УДК 524.882

СРАВНЕНИЕ ПРОСТРАНСТВЕННЫХ СВОЙСТВ ВХОДОВ В ЧЕРНЫЕ ДЫРЫ И КРОТОВЫЕ НОРЫ

© 2021 г. И. Д. Новиков^{1, 2, 3}, С. В. Репин^{1, *}

¹ Физический институт им. П.Н. Лебедева РАН, Астрокосмический центр, Москва, Россия
² The Niels Bohr International Academy, The Niels Bohr Institute, Copenhagen, Denmark
³ Национальный исследовательский центр "Курчатовский институт", Москва, Россия

**E-mail: repinsv@lebedev.ru* Поступила в редакцию 30.06.2020 г. После доработки 30.08.2020 г. Принята к публикации 30.08.2020 г.

Проведено сравнение пространственных свойств входов в сферически-симметричные черные дыры, кротовые норы с нулевой и положительной массами. Свойства изучались с точки зрения балка и браны. Найдены конкретные выражения для входов и показано, что в обоих представлениях пространственные воронки входов в кротовые норы наиболее крутые у Шварцшильдовских черных дыр, и наименее крутые у кротовых нор с нулевой массой.

DOI: 10.31857/S0004629920330026

1. ВВЕДЕНИЕ

Целью настоящей работы является выяснение отличий между геометрическими пространственными свойствами окрестности различных релятивистских объектов в рамках обшей теории относительности (ОТО). Следует подчеркнуть, что эти отличия не ведут прямо к различию в видимости этих объектов внешним наблюдателем. Дело в том, что различие в видимости связано не только с различием пространственных свойств этих объектов, но, в еще большей степени, с различием в траекториях лучей света в различных гравитационных полях вокруг этих тел. Мы исследуем эти вопросы в наших других работах (см., напр., [1-4)). Они разбираются также в многочисленных работах других авторов (см., напр., [5–8]). Тем не менее отличия пространственных свойств важны по следующим причинам: 1) для анализа физических процессов вблизи входов; 2) в релятивистской теории так же, как в нерелятивистской теории, свойства процессов зависят от геометрических свойств отверстий, в которые происходит течение; 3) с точки зрения принципиальной возможности отличить эти объекты друг от друга чисто геометрическим путем, не привлекая для этого гравитацию, свет и другие процессы. Полученные отличия можно будет в будущем использовать как дополнительные критерии в наблюдательных проявлениях этих объектов.

Все расчеты в статье выполнены при G = 1, c = 1.

2. ОБЪЕКТЫ В ГИПЕРПРОСТРАНСТВЕ (БАЛКЕ)

В этом разделе мы рассмотрим релятивистские объекты в гиперпространстве.

Рассмотрим сферически-симметричные черные дыры (ЧД). Определим форму поверхности вращения в трехмерном балке, внутренняя геометрия которой в бране (в нашей Вселенной) совпадает с двумерной геометрией экваториальной "плоскости" ЧД. Определение и описание терминов "балк" и "брана" даны работе [6]. Как показано в [9], эта поверхность вращения в цилиндрических координатах (r, φ, z) в балке есть

$$z_{\rm S} = 2\sqrt{r_g(r-r_g)},\tag{1}$$

где $r_g = 2m$ — гравитационный радиус. Она соответствует двумерной метрике экваториального сечения ЧД. В полярных координатах в бране (в нашей Вселенной)

$$dl^{2} = \left(1 - \frac{r_{g}}{r}\right)^{-1} dr^{2} + r^{2} d\varphi^{2}.$$
 (2)

Найдем теперь аналогичную форму поверхности для кротовой норы (КН) Эллиса–Бронникова–Морриса–Торна [10–13]. Эта модель КН наиболее часто используется в теоретической астрофизике. Ее метрика в двумерной бране есть

$$dl^{2} = d\rho^{2} + (\rho^{2} + q^{2})d\phi^{2}, \qquad (3)$$

Рис. 1. Поверхность вращения для кротовой норы Морриса-Торна.

где $-\infty < r < \infty$, q — радиус горловины, или в нужной для нас форме

$$dl^{2} = \frac{r^{2}}{r^{2} - q^{2}} dr^{2} + r^{2} d\varphi^{2}.$$
 (4)

Для поверхности вращения в балке в цилиндрических координатах имеем:

$$dl^{2} = dr^{2} + dz^{2} + r^{2}d\phi^{2} =$$

= $dr^{2}\left(1 + \left(\frac{dz}{dr}\right)^{2}\right) + r^{2}d\phi^{2}.$ (5)

Сравнивая (4) и (5), получаем дифференциальное уравнение

$$1 + \left(\frac{dz}{dr}\right)^2 = \frac{r^2}{r^2 - q^2} \tag{6}$$

или

$$\frac{dz}{dr} = \pm \sqrt{\frac{r^2}{r^2 - q^2} - 1}.$$
 (7)

Решение его есть:

$$z_{\rm Th} = \pm q \ln \left(r + \sqrt{r^2 - q^2} \right) + z_0.$$
 (8)

Полагая $z_0 = 0$, получаем выражение для верхней и нижней половины поверхностей вращения, каждая из которых соответствует своему выходу из кротовой норы (см. рис. 1).

Напомним, что в метрике КН_{тh} нигде нет гравитационных ускорений, в том числе и вне выходов из KH_{Th} . Это означает, в частности, что эквивалентная масса каждого из входов равна нулю, m = 0.

Сравним входы в ЧД и КН_{тh}. Они описываются поверхностями, получающимися при вращении вокруг z = 0 кривых z_s (1) и z_{Th} (8). Обе поверхности стремятся стать горизонтальными при $r \to \infty$. Однако при любом конечном r они отличаются от плоскости, а геометрия на них – от эвклидовой. Степень отличия при данном r может быть охарактеризована отличием разности dlдлин двух близких окружностей $r_1 = \text{const}$ и $r_2 = \text{const}$ от $2\pi dr$, где $r_2 = r_1 + dr$,

$$\frac{dl}{dr} = \frac{2\pi}{\sqrt{g_{11}}},\tag{9}$$

где g₁₁ — метрический коэффициент соответствующих метрик. Для нашего случая

$$(g_{11})_{\rm S} = \left(1 - \frac{r_g}{r}\right)^{-1},$$
 (10)

$$(g_{11})_{\rm Th} = \frac{r^2}{r^2 - q^2}.$$
 (11)

При $r \to \infty$ имеем, соответственно

$$(g_{11})_{\rm S} = 1 + \frac{r_g}{r},\tag{12}$$

$$(g_{11})_{\rm Th} = 1 + \frac{q^2}{r^2}.$$
 (13)

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 98 № 1 2021

Рис. 2. Поверхность вращения для кротовой норы Морриса–Торна (верхняя кривая) и ЧД (нижняя кривая).

Будем считать "дном" пространственной воронки, которую мы исследуем, $r = r_g$ для ЧД и r = q для КН. Обе кривые (1) и (8) стремятся к $z \to \infty$, когда $r \to \infty$. Однако мы можем считать нашу брану практически плоской для достаточно больших r, когда (12), (13) достаточно малы. При $r_g = q$ определяющим условием малости является малость

$$\frac{r_g}{r} \equiv \alpha \ll 1. \tag{14}$$

Для достаточно больших r ясно, что в астрофизике свойства пространства будут определяться наличием других объектов или процессов. Выводы качественно не зависят от конкретных значений α . Поэтому положим

$$\alpha = \alpha_0 = 10^{-1}.\tag{15}$$

Сравним теперь воронки в балке для ЧД и KH_{Th} . Для этого положим для $\alpha = \alpha_0$ значения $z_S = z_{Th}$ и продолжим кривые для меньших *r* вплоть до $r = r_g = q$. Положим соответствующие значения z_S , $z_S = 0$. Графики изображены на рис. 2.

Сравнение (10) и (11) при $r_g = q$ показывает, что искажение эвклидовости геометрии при продвижении от больших *r* к входам происходит более плавно для КН, чем для ЧД, а рис. 2 показывает, что воронка ЧД является более "глубокой", чем в случае КН. Чтобы исключить недоразумения, напомним, что формально поверхность барна в случае ЧД обрывается при $r = r_g$, в то время как в случае КН после достижения r = q поверхность продолжается к другому выходу из КН (см. рис. 1).

Обратимся теперь к случаю КН с массой $m \neq 0$. Такая модель была рассмотрена Эллисом [11] (см. также [14]). Пространственная метрика кротовой норы с массой m^* :

$$dl^{2} = e^{E(\rho)}d\rho^{2} +$$

+ $e^{E(\rho)}(\rho^{2} + n^{2} - m^{2})(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}),$ (16)

где

$$E(\rho) = \frac{2m}{\sqrt{n^2 - m^2}} \left(\frac{\pi}{2} - \arctan\frac{\rho}{\sqrt{n^2 - m^2}}\right).$$
(17)

Здесь *n* и *m* — положительные константы. Величина *n* характеризует напряженность скалярного поля, а *m* есть эффективная масса *m*^{*}, когда $\rho \rightarrow \infty$, $m \equiv m^*$. В разобранном выше примере (3) $m^* = 0, q = n$.

Та же метрика в экваториальной "плоскости" $\theta = \pi/2$:

$$dl^{2} = e^{E(\rho)}d\rho^{2} + e^{E(\rho)}(\rho^{2} + n^{2} - m^{2})d\phi^{2}.$$
 (18)

Если ввести обозначение:

$$r^{2} = (\rho^{2} + n^{2} - m^{2})e^{E(\rho)}, \qquad (19)$$

то функция $r(\rho)$ описывает форму туннеля KH_{El} в координатах ρ . Координата ρ часто используется

Рис. 3. Зависимость *r*(р) для кротовой норы с ненулевой массой.

в теоретических работах, но она не имеет прямого физического смысла. Величина *r* как функция физической радиальной координаты рассмотрена в разделе 3. В качестве примера функция $r(\rho)$ при параметрах m = 1, $n = \sqrt{2}$ показана на рис. 3. Она изображает форму туннеля KH_{E1} . Входы KH_{E1} расположены при $\rho \rightarrow \pm \infty$. В отличие от случая m = 0 здесь нет симметрии между правым и левым. Выход $\rho \rightarrow \infty$ соответствует $m^* > 0$, а выход $\rho \rightarrow -\infty$ соответствует $m^* < 0$. В этой работе мы будем рассматривать только правую ветвь, $m^* > 0$.

Метрику в экваториальной плоскости КН_{ЕІ} можно записать в виде:

$$dl^{2} = \frac{\rho^{2} + n^{2} - m^{2}}{\left(\rho - m\right)^{2}} dr^{2} + r^{2} d\varphi^{2}.$$
 (20)

Функция $r(\rho)$ имеет минимум при $\rho = m$. Величина r(m), т.е. размер горловины, изменяется от r(m) = n до r(m) = en, когда m пробегает значения от 0 до n. По порядку величины размер горловины всегда равен n. Подчеркнем, что размер горловины определяется в основном n, мало зависит от m и всегда $r(m) > 2m^* \equiv r_g$.

Представим теперь вид KH_{El} в балке, как мы делали это выше для KH_{Th} . Поступая аналогично, получаем для $z_{El}(r)$ функцию, найденную численно при m = 1, $n = \sqrt{2}$ и представленную на рис. 4.

Форма качественно похожа на рис. 1, только горловина смещена вправо и вверх. На рис. 4 горловине соответствует точка поворота кривой. Ветвь, идущая вниз направо, уходит ко второму выходу. Попытки продолжить решение для $z_{\rm FI}(r)$ приводят к мнимым значениям для интеграла $z(\rho)$ для $\rho < 0$ и z < 0. Формально это означает невозможность поместить фигуру вращения в плоский трехмерный балк (r, z, ϕ) . Удивляться этому не приходится, ибо, как мы знаем, эта вторая ветвь ведет к выходу с отрицательной массой *m*^{*} < 0. Это означает, что вдали от выхода метрика должна соответствовать решению Шварцшильда с отрицательной массой. Но из формулы (1) видно, что для $z_{\rm S}$ при $r_{\rm g} < 0$ и r > 0 получаются мнимые значения, т.е. такая брана не может быть вложена в трехмерный плоский балк.

Возвращаясь к правому входу с $m^* > 0$, сравним его со входом в ЧД. Будем считать, что r_g равно размеру горловины r(m). Выше мы видели, что $r(m) > 2m^*$. Асимптотика отклонений от эвклидовой геометрии здесь определяется для обоих случаев КН_{Е1} и ЧД величиной массы. Поэтому

$$r_g = r(m) > 2m^*$$
. (21)

Значит, в случае KH_{El} , как и в случае с KH_{Th} , при переходе от больших *r* к входам искажение эвклидовости нарастает медленнее у KH_{El} , чем у ЧД.

Рис. 4. Зависимость *z*(*r*) для кротовой норы с отличной от нуля массой.

Рис. 5. Зависимость *r*(*l*) для метрики Шварцшильда. Расстояние *l* отсчитывается от гравитационного радиуса.

3. РЕЛЯТИВИСТСКИЕ ОБЪЕКТЫ В БРАНЕ

Обратимся теперь к свойствам пространства отверстий, оставаясь в трехмерной бране (в нашем случае в двумерном экваториальном сечении браны). Определим физическое радиальное расстояние от гравитационного радиуса r_g до точки с координатой r (в единицах r_g):

$$l_{\rm S} = \int_{1}^{r} \sqrt{g_{11_{\rm S}}} dr = \sqrt{r(r-1)} + \frac{1}{2} \ln(2r + 2\sqrt{r(r-1)} - 1).$$
(22)

Нас интересует зависимость $r_{S}(l_{S})$. Эта обратная функция неявно определяется формулой (22). Соответствующий график дан на рис. 5.

Рис. 6. Зависимость r(l) для метрики Морриса—Торна. Расстояние l отсчитывается от горловины, где r = q.

Рис. 7. Зависимость r(l) для метрики Эллиса. Расстояние l отсчитывается от горловины, где $r = r_{\min}$.

Аналогичное выражение для метрики Морриса—Торна для физического расстояния от горловины r = q (в единицах q): График обратной функции $r = r(l_{Th}) = \sqrt{l^2 + q^2}$ дан на рис. 6.

$$l_{\rm Th} = \sqrt{r^2 - q^2}.$$
 (23)

Наконец, обратимся к метрике Эллиса (16), (17). Для выхода из КН с *m* > 0 расстояние от гор-

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 98 № 1 2021

Рис. 8. Зависимость r(l) для всех рассмотренных метрик. Для сравнения значения l(r) приняты одинаковыми при r = 10.

ловины *r*_{min} до точки с координатой *r* записывается в виде:

$$l_{\rm El} = \int_{r_{\rm min}}^{r} \sqrt{\frac{\rho^2 + n^2 - m^2}{\left(\rho - m\right)^2}} dr.$$
 (24)

Величина *г* является неявной функцией ρ , r_{\min} соответствует $\rho = m$. Для нашего примера $n = \sqrt{2}$, m = 1. При этом $r_{\min} = 3.10176639383$. Мы будем все расстояния выражать в единицах r_{\min} . Величина r(l) изображена на рис. 7.

На рис. 8 показаны l(r) для всех трех случаев. При этом значения r при l = 10 положены равными. Рисунок показывает, что при продвижении от r = 10 к входам искажение эвклидовости быстрее всего происходит для метрики Шварцшильда и медленнее всего для метрики Морриса—Торна.

4. ЗАКЛЮЧЕНИЕ

Отметим прежде всего, что обычный способ описывать и изображать входы в ЧД и КН как практически очень похожие не вполне корректен. Оба метода визуализации входов и в балке, и в бране показывают существенную разницу между метриками. Наиболее крупная воронка у метрики Шварцшильда. Указанную разницу следует учитывать при описании процессов у входов в ЧД и КН.

ФИНАНСИРОВАНИЕ

Работа выполнена при частичной поддержке программы РАН КП19-270 "Вопросы происхождения и эволюции Вселенной с применением методов наземных наблюдений и космических исследований".

БЛАГОДАРНОСТИ

С.Р. выражает свою благодарность Р.Е. Бересневой, О.Н. Суменковой и О.А. Косаревой за возможность плодотворно работать над настоящей задачей.

СПИСОК ЛИТЕРАТУРЫ

- 1. Я. Б. Зельдович, И. Д. Новиков, Релятивистская астрофизика (М.: Наука, 1967).
- 2. V. Frolov and I. Novikov, Black Hole Physics. Basic Concepts and New Developments (Kluwer Academic Publishers, 1998).
- 3. *И. Д. Новиков, Н. С. Кардашев, А. А. Шацкий*, Успехи физ. наук **177**, 1017 (2007).
- 4. S. V. Repin, D. A. Kompaneets, I. D. Novikov, and V. A. Mityagina, arXiv:1802.04667 [gr-qc] (2018).
- 5. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (San Francisco: Freeman and Company, 1973).
- 6. К. Торн, Интерстеллар, наука за кадром (М.: ИД Манн, Иванов и Фербер, 2015).
- 7. *R. Shaikh and S. Kar*, Phys. Rev. D **96**, id. 044037 (2017), arXiv:1705.11008 [gr-qc].
- 8. *N. Tsukamoto*, Phys. Rev. D **101**, id. 104021 (2020), arXiv:2004.00822v2 [gr-qc].
- 9. Л. Д. Ландау, Е. М. Лифшиц, Теория поля (М.: Физматлит, 2012).
- M. S. Morris and K. S. Thorne, American J. Physics 56, 395 (1988).
- 11. H. Ellis, J. Math. Phys. 14, 104 (1973).
- 12. K. A. Bronnikov, G. Clément, C. P. Constantinidis, and J. C. Fabris, Phys. Letters A 243 (3), 121 (1998).
- 13. K. A. Bronnikov, Acta Phys. Pol. 84, 251 (1973).
- 14. A. G. Doroshkevich, N. S. Kardashev, D. I. Novikov, and I. D. Novikov, Astron. Rep. **52**, 616 (2008).