	-0.983	0.006	59	19	-2.1×10^{-26}	7.1×10^{-27}
35	J1926-1314		2.11×10^{6}	3.64×10^{-14}	-0.983	0.006	59.2	20	-1.6×10^{-26}	5.4×10^{-27}
36	J0806-4123	xins	3.24×10^{6}	5.56×10^{-14}	-0.984	0.006	63.2	22	-1.7×10^{-26}	5.9×10^{-27}
37	J2143+0654	xins	3.65×10^{6}	4.09×10^{-14}	-0.984	0.006	64.4	22	-1.1×10^{-26}	4×10^{-27}
38	J1856-3754	xins	3.76×10^{6}	2.98×10^{-14}	-0.984	0.006	64.7	22	-7.9×10^{-27}	2.8×10^{-27}
39	J1822-1604	*	6.26×10^6	2.14×10^{-14}	-0.985	0.005	69.7	25	-3.7×10^{-27}	1.4×10^{-27}
40	J0250+5854		1.37×10^{7}	2.72×10^{-14}	-0.987	0.005	77.8	30	-2.4×10^{-27}	9.4×10^{-28}
41	J0418+5732		3.51×10^{7}	4.10×10^{-15}	-0.989	0.005	88.2	36	-1.6×10^{-28}	6.7×10^{-29}
42	J2144-3933		2.72×10^{8}	4.96×10^{-16}	-0.991	0.004	113	53	-3.2×10^{-30}	1.5×10^{-30}

		, pui			[]					
N⁰	Пульсар	HB	<i>tc</i> , год	dP/dt, c/c	S	σs	n	σn	d^2P/dt^2 , c/c ²	$\sigma(d^2 P/dt^2)$
1	J1846-0258	*	728	7.11×10^{-12}	-0.16	0.116	2.19	0.16	-2.9×10^{-23}	2.5×10^{-23}
2	J1119-6127	*	1610	4.02×10^{-12}	-0.41	0.1	2.69	0.29	-2.7×10^{-23}	1.1×10^{-23}
3	J1208-6238	*	2140	3.27×10^{-12}	-0.483	0.094	2.93	0.35	-2.3×10^{-23}	8.6×10^{-24}
4	J1734-3333	*	8130	2.28×10^{-12}	-0.719	0.078	4.56	0.99	-1.1×10^{-23}	4.4×10^{-24}
5	J1746-2850	*	12700	1.34×10^{-12}	-0.767	0.075	5.3	1.38	-5.5×10^{-24}	2.3×10^{-24}
6	J1726-3530	*	14500	1.22×10^{-12}	-0.78	0.074	5.54	1.51	-4.7×10^{-24}	2×10^{-24}
7	J1740-3015		20600	4.66×10^{-13}	-0.808	0.071	6.21	1.93	-1.5×10^{-24}	6.9×10^{-25}
8	J1632-4818	*	19800	6.50×10^{-13}	-0.805	0.071	6.13	1.88	-2.1×10^{-24}	9.8×10^{-25}
9	J1821-1419	*	29300	8.95×10^{-13}	-0.832	0.069	6.95	2.44	-2.4×10^{-24}	1.2×10^{-24}
10	J1524-5706		49600	3.56×10^{-13}	-0.861	0.065	8.17	3.37	-7×10^{-25}	3.8×10^{-25}
11	J0534–6703	*	67800	4.25×10^{-13}	-0.874	0.063	8.97	4.03	-6.9×10^{-25}	4×10^{-25}
12	J1731-4744		80 400	1.64×10^{-13}	-0.881	0.062	9.42	4.42	-2.4×10^{-25}	1.4×10^{-25}
13	J1855+0527		82600	2.67×10^{-13}	-0.882	0.062	9.49	4.49	-3.8×10^{-25}	2.3×10^{-25}
14	J1918+1444		88100	2.12×10^{-13}	-0.885	0.062	9.67	4.65	-2.9×10^{-25}	1.8×10^{-25}
15	J1913+0446	*	91800	2.79×10^{-13}	-0.886	0.062	9.79	4.75	-3.7×10^{-25}	2.3×10^{-25}
16	J1558-5756		95400	1.86×10^{-13}	-0.888	0.061	9.89	4.85	-2.4×10^{-25}	1.5×10^{-25}
17	J1851+0118		105000	1.37×10^{-13}	-0.891	0.061	10.16	5.1	-1.7×10^{-25}	1.1×10^{-25}
18	J1905+0616		116000	1.35×10^{-13}	-0.894	0.06	10.45	5.37	-1.6×10^{-25}	9.9×10^{-26}
19	J1524-5819		121000	1.26×10^{-13}	-0.896	0.06	10.57	5.49	-1.4×10^{-25}	9.1×10^{-26}
20	J1907+1149		141000	1.60×10^{-13}	-0.9	0.059	11.03	5.93	-1.6×10^{-25}	1.1×10^{-25}
21	J1713-3844		143000	1.77×10^{-13}	-0.901	0.059	11.07	5.97	-1.8×10^{-25}	1.2×10^{-25}
22	J1759-2549		152000	9.96×10^{-14}	-0.902	0.059	11.25	6.15	-9.6×10^{-26}	6.4×10^{-26}
23	J0922-4949		154000	9.76×10^{-14}	-0.903	0.058	11.29	6.19	-9.3×10^{-26}	6.2×10^{-26}
24	J1055-6022		162000	9.24×10^{-14}	-0.904	0.058	11.45	6.35	-8.5×10^{-26}	5.7×10^{-26}
25	J1022-5813		179 000	1.45×10^{-13}	-0.907	0.058	11.76	6.66	-1.3×10^{-25}	8.5×10^{-26}
26	J1107-6143		183000	1.56×10^{-13}	-0.908	0.057	11.83	6.73	-1.3×10^{-25}	9.1×10^{-26}
27	J0157+6212		197000	1.89×10^{-13}	-0.91	0.057	12.06	6.97	-1.5×10^{-25}	1.1×10^{-25}
28	J1755-2521		207000	9.02×10^{-14}	-0.911	0.057	12.22	7.14	-7.1×10^{-26}	4.9×10^{-26}
29	J1941+2525		227000	1.61×10^{-13}	-0.913	0.056	12.51	7.45	-1.2×10^{-25}	8.4×10^{-26}
30	J1542-5303		246000	7.78×10^{-14}	-0.915	0.056	12.78	7.73	-5.4×10^{-26}	3.9×10^{-26}
31	J1743-3150		317 000	1.21×10^{-13}	-0.921	0.054	13.63	8.67	-7×10^{-26}	5.2×10^{-26}
32	J1901+0413		321000	1.32×10^{-13}	-0.921	0.054	13.67	8.72	-7.6×10^{-26}	5.7×10^{-26}
33	J1852+0031		356000	9.70×10^{-14}	-0.923	0.054	14.03	9.12	-5.2×10^{-26}	3.9×10^{-26}
34	J0139+5621		356000	7.91×10^{-14}	-0.923	0.054	14.03	9.12	-4.2×10^{-26}	3.2×10^{-26}
35	J1632-4621		356000	7.60×10^{-14}	-0.923	0.054	14.03	9.12	-4.1×10^{-26}	3.1×10^{-26}
36	J1822-1252		387000	8.48×10^{-14}	-0.925	0.053	14.32	9.46	-4.3×10^{-26}	3.3×10^{-26}
37	J2004+3137		449 000	7.46×10^{-14}	-0.928	0.053	14.85	10.1	-3.4×10^{-26}	2.7×10^{-26}

Таблица А2. То же, что в табл. А1, для пульсаров, классифицированных как тип НВ. В третьем столбце звездоч-кой отмечены объекты, ранее известные как тип НВ [22]

ГЛУШАК

N⁰	Пульсар	<i>tc</i> , год	<i>dP/dt</i> , c/c	S	σs	п	σn	d^2P/dt^2 , c/c ²	$\sigma(d^2P/dt^2)$
1	J1513-5908	1560	1.53×10^{-12}	-0.456	0.069	2.84	0.23	-1.3×10^{-23}	3.6×10^{-24}
2	J1124-5916	2850	7.53×10^{-13}	-0.522	0.064	3.09	0.28	-4.6×10^{-24}	1.2×10^{-24}
3	J1930+1852	2890	7.51×10^{-13}	-0.524	0.064	3.1	0.28	-4.5×10^{-24}	1.2×10^{-24}
4	J1640-4631	3350	9.76×10^{-13}	-0.539	0.063	3.17	0.3	-5.4×10^{-24}	1.4×10^{-24}
5	J1838-0537	4890	4.72×10^{-13}	-0.575	0.061	3.35	0.34	-2.1×10^{-24}	5.1×10^{-25}
6	J1357-6429	7310	3.60×10^{-13}	-0.61	0.058	3.56	0.38	-1.2×10^{-24}	3×10^{-25}
7	J1614-5048	7420	4.95×10^{-13}	-0.611	0.058	3.57	0.39	-1.7×10^{-24}	4.1×10^{-25}
8	J1301-6305	11000	2.67×10^{-13}	-0.642	0.056	3.8	0.44	-6.9×10^{-25}	1.7×10^{-25}
9	J1907+0631	11300	4.52×10^{-13}	-0.644	0.056	3.81	0.45	-1.1×10^{-24}	2.8×10^{-25}
10	J1341-6220	12100	2.53×10^{-13}	-0.649	0.056	3.85	0.46	-6.1×10^{-25}	1.5×10^{-25}
11	J1413-6141	13600	3.33×10^{-13}	-0.658	0.056	3.92	0.47	-7.5×10^{-25}	1.8×10^{-25}
12	J0007+7303	13900	3.60×10^{-13}	-0.659	0.055	3.94	0.48	-7.9×10^{-25}	2×10^{-25}
13	J1702-4310	17000	2.24×10^{-13}	-0.673	0.055	4.06	0.51	-4.3×10^{-25}	1.1×10^{-25}
14	J2004+3429	18 500	2.07×10^{-13}	-0.679	0.054	4.12	0.53	-3.8×10^{-25}	9.4×10^{-26}
15	J1856+0113	20300	2.08×10^{-13}	-0.685	0.054	4.18	0.55	-3.5×10^{-25}	8.9×10^{-26}
16	J1958+2846	21700	2.12×10^{-13}	-0.689	0.054	4.22	0.56	-3.4×10^{-25}	8.6×10^{-26}
17	J1841-0524	30200	2.34×10^{-13}	-0.709	0.053	4.44	0.63	-3×10^{-25}	7.7×10^{-26}
18	J1551-5310	36800	1.95×10^{-13}	-0.721	0.052	4.58	0.67	-2.2×10^{-25}	5.6×10^{-26}
19	J2337+6151	40 600	1.93×10^{-13}	-0.726	0.052	4.65	0.69	-2×10^{-25}	5.2×10^{-26}
20	J1737-3137	51400	1.39×10^{-13}	-0.739	0.051	4.83	0.75	-1.2×10^{-25}	3.2×10^{-26}
21	J0554+3107	51700	1.43×10^{-13}	-0.739	0.051	4.83	0.75	-1.2×10^{-25}	3.3×10^{-26}
22	J1838-0453	52200	1.16×10^{-13}	-0.739	0.051	4.84	0.75	-1×10^{-25}	2.7×10^{-26}
23	J1801-2304	58300	1.13×10^{-13}	-0.745	0.051	4.92	0.78	-9×10^{-26}	2.4×10^{-26}
24	J1806-2125	62900	1.21×10^{-13}	-0.749	0.051	4.98	0.8	-9.1×10^{-26}	2.4×10^{-26}

Таблица А3. То же, что в табл. А1, для пульсаров, классифицированных как тип sub-HB

Таблица А4. То же, что в табл. А1 для пульсаров, классифицированных как тип V. В третьем столбце звездочкой отмечены объекты, ранее известные как Vela-like [3–5]

N⁰	Пульсар	HB	<i>tc</i> , год	dP/dt, c/c	S	σs	п	σn	d^2P/dt^2 , c/c ²	$\sigma(d^2 P/dt^2)$
1	J1833-1034		4850	2.02×10^{-13}	0.168	0.045	1.86	0.03	9.5×10^{-26}	2.2×10^{-26}
2	J1747-2809		5310	1.56×10^{-13}	0.141	0.045	1.88	0.03	5.8×10^{-26}	1.6×10^{-26}
3	J0205+6449		5370	1.94×10^{-13}	0.138	0.045	1.88	0.04	6.9×10^{-26}	2×10^{-26}
4	J1813-1749		5600	1.27×10^{-13}	0.125	0.046	1.89	0.04	4×10^{-26}	1.3×10^{-26}
5	J1617-5055		8130	1.35×10^{-13}	0.01	0.047	1.99	0.05	2.7×10^{-27}	1.2×10^{-26}
6	J2022+3842		8940	8.61×10^{-14}	-0.019	0.047	2.02	0.05	-3×10^{-27}	7.4×10^{-27}
7	J1418-6058		10300	1.69×10^{-13}	-0.063	0.046	2.07	0.05	-1.7×10^{-26}	1.4×10^{-26}
8	J2229+6114	*	10500	7.83×10^{-14}	-0.069	0.046	2.07	0.05	-8.7×10^{-27}	6.3×10^{-27}
9	J0835-4510	*	11300	1.25×10^{-13}	-0.091	0.046	2.1	0.06	-1.8×10^{-26}	9.8×10^{-27}
10	J1844-0346		11600	1.55×10^{-13}	-0.099	0.046	2.11	0.06	-2.3×10^{-26}	1.2×10^{-26}
11	J1420-6048	*	13000	8.32×10^{-14}	-0.134	0.046	2.15	0.06	-1.6×10^{-26}	6.2×10^{-27}
12	J1826-1256	*	14400	1.21×10^{-13}	-0.165	0.045	2.2	0.06	-2.6×10^{-26}	8.6×10^{-27}
13	J1801-2451	*	15500	1.28×10^{-13}	-0.186	0.044	2.23	0.07	-3×10^{-26}	8.8×10^{-27}
14	J1803-2137	*	15800	1.34×10^{-13}	-0.192	0.044	2.24	0.07	-3.2×10^{-26}	9.1×10^{-27}
15	J2021+3651	*	17200	9.57×10^{-14}	-0.217	0.044	2.28	0.07	-2.4×10^{-26}	6.3×10^{-27}
16	J2111+4606		17500	1.43×10^{-13}	-0.222	0.044	2.28	0.07	-3.7×10^{-26}	9.3×10^{-27}

Таблица А4. Продолжение

Nº	Пульсар	HB	<i>tc</i> , год	dP/dt, c/c	S	σs	п	σn	d^2P/dt^2 , c/c ²	$\sigma(d^2P/dt^2)$
17	J1709-4429	*	17500	9.30×10^{-14}	-0.222	0.044	2.28	0.07	-2.4×10^{-26}	6.1×10^{-27}
18	J1907+0602		19500	8.68×10^{-14}	-0.252	0.043	2.34	0.08	-2.4×10^{-26}	5.4×10^{-27}
19	J1048-5832	*	20300	9.63×10^{-14}	-0.264	0.042	2.36	0.08	-2.7×10^{-26}	5.9×10^{-27}
20	J1856+0245	*	20600	6.21×10^{-14}	-0.268	0.042	2.37	0.08	-1.7×10^{-26}	3.8×10^{-27}
21	J1935+2025		20900	6.08×10^{-14}	-0.272	0.042	2.37	0.08	-1.7×10^{-26}	3.7×10^{-27}
22	J1016-5857	*	21000	8.08×10^{-14}	-0.273	0.042	2.38	0.08	-2.3×10^{-26}	4.9×10^{-27}
23	J1826-1334	*	21400	7.53×10^{-14}	-0.278	0.042	2.39	0.08	-2.2×10^{-26}	4.5×10^{-27}
24	J1934+2352		21600	1.31×10^{-13}	-0.281	0.042	2.39	0.08	-3.8×10^{-26}	7.8×10^{-27}
25	J1135-6055		23000	7.93×10^{-14}	-0.298	0.041	2.42	0.08	-2.3×10^{-26}	4.6×10^{-27}
26	J1747-2958	*	25500	6.13×10^{-14}	-0.325	0.04	2.48	0.09	-1.8×10^{-26}	3.4×10^{-27}
27	J1730-3350		26000	8.48×10^{-14}	-0.33	0.04	2.49	0.09	-2.6×10^{-26}	4.6×10^{-27}
28	J2238+5903		26600	9.70×10^{-14}	-0.336	0.04	2.51	0.09	-2.9×10^{-26}	5.2×10^{-27}
29	J1646-4346		32500	1.13×10^{-13}	-0.387	0.038	2.63	0.1	-3.5×10^{-26}	5.6×10^{-27}
30	J0729-1448		35200	1.13×10^{-13}	-0.406	0.037	2.68	0.11	-3.5×10^{-26}	5.4×10^{-27}
31	J1932+1916		35400	9.32×10^{-14}	-0.407	0.037	2.69	0.11	-2.9×10^{-26}	4.4×10^{-27}
32	J1907+0918		38000	9.43×10^{-14}	-0.424	0.037	2.74	0.11	-2.9×10^{-26}	4.3×10^{-27}
33	J1015-5719		38600	5.74×10^{-14}	-0.427	0.036	2.75	0.11	-1.8×10^{-26}	2.6×10^{-27}
34	J1044-5737		40300	5.46×10^{-14}	-0.437	0.036	2.78	0.11	-1.7×10^{-26}	2.4×10^{-27}
35	J1815-1738		40 400	7.79×10^{-14}	-0.438	0.036	2.78	0.11	-2.4×10^{-26}	3.5×10^{-27}
36	J1637-4642		41200	5.92×10^{-14}	-0.442	0.036	2.79	0.12	-1.8×10^{-26}	2.6×10^{-27}
37	J0631+1036		43600	1.05×10^{-13}	-0.455	0.035	2.83	0.12	-3.2×10^{-26}	4.5×10^{-27}
38	J1412-6145		50600	9.87×10^{-14}	-0.486	0.034	2.95	0.13	-2.9×10^{-26}	4×10^{-27}
39	J1702-4128		55100	5.23×10^{-14}	-0.504	0.033	3.02	0.14	-1.5×10^{-26}	2×10^{-27}
40	J1422-6138		55800	9.68×10^{-14}	-0.506	0.033	3.03	0.14	-2.8×10^{-26}	3.7×10^{-27}
41	J1841-0345		55900	5.79×10^{-14}	-0.507	0.033	3.03	0.14	-1.7×10^{-26}	2.2×10^{-27}
42	J0633+0632		59200	7.96×10^{-14}	-0.518	0.033	3.07	0.14	-2.3×10^{-26}	3×10^{-27}
43	J1406-6121		61700	5.47×10^{-14}	-0.526	0.032	3.11	0.14	-1.6×10^{-26}	2×10^{-27}
44	J1938+2213		62000	4.24×10^{-14}	-0.527	0.032	3.11	0.14	-1.2×10^{-26}	1.6×10^{-27}
45	J0248+6021		62400	5.51×10^{-14}	-0.528	0.032	3.12	0.14	-1.6×10^{-26}	2×10^{-27}
46	J1541-5535		62500	7.50×10^{-14}	-0.528	0.032	3.12	0.15	-2.1×10^{-26}	2.8×10^{-27}
47	J1850-0026		67500	3.91×10^{-14}	-0.543	0.032	3.19	0.15	-1.1×10^{-26}	1.4×10^{-27}
48	J1636-4440		70100	4.67×10^{-14}	-0.55	0.031	3.22	0.15	-1.3×10^{-26}	1.6×10^{-27}
49	J1601-5335		73300	6.24×10^{-14}	-0.558	0.031	3.26	0.16	-1.7×10^{-26}	2.1×10^{-27}
50	J2021+4026		76900	5.47×10^{-14}	-0.566	0.031	3.3	0.16	-1.5×10^{-26}	1.8×10^{-27}
51	J1705-3950		83400	6.06×10^{-14}	-0.58	0.03	3.38	0.17	-1.6×10^{-26}	2×10^{-27}
52	J1638-4608		85600	5.15×10^{-14}	-0.584	0.03	3.41	0.17	-1.3×10^{-26}	1.7×10^{-27}
53	J0614+2229		89300	5.94×10^{-14}	-0.591	0.03	3.45	0.18	-1.5×10^{-26}	1.9×10^{-27}
54	J2216+5759		96200	6.90×10^{-14}	-0.603	0.029	3.52	0.19	-1.7×10^{-26}	2.1×10^{-27}
55	J1909+0912		98700	3.58×10^{-14}	-0.607	0.029	3.55	0.19	-8.9×10^{-27}	1.1×10^{-27}
56	J1830-1059		107000	6.00×10^{-14}	-0.619	0.029	3.63	0.2	-1.4×10^{-26}	1.8×10^{-27}
57	J0659+1414		111000	5.50×10^{-14}	-0.625	0.029	3.67	0.2	-1.3×10^{-26}	1.6×10^{-27}
58	J1838-0549		112000	3.34×10^{-14}	-0.626	0.029	3.68	0.2	-7.9×10^{-27}	9.7×10^{-28}
59	J1543-5459		115000	5.20×10^{-14}	-0.63	0.028	3.7	0.21	-1.2×10^{-26}	1.5×10^{-27}
60	J1715-3903		117 000	3.77×10^{-14}	-0.633	0.028	3.72	0.21	-8.8×10^{-27}	1.1×10^{-27}
61	J1643-4505		118000	3.18×10^{-14}	-0.634	0.028	3.73	0.21	-7.4×10^{-27}	9×10^{-28}

Таблица А4. Окончание

N⁰	Пульсар	HB	<i>tc</i> , год	dP/dt, c/c	S	σs	п	σn	d^2P/dt^2 , c/c ²	$\sigma(d^2 P/dt^2)$
62	J1835-0643		120000	4.05×10^{-14}	-0.636	0.028	3.75	0.21	-9.4×10^{-27}	1.1×10^{-27}
63	J1452-5851		121000	5.07×10^{-14}	-0.637	0.028	3.76	0.21	-1.2×10^{-26}	1.4×10^{-27}
64	J1756-2225		122000	5.27×10^{-14}	-0.639	0.028	3.77	0.22	-1.2×10^{-26}	1.5×10^{-27}
65	J1820-1529		139 000	3.79×10^{-14}	-0.656	0.028	3.91	0.23	-8.3×10^{-27}	1×10^{-27}
66	J1327-6400		143000	3.12×10^{-14}	-0.66	0.027	3.94	0.24	-6.7×10^{-27}	8.2×10^{-28}
67	J1903+0925		153000	3.69×10^{-14}	-0.669	0.027	4.02	0.25	-7.7×10^{-27}	9.5×10^{-28}
68	J1908+0909		153000	3.49×10^{-14}	-0.669	0.027	4.02	0.25	-7.3×10^{-27}	8.9×10^{-28}
69	J1916+1225		154000	2.35×10^{-14}	-0.67	0.027	4.03	0.25	-4.9×10^{-27}	6×10^{-28}
70	J1857+0212		164000	4.03×10^{-14}	-0.678	0.027	4.1	0.26	-8.2×10^{-27}	1×10^{-27}
71	J1616-5017		167 000	4.66×10^{-14}	-0.68	0.027	4.12	0.26	-9.4×10^{-27}	1.2×10^{-27}
72	J0954-5430		171000	4.39×10^{-14}	-0.683	0.027	4.15	0.27	-8.8×10^{-27}	1.1×10^{-27}
73	J1156-5707		173000	2.65×10^{-14}	-0.684	0.027	4.17	0.27	-5.3×10^{-27}	6.5×10^{-28}
74	J1827-1446		174000	4.53×10^{-14}	-0.685	0.027	4.17	0.27	-9×10^{-27}	1.1×10^{-27}
75	J1721-3532		176000	2.52×10^{-14}	-0.686	0.027	4.19	0.27	-5×10^{-27}	6.1×10^{-28}
76	J1812-1910		181000	3.77×10^{-14}	-0.69	0.026	4.22	0.27	-7.3×10^{-27}	9.1×10^{-28}
77	J1853+0011		188000	3.35×10^{-14}	-0.694	0.026	4.27	0.28	-6.4×10^{-27}	7.9×10^{-28}
78	J1828-1057		189 000	2.07×10^{-14}	-0.695	0.026	4.27	0.28	-3.9×10^{-27}	4.9×10^{-28}
79	J1825-1446		195000	2.27×10^{-14}	-0.698	0.026	4.31	0.29	-4.3×10^{-27}	5.3×10^{-28}
80	J1853+0056		204000	2.14×10^{-14}	-0.703	0.026	4.37	0.3	-3.9×10^{-27}	4.9×10^{-28}
81	J0622+3749		208000	2.54×10^{-14}	-0.705	0.026	4.39	0.3	-4.6×10^{-27}	5.8×10^{-28}
82	J1305-6203		211000	3.21×10^{-14}	-0.707	0.026	4.41	0.3	-5.8×10^{-27}	7.3×10^{-28}
83	J1735-3258		213000	2.61×10^{-14}	-0.708	0.026	4.42	0.3	-4.7×10^{-27}	5.9×10^{-28}
84	J0905-5127		220000	2.49×10^{-14}	-0.712	0.026	4.47	0.31	-4.4×10^{-27}	5.6×10^{-28}
85	J1003-4747		220000	2.21×10^{-14}	-0.712	0.026	4.47	0.31	-3.9×10^{-27}	4.9×10^{-28}
86	J0857-4424		222000	2.33×10^{-14}	-0.713	0.026	4.48	0.31	-4.1×10^{-27}	5.2×10^{-28}

Таблица А5. То же, что в табл. А1 для пульсаров, классифицированных как тип sub-V. В третьем столбце звездочкой отмечены: пульсар с микроквазарными джетами и объекты, которые находятся в двойных системах или прошли эволюцию в двойной

	Π	C V	4	$ID/I_{\rm constant}$		_		_	2242 42	(27)
JN⊡	Пульсар	5-V	<i>іс</i> , год	<i>aP/at</i> , c/c	S	σs	n	бn	d^2P/dt^2 , c/c ²	$\sigma(d^2P/dt^2)$
1	J1838-0655		22700	4.92×10^{-14}	-0.46	0.05	2.84	0.17	-2.9×10^{-26}	5.8×10^{-27}
2	J1811-1925	*	23300	4.40×10^{-14}	-0.46	0.05	2.85	0.17	-2.5×10^{-26}	5.1×10^{-27}
3	J1410-6132		24800	3.20×10^{-14}	-0.47	0.05	2.88	0.17	-1.8×10^{-26}	3.6×10^{-27}
4	J1524-5625		31800	3.90×10^{-14}	-0.5	0.05	3	0.19	-1.9×10^{-26}	3.7×10^{-27}
5	J1112-6103		32700	3.15×10^{-14}	-0.5	0.05	3.01	0.19	-1.5×10^{-26}	2.9×10^{-27}
6	J1837-0604		33800	4.52×10^{-14}	-0.51	0.05	3.03	0.2	-2.2×10^{-26}	4.1×10^{-27}
7	J0940-5428		42200	3.29×10^{-14}	-0.53	0.05	3.15	0.21	-1.4×10^{-26}	2.6×10^{-27}
8	J1906+0722		49200	3.59×10^{-14}	-0.55	0.05	3.23	0.22	-1.4×10^{-26}	2.6×10^{-27}
9	J1809-1917		51300	2.55×10^{-14}	-0.56	0.05	3.25	0.23	-9.9×10^{-27}	1.8×10^{-27}
10	J1522-5735		51800	3.12×10^{-14}	-0.56	0.05	3.26	0.23	-1.2×10^{-26}	2.2×10^{-27}
11	J1055-6028		53500	2.95×10^{-14}	-0.56	0.04	3.28	0.23	-1.1×10^{-26}	2×10^{-27}
12	J1429-5911		60200	3.05×10^{-14}	-0.57	0.04	3.34	0.24	-1.1×10^{-26}	1.9×10^{-27}
13	J1413-3205		62800	2.77×10^{-14}	-0.58	0.04	3.37	0.25	-9.6×10^{-27}	1.7×10^{-27}

Таблица А5. Продолжение

N⁰	Пульсар	S-V	<i>tc</i> , год	dP/dt, c/c	S	σs	п	σn	d^2P/dt^2 , c/c ²	$\sigma(d^2 P/dt^2)$
14	J1105-6107		63300	1.58×10^{-14}	-0.58	0.04	3.37	0.25	-5.4×10^{-27}	9.8×10^{-28}
15	J1459-6053		64700	2.53×10^{-14}	-0.58	0.04	3.38	0.25	-8.6×10^{-27}	1.5×10^{-27}
16	J1809-2332		67600	3.44×10^{-14}	-0.59	0.04	3.41	0.25	-1.1×10^{-26}	2×10^{-27}
17	J1954+2836		69400	2.12×10^{-14}	-0.59	0.04	3.43	0.26	-6.9×10^{-27}	1.2×10^{-27}
18	J1857+0143		71000	3.12×10^{-14}	-0.59	0.04	3.44	0.26	-1×10^{-26}	1.8×10^{-27}
19	J0359+5414		75200	1.67×10^{-14}	-0.6	0.04	3.47	0.26	-5.2×10^{-27}	9.3×10^{-28}
20	J1828-1101		77100	1.48×10^{-14}	-0.6	0.04	3.49	0.27	-4.5×10^{-27}	8.1×10^{-28}
21	J1928+1746		82600	1.32×10^{-14}	-0.61	0.04	3.53	0.27	-3.9×10^{-27}	7×10^{-28}
22	J1803-2149		86300	1.95×10^{-14}	-0.61	0.04	3.56	0.28	-5.6×10^{-27}	1×10^{-27}
23	J1718-3825		89500	1.32×10^{-14}	-0.61	0.04	3.58	0.28	-3.7×10^{-27}	6.6×10^{-28}
24	J1028-5819		90000	1.61×10^{-14}	-0.61	0.04	3.59	0.28	-4.5×10^{-27}	8.1×10^{-28}
25	J1531-5610		97100	1.37×10^{-14}	-0.62	0.04	3.63	0.29	-3.7×10^{-27}	6.5×10^{-28}
26	J2006+3102		104000	2.49×10^{-14}	-0.63	0.04	3.68	0.3	-6.4×10^{-27}	1.1×10^{-27}
27	J1648-4611		110000	2.37×10^{-14}	-0.63	0.04	3.71	0.31	-5.9×10^{-27}	1×10^{-27}
28	J1732-3131		111000	2.80×10^{-14}	-0.63	0.04	3.72	0.31	-6.9×10^{-27}	1.2×10^{-27}
29	J0908-4913		112000	1.52×10^{-14}	-0.63	0.04	3.73	0.31	-3.7×10^{-27}	6.7×10^{-28}
30	J1906+0746	*	113000	2.03×10^{-14}	-0.63	0.04	3.73	0.31	-4.9×10^{-27}	8.8×10^{-28}
31	J1740+1000		114000	2.15×10^{-14}	-0.63	0.04	3.74	0.31	-5.2×10^{-27}	9.3×10^{-28}
32	J1925+1720		115000	1.05×10^{-14}	-0.64	0.04	3.74	0.31	-2.5×10^{-27}	4.5×10^{-28}
33	J1835-1106		128000	2.06×10^{-14}	-0.64	0.04	3.82	0.33	-4.6×10^{-27}	8.3×10^{-28}
34	J1019-5749		128000	2.01×10^{-14}	-0.64	0.04	3.82	0.33	-4.5×10^{-27}	8.1×10^{-28}
35	J1650-4601		133000	1.51×10^{-14}	-0.65	0.04	3.84	0.33	-3.3×10^{-27}	6×10^{-28}
36	J1105-6037		141000	2.18×10^{-14}	-0.65	0.04	3.88	0.34	-4.6×10^{-27}	8.3×10^{-28}
37	J1052-5954		143000	2.00×10^{-14}	-0.65	0.04	3.89	0.34	-4.2×10^{-27}	7.6×10^{-28}
38	J2240+5832		144000	1.54×10^{-14}	-0.65	0.04	3.9	0.34	-3.2×10^{-27}	5.8×10^{-28}
39	J1833-0827		147000	9.17×10^{-15}	-0.66	0.04	3.91	0.35	-1.9×10^{-27}	3.4×10^{-28}
40	J1913+0904		147000	1.76×10^{-14}	-0.66	0.04	3.91	0.35	-3.6×10^{-27}	6.5×10^{-28}
41	J1138-6207		149 000	1.25×10^{-14}	-0.66	0.04	3.92	0.35	-2.6×10^{-27}	4.6×10^{-28}
42	J1509-5850		154000	9.17×10^{-15}	-0.66	0.04	3.94	0.35	-1.8×10^{-27}	3.3×10^{-28}
43	J1151-6108		157000	1.03×10^{-14}	-0.66	0.04	3.96	0.35	-2×10^{-27}	3.7×10^{-28}
44	J0742-2822		157000	1.68×10^{-14}	-0.66	0.04	3.96	0.35	-3.3×10^{-27}	6×10^{-28}
45	J1739-3023		159000	1.14×10^{-14}	-0.66	0.04	3.97	0.36	-2.2×10^{-27}	4×10^{-28}
46	J1248-6344		186000	1.69×10^{-14}	-0.68	0.04	4.08	0.38	-3×10^{-27}	5.5×10^{-28}
47	J2032+4127	*	201000	1.13×10^{-14}	-0.68	0.04	4.14	0.39	-1.9×10^{-27}	3.5×10^{-28}
48	J0734-1559		203000	1.22×10^{-14}	-0.68	0.04	4.14	0.39	-2×10^{-27}	3.7×10^{-28}
49	J1632-4757		240000	1.51×10^{-14}	-0.69	0.04	4.27	0.42	-2.3×10^{-27}	4.2×10^{-28}
50	J1350-6225		246000	8.88×10^{-15}	-0.7	0.04	4.29	0.42	-1.3×10^{-27}	2.4×10^{-28}
51	J1548-5607		252000	1.07×10^{-14}	-0.7	0.04	4.31	0.43	-1.6×10^{-27}	2.9×10^{-28}
52	J0543+2329		253000	1.54×10^{-14}	-0.7	0.04	4.31	0.43	-2.2×10^{-27}	4.1×10^{-28}
53	J1620-4927		260000	1.05×10^{-14}	-0.7	0.04	4.33	0.43	-1.5×10^{-27}	2.8×10^{-28}
54	J0117+5914		275000	5.85×10^{-15}	-0.7	0.04	4.37	0.44	-8×10^{-28}	1.5×10^{-28}
55	J0535-6935		276000	1.15×10^{-14}	-0.7	0.04	4.38	0.44	-1.6×10^{-27}	2.9×10^{-28}
56	J1922+1733		280000	1.34×10^{-14}	-0.7	0.04	4.39	0.45	-1.8×10^{-27}	3.4×10^{-28}
57	J1757-2421		285000	1.30×10^{-14}	-0.71	0.04	4.4	0.45	-1.7×10^{-27}	3.2×10^{-28}

Таблица А5. Продолжение

N⁰	Пульсар	S-V	<i>tc</i> , год	dP/dt, c/c	S	σs	п	σn	d^2P/dt^2 , c/c ²	$\sigma(d^2 P/dt^2)$
58	J1853-0004		288000	5.57×10^{-15}	-0.71	0.04	4.41	0.45	-7.4×10^{-28}	1.4×10^{-28}
59	J1743-3153		290000	1.06×10^{-14}	-0.71	0.04	4.41	0.45	-1.4×10^{-27}	2.6×10^{-28}
60	J1512-5759		298000	6.85×10^{-15}	-0.71	0.04	4.44	0.46	-8.9×10^{-28}	1.7×10^{-28}
61	J1839-0321		302000	1.25×10^{-14}	-0.71	0.04	4.45	0.46	-1.6×10^{-27}	3×10^{-28}
62	J0002+6216		306000	5.97×10^{-15}	-0.71	0.04	4.46	0.46	-7.6×10^{-28}	1.4×10^{-28}
63	J1359-6038		319 000	6.34×10^{-15}	-0.71	0.04	4.49	0.47	-7.8×10^{-28}	1.5×10^{-28}
64	J1940+2245		323000	1.27×10^{-14}	-0.71	0.04	4.5	0.47	-1.6×10^{-27}	2.9×10^{-28}
65	J1755-2534		330000	1.12×10^{-14}	-0.72	0.04	4.52	0.48	-1.4×10^{-27}	2.6×10^{-28}
66	J1020-6026		330000	6.74×10^{-15}	-0.72	0.04	4.52	0.48	-8.1×10^{-28}	1.5×10^{-28}
67	J0633+1746		342000	1.10×10^{-14}	-0.72	0.04	4.55	0.48	-1.3×10^{-27}	2.5×10^{-28}
68	J1722-3712		345000	1.09×10^{-14}	-0.72	0.04	4.55	0.48	-1.3×10^{-27}	2.4×10^{-28}
69	J1948+2551		345000	9.02×10^{-15}	-0.72	0.04	4.55	0.48	-1.1×10^{-27}	2×10^{-28}
70	J1702-4306		349000	9.79×10^{-15}	-0.72	0.04	4.56	0.49	-1.1×10^{-27}	2.2×10^{-28}
71	J1846+0919		360000	9.93×10^{-15}	-0.72	0.04	4.59	0.49	-1.1×10^{-27}	2.2×10^{-28}
72	J1845-0316		371000	8.86×10^{-15}	-0.72	0.04	4.61	0.5	-9.9×10^{-28}	1.9×10^{-28}
73	J1723-3659		401000	8.01×10^{-15}	-0.73	0.04	4.68	0.51	-8.5×10^{-28}	1.6×10^{-28}
74	J0139+5814		403000	1.07×10^{-14}	-0.73	0.04	4.68	0.52	-1.1×10^{-27}	2.2×10^{-28}
75	J2013+3845		412000	8.85×10^{-15}	-0.73	0.04	4.7	0.52	-9.2×10^{-28}	1.8×10^{-28}
76	J1844-0538		417 000	9.71×10^{-15}	-0.73	0.04	4.71	0.52	-1×10^{-27}	1.9×10^{-28}
77	J1917+1353		428000	7.20×10^{-15}	-0.73	0.04	4.73	0.53	-7.3×10^{-28}	1.4×10^{-28}
78	J0834–4159		432000	4.44×10^{-15}	-0.73	0.04	4.74	0.53	-4.5×10^{-28}	8.6×10^{-29}
79	J1043–6116		440000	1.04×10^{-14}	-0.73	0.04	4.76	0.53	-1×10^{-27}	2×10^{-28}
80	J1841-0425		461000	6.39×10^{-15}	-0.74	0.04	4.8	0.54	-6.1×10^{-28}	1.2×10^{-28}
81	J1907+0345		463000	8.22×10^{-15}	-0.74	0.04	4.8	0.54	-7.9×10^{-28}	1.5×10^{-28}
82	J1913+0832		466000	4.57×10^{-15}	-0.74	0.04	4.8	0.55	-4.4×10^{-28}	8.5×10^{-29}
83	J1320-5359		479 000	9.25×10^{-15}	-0.74	0.04	4.83	0.55	-8.7×10^{-28}	1.7×10^{-28}
84	J1746-3239		482000	6.56×10^{-15}	-0.74	0.04	4.83	0.55	-6.1×10^{-28}	1.2×10^{-28}
85	J0631+0646		486000	3.62×10^{-15}	-0.74	0.04	4.84	0.55	-3.4×10^{-28}	6.5×10^{-29}
86	J2030+3641		488000	6.50×10^{-15}	-0.74	0.04	4.84	0.56	-6×10^{-28}	1.2×10^{-28}
87	J1538-5551		517 000	3.21×10^{-15}	-0.74	0.04	4.89	0.57	-2.8×10^{-28}	5.6×10^{-29}
88	J1835–0944		525000	4.39×10^{-15}	-0.74	0.04	4.91	0.57	-3.9×10^{-28}	7.6×10^{-29}
89	J1816-0755		532000	6.48×10^{-15}	-0.74	0.04	4.92	0.57	-5.6×10^{-28}	1.1×10^{-28}
90	J1057–5226		535000	5.83×10^{-15}	-0.75	0.04	4.92	0.58	-5×10^{-28}	9.9×10^{-29}
91	J2030+4415		555000	6.48×10^{-15}	-0.75	0.04	4.96	0.58	-5.5×10^{-28}	1.1×10^{-28}
92	J1611-5209		560000	5.17×10^{-15}	-0.75	0.04	4.96	0.59	-4.3×10^{-28}	8.6×10^{-29}
93	J1624–4041		563000	4.72×10^{-15}	-0.75	0.04	4.97	0.59	-3.9×10^{-28}	7.8×10^{-29}
94	J0538+2817	*	618000	3.67×10^{-15}	-0.75	0.04	5.05	0.61	-2.9×10^{-28}	5.7×10^{-29}
95	J0358+5413		654000	4.39×10^{-13}	-0.76	0.04	5.1	0.62	-3.3×10^{-28}	6.6×10^{-29}
96	J1115–6052		569000	7.23×10^{-15}	-0.75	0.04	4.98	0.59	-6×10^{-28}	1.2×10^{-28}
97	J1224–6407		692000	4.95×10^{-15}	-0.76	0.04	5.15	0.64	-3.6×10^{-28}	7.2×10^{-29}
98	J2028+3332		576000	4.86×10^{-15}	-0.75	0.04	4.99	0.59	-4×10^{-28}	7.9×10^{-29}
99	J1824—1945		573000	5.23×10^{-15}	-0.75	0.04	4.98	0.59	-4.3×10^{-28}	8.5×10^{-29}
100	J1637—4553		590000	3.19×10^{-13}	-0.75	0.04	5.01	0.6	-2.6×10^{-28}	5.1×10^{-23}
101	J1600-5044		603000	5.06×10^{-15}	-0.75	0.04	5.03	0.6	-4×10^{-28}	8×10^{-29}

Таблица А5. Окончание

Nº	Пульсар	S-V	<i>tc</i> , год	dP/dt, c/c	S	σs	п	σn	d^2P/dt^2 , c/c ²	$\sigma(d^2 P/dt^2)$
102	J1921+0812		622000	5.36×10^{-15}	-0.75	0.04	5.06	0.61	-4.2×10^{-28}	8.3×10^{-29}
103	J1649-4729		720000	6.55×10^{-15}	-0.76	0.04	5.19	0.65	-4.6×10^{-28}	9.3×10^{-29}
104	J1818-1448		725000	6.15×10^{-15}	-0.76	0.04	5.2	0.65	-4.3×10^{-28}	8.7×10^{-29}
105	J1515-5720		745000	6.15×10^{-15}	-0.76	0.04	5.22	0.65	-4.2×10^{-28}	8.6×10^{-29}
106	J1539-5626		795000	4.85×10^{-15}	-0.77	0.04	5.28	0.67	-3.2×10^{-28}	6.5×10^{-29}
107	J1349-6130		802000	5.13×10^{-15}	-0.77	0.04	5.29	0.67	-3.3×10^{-28}	6.8×10^{-29}
108	J1835-1020		810000	5.92×10^{-15}	-0.77	0.04	5.3	0.68	-3.8×10^{-28}	7.8×10^{-29}
109	J0820-3826		810000	2.44×10^{-15}	-0.77	0.04	5.3	0.68	-1.6×10^{-28}	3.2×10^{-29}
110	J1514-5925		818000	2.88×10^{-15}	-0.77	0.04	5.31	0.68	-1.8×10^{-28}	3.8×10^{-29}
111	J1123-6259		819 000	5.25×10^{-15}	-0.77	0.04	5.31	0.68	-3.4×10^{-28}	6.9×10^{-29}
112	J1554-5209		865000	2.29×10^{-15}	-0.77	0.04	5.36	0.69	-1.4×10^{-28}	2.9×10^{-29}
113	J1829-1751		877000	5.55×10^{-15}	-0.77	0.04	5.37	0.7	-3.4×10^{-28}	7×10^{-29}
114	J0737-2202		928000	5.47×10^{-15}	-0.77	0.04	5.43	0.71	-3.2×10^{-28}	6.6×10^{-29}
115	J1530-5327		944000	4.68×10^{-15}	-0.77	0.04	5.44	0.72	-2.7×10^{-28}	5.6×10^{-29}
116	J1837-0559		964000	3.30×10^{-15}	-0.78	0.04	5.46	0.72	-1.9×10^{-28}	3.9×10^{-29}
117	J1913+1145		967000	5.02×10^{-15}	-0.78	0.04	5.47	0.72	-2.9×10^{-28}	5.9×10^{-29}
118	J1924+1639		977000	2.56×10^{-15}	-0.78	0.04	5.48	0.72	-1.4×10^{-28}	3×10^{-29}
119	J1905+0902		988000	3.50×10^{-15}	-0.78	0.04	5.49	0.73	-2×10^{-28}	4.1×10^{-29}
120	J1931+1536		993000	5.01×10^{-15}	-0.78	0.04	5.49	0.73	-2.8×10^{-28}	5.8×10^{-29}

Таблица Аб. То же, что в табл. А1 для пульсаров, классифицированных как тип LB

N⁰	Пульсар	<i>tc</i> , год	<i>dP/dt</i> , c/c	S	σs	п	σn	d^2P/dt^2 , c/c ²	$\sigma(d^2P/dt^2)$
1	J0537-6910	4930	5.18×10^{-14}	-0.262	0.049	2.48	0.09	-5.9×10^{-26}	1.5×10^{-26}
2	J1400-6325	12700	3.89×10^{-14}	-0.288	0.084	3.37	0.17	-2×10^{-26}	8.1×10^{-27}
3	J1849-0001	42900	1.42×10^{-14}	-0.319	0.098	5.22	0.21	-2.5×10^{-27}	1.1×10^{-27}
4	J1813-1246	43400	1.76×10^{-14}	-0.319	0.098	5.24	0.21	-3×10^{-27}	1.4×10^{-27}
5	J1952+3252	107000	5.84×10^{-15}	-0.34	0.095	7.17	0.22	-4.4×10^{-28}	1.9×10^{-28}
6	J1437-5959	114000	8.59×10^{-15}	-0.341	0.095	7.32	0.22	-6.2×10^{-28}	2.6×10^{-28}
7	J1101-6101	116000	8.56×10^{-15}	-0.341	0.095	7.37	0.22	-6.1×10^{-28}	2.6×10^{-28}
8	J1831-0952	128000	8.35×10^{-15}	-0.343	0.094	7.61	0.22	-5.4×10^{-28}	2.3×10^{-28}
9	J0855-4644	141000	7.26×10^{-15}	-0.346	0.094	7.85	0.22	-4.3×10^{-28}	1.8×10^{-28}
10	J1913+1011	169 000	3.37×10^{-15}	-0.349	0.092	8.33	0.22	-1.7×10^{-28}	6.9×10^{-29}
11	J1412+7919 Calvera	290000	3.21×10^{-15}	-0.361	0.088	9.86	0.22	-9.9×10^{-29}	3.8×10^{-29}
12	J1623-5005	324000	4.16×10^{-15}	-0.363	0.087	10.2	0.21	-1.2×10^{-28}	4.4×10^{-29}
13	J1302-6350	332000	2.28×10^{-15}	-0.363	0.087	10.3	0.21	-6.2×10^{-29}	2.3×10^{-29}
14	J2043+2740	1.20E+06	1.27×10^{-15}	-0.388	0.077	14.7	0.21	-1.1×10^{-29}	3.4×10^{-30}
15	J1016-5819	1.99E+06	6.98×10^{-16}	-0.397	0.073	16.7	0.2	-3.7×10^{-30}	1.1×10^{-30}
16	J1840-0643	2.56E+06	2.20×10^{-16}	-0.401	0.071	17.8	0.2	-9.1×10^{-31}	2.7×10^{-31}
17	J0106+4855	3.08E+06	4.28×10^{-16}	-0.405	0.07	18.6	0.2	-1.5×10^{-30}	4.4×10^{-31}
18	J1845-0743	4.52E+06	3.67×10^{-16}	-0.411	0.068	20.3	0.19	-9×10^{-31}	2.5×10^{-31}

БЛАГОДАРНОСТИ

Работа выполнена с использованием данных австралийского пульсарного каталога ATNF (http//www.atnf.csiro.au/research/pulsar/psrcat/). Автор благодарит В.М. Малофеева, Р.Д. Дагкесаманского, Г.С. Царевского, Б.В. Комберга, Г.Т. Смирнова и Б.Я. Лосовского за полезные обсуждения по теме статьи, советы и замечания по тексту, а также Л.А. Соловьеву за неоценимую помощь в подготовке рукописи статьи.

ФИНАНСИРОВАНИЕ

Работа была частично поддержана программой фундаментальных исследований Отделения физических наук РАН "Активные процессы в галактических и внегалактических объектах".

СПИСОК ЛИТЕРАТУРЫ

- 1. V. M. Kaspi, Proc. Natl Acad. Sci. 107, 7147 (2010).
- 2. A. K. Harding, Front. Phys. 8, 679 (2013).
- O. Kargaltsev, G. G. Pavlov, and G. P. Garmire, Astrophys. J. 660, 1413 (2007).
- 4. A. Possenti, Astron. and Astrophys. 387, 993 (2002).
- J. W. T. Hessel, D. J. Nice, and B. M. Gaensler, Astrophys. J. 682, L41 (2008).
- 6. E. V. Gotthelf, J. P. Halpern, and J. Alford, Astrophys. J. 765, 58 (2013).
- 7. C. M. Espinoza, A. G. Lyne, and B. W. Stappers, Monthly Not. Roy. Astron. Soc. **446**, 147 (2017).
- 8. *M. Vivekanand and R. Narayan*, J. Astron. and Astrophys. **2**, 315 (1981).
- 9. *E. S. Phinney and R. D. Blandford*, Monthly Not. Roy. Astron. Soc. **194**, 137 (1981).
- 10. A. P. Igoshev and S. B. Popov, Monthly Not. Roy. Astron. Soc. 444, 1066 (2014).
- 11. В. С. Бескин, Усп. физ. наук 61, 353 (2018).
- 12. Р. Манчестер, Дж. Тейлор Пульсары (М.: Мир, 1980).
- 13. *M. A. Ruderman and P. G. Sutherland*, Astrophys. J. **196**, 51 (1975).
- 14. *T. M. Tauris and S. Konar*, Astron. and Astrophys. **376**, 543 (2001).
- 15. S. Dall'Osso, J. Granot, and T. Piran, Monthly Not. Roy. Astron. Soc. **422**, 2878 (2012).
- A. Rogers and S. Safi-Harb, Monthly Not. Roy. Astron. Soc. 465, 383 (2017).
- 17. D. Vigano, N. Rea, J. A. Pons, R. Perna, et al., Monthly Not. Roy. Astron. Soc. **434**, 123 (2013).
- 18. S. Johnston and A. Karastergiou, Monthly Not. Roy. Astron. Soc. 467, 3493 (2017).

- 19. *R. N. Manchester, J. M. Durdin, and L. M. Newton*, Nature **313**, 374 (1985).
- 20. *R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs,* Astron. J. **129**, 1993 (2005).
- 21. S. A. Olausen and V. M. Kaspi, Astrophys. J. Suppl. 212, 6 (2014).
- C.-Y. Ng and V. M. Kaspi, in Astrophysics of Neutron Stars 2010, eds E. Göğüş, T. Belloni and Ü. Ertan (Melville, NY: AIP), AIP Conf. Proc. 1379, 60 (2011).
- 23. C. M. Tan, C. G. Bassa, S. Cooper, et al., Astrophys. J. 866, 54 (2018).
- 24. J. P. Halpern and E.V. Gotthelf, Astrophys. J. 812, 61 (2015).
- 25. А. П. Глушак, Астрон. журн. 91, 9 (2014).
- 26. *B. Dinçel, R. Neuhäuser, S. K. Yerli, et al.*, Monthly Not. Roy. Astron. Soc. **448**, 3196 (2015).
- 27. A. P. Igoshev, Monthly Not. Roy. Astron. Soc. 482, 3415 (2019).
- 28. Z. F. Gao, N. Wang, H. Shan, X. D. Li, et al., Astrophys. J. 849, 19 (2017).
- 29. Z. F. Gao, X.D. Li, N. Wang, et al., Monthly Not. Roy. Astron. Soc. 456, 55 (2016).
- 30. J. M. Yao, R. N. Manchester, and N. Wang, Astrophys. J. 835, 29 (2017).
- 31. *R. Nakamura, A. Bamba, M. Ishida, et al.*, Publ. Astron. Soc. Japan **61**, S197 (2009).
- 32. *M. Sasaki, P. P. Plucinsky, T. J. Gaetz, and F. Bocchino.* Astron. and Astrophys. **552**, A45 (2013).
- 33. W. W. Tian and D. A. Leahy, Astrophys. J. 677, 292 (2008).
- 34. *R. F. Archibald, E. V. Gotthelf, R. D. Ferdman, et al.*, Astrophys. J. **819**, L16 (2016).
- S. P. Reynolds, K. J. Borkowski, and P. H. Gwynne, Astrophys. J. 856, 133 (2018).
- 36. *W. C. G. Ho*, Monthly Not. Roy. Astron. Soc. **452**, 845 (2015).
- 37. *L. Ferrario and D. Wickramasinghe*, Monthly Not. Roy. Astron. Soc. **389**, L66 (2008).
- 38. F. Crawford and C. L. Tiffany, Astron. J. 134, 1231 (2007).
- R. P. Mignani, A. de Luca, N. Rea, et al., Monthly Not. Roy. Astron. Soc. 430, 1354 (2013).
- 40. A. Danilenko, A. Kirichenko, R. E. Mennickent, et al., Astron. and Astrophys. **540**, A28 (2012).
- 41. *R. P. Mignani, M. Razzano, P. Esposito, et al.*, Astron. and Astrophys. **543**, A130 (2012).
- 42. B. Zhang and A. K. Harding, Astrophys. J. 533, 1150 (2000).
- 43. *K. J. Lee, L. Guillemot, Y. L. Yue, et al.*, Monthly Not. Roy. Astron. Soc. **424**, 2832 (2012).
- 44. O. Pejcha and T.A. Thompson, Astrophys. J. 801, 90 (2015).