УДК 524.47

СВОЙСТВА ЗВЕЗДНЫХ НАСЕЛЕНИЙ ВОСЬМИ ГАЛАКТИЧЕСКИХ ШАРОВЫХ СКОПЛЕНИЙ С НИЗКОЙ ЦЕНТРАЛЬНОЙ ПОВЕРХНОСТНОЙ ЯРКОСТЬЮ

© 2021 г. М. Е. Шарина^{1,*}, М. И. Маричева¹

¹ Специальная астрофизическая обсерватория РАН, Нижний Архыз, Россия

**E-mail: sme@sao.ru* Поступила в редакцию 30.11.2020 г. После доработки 27.01.2021 г. Принята к публикации 29.01.2021 г.

Представлены результаты анализа спектров суммарного излучения восьми шаровых скоплений Галактики с относительно низкой светимостью и звездной плотностью: Palomar 1, Palomar 2, Palomar 10, Palomar 13, Palomar 14, NGC 6426, NGC 6535 и NGC 6749. Измерены абсорбционные спектральные индексы в Ликской системе в их спектрах, а также спектрах ярких скоплений: NGC 7006, NGC 6229, NGC 6779, NGC 6205, NGC 6341 и NGC 2419. Определены возраст, металличность и приблизительное содержание элементов ослования. Материалом работы послужили архивные наблюдательные данные 1.93-м телескопа обсерватории Верхнего Прованса. Для семи из восьми объектов найдены галактические аналоги с близкими значениями Ликских индексов в пределах ошибок их определения. Совпадение значений Ликских индексов означает сходство возраста и химического состава. Имеющиеся литературные данные подтверждают наши выводы о сходстве свойств звездных населений скоплений. Оказалось, что объекты исследования, как правило, принадлежат тем же подсистемам Галактики, что и их аналоги, согласно литературным данным о пространственном положении и движении объектов. Не найдено шаровых скоплений с полным набором Ликских индексов, сходным с таковым у Palomar 1, что свидетельствует в пользу литературных выводов о его возможном внегалактическом происхождении. Наша фотометрия звезд на снимках из архива VLT и данные Gaia DR3 позволили оценить металличность, возраст, избыток цвета и расстояние для Palomar 10. Проанализированы данные Gaia DR3 для NGC 6426.

DOI: 10.31857/S0004629921060062

1. ВВЕДЕНИЕ

Детальное изучение свойств звездных населений шаровых скоплений важно для объяснения процессов формирования и химической эволюции этих объектов и для понимания процессов нуклеосинтеза и звездной эволюции в ранней Вселенной. Важно такое исследование и для понимания того, как возникли и формировались основные структурные компоненты нашей и других спиральных галактик: диск, гало, балдж. Массовая спектроскопия высокого разрешения слабых звезд в широком диапазоне длин волн остается сложной и трудоемкой задачей. Особую сложность представляет изучение слабых по яркости, далеких от нас объектов, а также скоплений, свет от которых значительно ослаблен поглощением пылью вблизи плоскости Галактики.

Данная работа посвящена исследованию спектров суммарного излучения восьми шаровых скоплений с низкой звездной плотностью, перечень и основные характеристики которых даны в верхней части табл. 1. Пять из восьми скоплений под именем Palomar (далее: Pal) были открыты в работе [1]. В нижней части табл. 1 приведены характеристики семи ярких и компактных скоплений сравнения. Содержание столбцов следующее: (1) порядковый номер; (2) название; (3) прямое восхождение и склонение; (4) избыток цвета; (5) расстояние от Солнца D в кпк; (6) абсолютная визуальная звездная величина; (7) гелиоцентрическая лучевая скорость; (8) центральная поверхностная яркость, исправленная за поглощение света в Галактике; (9) радиус на половине светимости; (10) степень концентрации звезд к центру по закону Кинга $c = \log(r_t/r_c)$; (11) металличность $[Fe/H]^{1}$ в системе Зинн и Вест [3]; (12) HBR = = (B - R)/(B + V + R) – показатель относительного количества звезд в разных частях горизонталь-

¹ Содержание железа в солнечных единицах: [Fe/H] = $\log(N_{\rm Fe}/N_{\rm H}) - \log(N_{\rm Fe}/N_{\rm H})_{\odot}$, где $N_{\rm Fe}/N_{\rm H}$ – отношение концентраций железа и водорода по числу атомов или по массе. Массовые доли водорода X, гелия Y, и металлов Z для Солнца даны в статье [2]; X + Y + Z = 1.

N	Объект	α(2000) h m s	δ(2000) 。, "	E(B-V),mag	<i>D</i> , кпк	$M_{_V},$ mag	<i>V</i> _h , км/с	$\mu_V,$ m/c^2	<i>r</i> _h , пк	с	[Fe/H], dex	HBR
(1)	(2)	(3)		(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
1	Pal 1	03 33 23.0	+79 34 50	0.15	10.9	-2.47	-83 ± 3.3	20.93	2.16	1.60	-0.60	-1.0
2	Pal 2	04 46 05.9	+31 22 51	1.24	27.6	-5.14	-133 ± 57	19.39	5.38	1.45	-1.30	
3	Pal 14	16 11 00.6	+14 57 28	0.04	76.5	-4.95 ^S	77 ± 2.2	25.25	46.1 ^{<i>S</i>}	0.75	-1.62	-1.0
4	NGC 6426	17 44 54.7	+03 10 13	0.36	20.6	-6.69	-162 ± 23	20.09	5.78	1.70	-2.15	0.6
5	NGC 6535	18 03 50.5	-00 17 52	0.34	6.8	-4.75	-215 ± 0.5	21.26	2.67	1.30	-1.79	1.0
6	NGC 6749	19 05 15.3	+01 54 03	1.50	7.9	-6.70	-62 ± 2.9	21.88	2.53	0.83	-1.60	1.0
7	Pal 10	19 18 02.1	+18 34 18	1.66	5.9	-5.79	-32 ± 0.4	22.03	1.70	0.58	-0.10	-1.0
8	Pal 13	23 06 44.4	+12 46 19	0.05	26.0	-2.80^{B}	24 ± 0.5	24.31	9.0 ^{<i>B</i>}	0.68	-1.88	-0.2
9	NGC 2419	07 38 08.5	+38 52 55	0.11	84.2	-9.58	-20 ± 0.8	19.83	21.38	1.40	-2.12	0.86
10	NGC 6205	16 41 41.5	+36 27 37	0.02	7.7	-8.70	-246 ± 0.3	16.80	3.49	1.51	-1.54	0.97
11	NGC 6229	16 46 58.9	+47 31 40	0.01	30.4	-8.05	-154 ± 7.6	16.99	3.19	1.61	-1.43	0.24
12	NGC 6341	17 17 07.3	+43 08 11	0.02	8.2	-8.20	-120 ± 0.1	15.58	2.60	1.81	-2.28	0.91
13	NGC 6779	19 16 35.5	+30 11 05	0.20	10.1	-7.38	-136 ± 0.8	18.06	3.01	1.37	-1.94	0.98
14	NGC 7006	21 01 29.5	+16 11 15	0.05	41.5	-7.68	-370 ± 1.4	18.50	4.59	1.42	-1.63	-0.28
15	NGC 7078	21 29 58.3	+12 10 01	0.10	10.3	-9.17	-107 ± 0.2	14.21	3.03	2.50	-2.26	0.67

Таблица 1. Основные свойства 8 скоплений исследования и 7 ярких объектов сравнения

ной ветви. Данные таблицы взяты в основном из каталога Харриса [4]. Для Pal 14 некоторые данные взяты из [5] (отмечено надстрочным индексом ^S); для Pal 14 – из [6] (индекс ^B). Как видно из таблицы, часть объектов исследования находятся на большом расстоянии от Солнца (Pal 1, Pal 2, Pal 14, NGC 6426, Pal 13), а другие расположены в зоне поглощения света пылью вблизи плоскости Галактики (Pal 2, NGC 6426, NGC 6535, NGC 6749, Pal 10). Для последних показатель поглощения $E(B-V) > 0.3^m$. Общее свойство исследуемых объектов – низкая центральная плотность звезд.

2. ХАРАКТЕРИСТИКА НАБЛЮДАТЕЛЬНЫХ ДАННЫХ И СПОСОБЫ ИХ ОБРАБОТКИ

Материалом для работы послужили архивные наблюдательные данные 1.93-м телескопа обсерватории Верхнего Прованса (ОНР). Наблюдения проводились с помощью спектрографа CARELEC [7]. Использовалась решетка 300 штр./мм со следующими характеристиками: разрешение ~1.78 Å/пиксель и спектральный диапазон 3700– 6800 Å. Размеры длинной щели составляли (5.5' × 2"). Экспозиции калибровочных ламп выполнялись в начале и конце каждой ночи для перевода наблюдаемых спектров в шкалу длин волн. Помимо шаровых скоплений, наблюдались спектрофотометрические стандарты для калибровки световых потоков в энергетические единицы и исправления распределения энергии в спектре в соответствии с кривой спектральной чувствительности. Наблюдались также звезды из списка Worthey [8] для перевода измерений абсорбционных индексов в спектрах скоплений в стандартную Ликскую систему [8–12] и контроля измерений лучевых скоростей шаровых скоплений. Журналы наблюдений шаровых скоплений и стандартных звезд представлены в табл. 2 и 3.

Способы ориентирования щели спектрографа при спектральных наблюдениях каждого скопления представлены на ftp сайте Специальной Астрофизической обсерватории (САО)², согласно номерам позиций в табл. 2. Спектральные наблюдения проводились согласно заранее подготовленным центрам и позиционным углам шели спектрографа в соответствии с координатами звезд – предположительных членов скоплений. Звезды были предварительно отобраны по их звездным величинам и положению на CMD из источников, описанных ниже. По результатам наблюдений, для выбора звезд, входящих в спектры суммарного излучения для всех восьми исследуемых скоплений, кроме Pal 10, использовались следующие литературные сведения. Это данные хаббловской фотометрии Сараджедини

² ftp://ftp.sao.ru/pub/sme/LickIndOHP/PosSlit/

Объект	Дата	$t_{\rm exp}$, c	Позиция щели	FWHM, '
Pal 1	01.12.08	2 × 1200	1	3.5
$S/N \sim 60$		3 × 1200	2	3.5
	02.12.08	2 × 1200	1	3.5
		4 × 1200	3	3.5
Pal 2	01.12.08	3 × 1200	1	3.5
$S/N \sim 70$		3 × 1200	2	3.5
	02.12.08	4 × 1200	3	3.5
	03.12.08	2 × 1800	2	3.5
		2 × 1800	2 (shift)	3.5
Pal 14	07.07.10	5 × 1200	4	2.5
$S/N \sim 40$	08.07.10	4 × 1200	5	2.5
	10.07.10	1200	4	2.5
	11.07.10	1200	4 (f1)	2.5
	11.07.10	2 × 1200	4 (f2)	2.5
	11.07.10	1200	2 (f1)	2.5
NGC 6426	10.07.10	2 × 1200	2	3.5
$S/N \sim 60$		600	4	3.5
NGC 6535	12.07.10	3 × 1200	0	3.5
$S/N \sim 100$				3.5
NGC 6749	11.07.10	1200	1	3
$S/N \sim 65$	12.07.10	1200	1	3
	12.07.10	1200	6	3
Pal 10	07.07.10	3 × 1200	1	3
$S/N \sim 45$	07.07.10	2 × 1200	3	2.5
	08.07.10	2 × 1200	3	2.5
	10.07.10	2 × 1200	5	3.5
	11.07.10	2 × 1200	4	3.5
	11.07.10	1800, 1200	4 (shift)	3.5
Pal 13	01.12.08	2 × 900	1	3.5
$S/N \sim 45$		1800	1	3.5
		3 × 1200	2	3.5
	02.12.08	2 × 1200	1	3.5
		4 × 1200	3	3.5

Таблица 2. Журнал спектральных наблюдений шаровых скоплений со спектрографом CARELEC

Таблица 3. Журнал спектральных наблюдений Ликских стандартов со спектрографом CARELEC

Объект	α(2000) h m s	δ(2000) 。' "	Дата	t _{exp} , c	FWHM ″
HR 5933	15 56 27.2	+15 39 42	07.07.10	2	3.5
			08.07.10	2	3.5
			10.07.10	4	2.5
			12.07.10	10	3.5
HR 6775	18 07 01.5	+30 33 44	08.07.10	5	3.5
			09.07.10	4	3
			11.07.10	4	3
HR 7030	18 41 41.3	+31 37 03	08.07.10	7	3.5
			10.07.10	2	2.5
HR 7914	20 40 45.1	+19 56 08	08.07.10	5	3.5
HR 7977	20 48 56.3	+46 06 51	08.07.10	3	3.5
HR 8020	20 55 49.8	+47 25 04	07.07.10	2	3.5
			08.07.10	3	3.5
HR 8354	21 52 29.9	+28 47 37	07.07.10	2	3.5
HR 8795	23 07 00.3	+09 24 34	08.07.10	2	3.5
HR 8969	23 39 57.0	+05 37 35	08.07.10	2	3.5

Примечание. В столбцах таблицы указаны: название объекта, его координаты, дата наблюдений в формате день-месяц-год, экспозиция и качество звездных изображений (средняя ширина на половине интенсивности профилей звездных изображений).

[6] для Pal 13 в фильтрах g и r фотометрической системы Канадо—Франко-Гавайского телескопа (CFHT), а также звездные величины из 2MASS (Two Micron All-Sky Survey)³ в широкополосных инфракрасных фильтрах, центрированных на длины волн 1.25 мкм (J), 1.65 мкм (H) и 2.15 мкм (Ks). Для Pal 10 мы выполнили фотометрию звезд с использованием прямых снимков из архива VLT (Very Large Telecsope), полученных 18 марта 2006 г. (программа 077.D-0775) в фильтрах V и I широкополосной системы Джонсона—Казинса с ПЗС-камерой инструмента FORS2.

Процесс обработки спектральных наблюдений был аналогичен описанному, например, в статье [15]. Редукция длиннощелевых спектров выполнена с помощью пакетов программ MIDAS [16] и IRAF [17]. Дисперсионное соотношение обеспечивало среднюю точность калибровки длин волн порядка 0.16 Å. Вычитание эмиссионных линий неба выполнено с помощью процедуры IRAF *background*. Одномерные спектры экстрагированы с помощью процедуры IRAF *apsum*. Полученные двумерные спектры в разных поло-

Примечание. В столбцах таблицы указаны: (1) — имя объекта

и отношение сигнала к шуму на пиксель в полученном сум-

марном спектре на длине волны 5000 Å, (2) — дата наблюде-

ний в формате день-месяц-год, (3) — экспозиция, (4) — номер позиции щели и (5) — качество звездных изображений.

и др. [13] в фильтрах V и I широкополосной си-

стемы Джонсона-Казинса для Pal 1, Pal 2,

NGC 6535, фотометрии Хилкер [14] для Pal 14 в

фильтрах B и V той же системы, Брадфорд и др.

³ https://www.ipac.caltech.edu/2mass/

Chip	Координаты (2000)	$t_{\rm exp}$, c	FWHM	Airmass	Zpt	Col. term	k _{ext}	Ap.cor.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	$\alpha = 19^{h}18^{m}02.1^{s}$				Фи	льтр V		
	$\delta=+18^\circ35'58.4''$	30	1.00	2.13	28.075 ± 0.013	0.024 ± 0.003	0.122 ± 0.006	2.46 ± 0.01
		0.3	0.75	2.16	28.075 ± 0.013	0.024 ± 0.003	0.122 ± 0.006	2.69 ± 0.03
					Φи	льтр І		
		30	0.88	2.10	27.678 ± 0.024	0.029 ± 0.006	0.044 ± 0.014	2.26 ± 0.01
		0.3	1.00	2.11	27.678 ± 0.024	0.029 ± 0.006	0.044 ± 0.014	2.03 ± 0.01
2	$\alpha = 19^{h}18^{m}02.1^{s}$				Фи	льтр V		
	$\delta=+18^\circ31'36.6''$	30	0.98	2.13	28.074 ± 0.016	0.110 ± 0.007	0.0143 ± 0.004	2.45 ± 0.03
		0.3	0.97	2.16	28.074 ± 0.016	0.110 ± 0.007	0.0143 ± 0.004	2.62 ± 0.02
					Фи	льтр І		
		30	0.95	2.10	27.683 ± 0.032	0.064 ± 0.020	0.027 ± 0.007	2.28 ± 0.01
		0.3	0.85	2.11	27.683 ± 0.032	0.064 ± 0.020	0.027 ± 0.007	2.08 ± 0.01

Таблица 4. Характеристика прямых снимков Pal 10, полученных на VLT в фильтрах *V* и *I*, и константы перевода из инструментальной в стандартную фотометрическую систему

Примечание. Описание столбцов дано в разделе 3.1.

жениях щели для 8 скоплений исследования представлены на ftp сайте CAO⁴.

3. МЕТОДЫ АНАЛИЗА НАБЛЮДАТЕЛЬНЫХ ДАННЫХ

3.1. Фотометрические данные

Параметры использованных снимков Pal 10 даны в табл. 4: (столбец 2) прямое восхождение и склонение центров для двух чипов ПЗС-снимков; (3) время экспозиции в секундах для снимков в фильтрах; (4) средняя ширина на половине интенсивности профилей звездных изображений в угловых секундах; (5) значение воздушной массы при наблюдениях; (6) нульпункт и (7) цветовой множитель перевода из инструментальной в стандартную фотометрическую систему с сайта ESO⁵; (8) коэффициенты экстинции в соответствующих фильтрах; (9) определенные нами апертурные поправки. Звездная PSF-фотометрия (point spread function) была выполнена в среде MIDAS с использованием пакета программ DAOPHOT II/ALLSTAR [18]. В результате были отобраны звезды, удовлетворяющие следующим критериям по параметрам, характеризующим отклонение реального профиля звездного изображения от модельного : $\chi < 2$ и 0.2 < sharpness < 1. Перевод наблюдаемых звездных величин с стандартную систему Джонсона-Казинса осуществлялся по формуле: $V_{\rm st} = V_{\rm instr} + (V_{\rm instr} - I_{\rm instr}) \times {\rm Col.term} + {\rm Zpt} - {\rm Ap.cor.} +$

 $+ k_{ext} \times Airmass - 2.5 \log(t_{exp})$, где V_{st} , V_{instr} , I_{instr} - звездные величины в соответствующих фильтрах в стандартной и инструментальной системах; остальные величины – из табл. 4.

3.2. Спектральные данные

Для более качественного отбора звезд и групп звезд, входящих в скопления, по спектрам с умеренным разрешением мы определяли лучевые скорости и приблизительные параметры: эффективные температуры T_{eff}, ускорения силы тяжести на поверхности звезд $\log(g)$ и металличности [Fe/H] с помощью программы ULySS⁶ [19, 20] и спектральной звезлной библиотеки ELODIE⁷ [2]. 22]). Эта библиотека содержит звезды с параметрами атмосфер в диапазоне: $T_{\rm eff} = 3100-50\,000$ K, $\log g = -0.25-4.9$, и [Fe/H] = -3-1 dex. Программа ULySS выполняет нелинейную минимизацию разницы между модельным и наблюдаемым спектрами по методу наименьших квадратов, а также нормализацию спектра с учетом уровня псевдоконтинуума и учет функции рассеяния линии спектрографа. Мультипликативные и аддитивные полиномы применяются к наблюдаемому спектру, чтобы привести его в соответствие с модельным спектром. Из анализа же результатов фотометрии звезд, входящих в скопления, в разных фотометрических фильтрах в оптической и

⁴ ftp://ftp.sao.ru/pub/sme/LickIndOHP/Num/

⁵ http://www.eso.org/observing/dfo/quality/FORS2/qc/photcoeff/photcoeffs_fors2.html

⁶ http://ulyss.univ-lyon1.fr

⁷ http://atlas.obs-hp.fr/elodie/; http://ulyss.univ-lyon1.fr/models.html

457

инфракрасной областях длин волн, определялись $T_{\rm eff}$ с помощью калибровочных соотношений из [23, 24]. Данные об атмосферных параметрах отдельных звезд и групп звезд в скоплениях содержатся на ftp сайте CAO⁸.

С помощью полученных спектров суммарного излучения определялись возраст и металличность скоплений путем сравнения измеренных абсорбционных индексов в Ликской системе⁹ [8–12] с соответствующими модельными индексами [25, 26], а также попиксельного сравнения наблюдаемых спектров с модельными и спектрами суммарного излучения ярких галактических шаровых скоплений. Последняя задача решалась с помощью программы ULySS [19, 20] с набором модельных спектров PEGASE.HR [27] с библиотекой звездных спектров ELODIE [21, 22], а также с набором модельных спектров из работы [28], использующей библиотеку звездных спектров Miles [29]. Рисунки сравнения наблюдаемых и модельных спектров даны на ftp сайте CAO¹⁰. Для NGC 6535, интегральный спектр которого получился с высоким отношением сигнал/шум, S/N ~ 100 на пиксель на длине волны $\lambda \sim 5000$ Å, для анализа спектра применялся полход Шариной и др. (см. [30] и ссылки в этой статье), кратко изложенный в разделе 3.2.2.

3.2.1. Измерение абсорбционных спектральных индексов в Ликской системе. Система Ликских абсорбционных индексов применяется для разделения влияния эффектов возраста и металличности на спектры суммарного излучения старых звездных скоплений (возраст порядка и более миллиарда лет). Индексы являются аналогами эквивалентных ширин:

$$EW = \int_{\lambda_1}^{\lambda_2} \left(1 - \frac{F_{I\lambda}}{F_{C\lambda}}\right) d\lambda, \qquad (1)$$

где $F_{I\lambda} = \int_{\lambda_1}^{\lambda_2} F_{\lambda} d\lambda / (\lambda_1 - \lambda_2)$ — средний поток на единицу длины волны в диапазоне длин волн, отведенном для измерения индекса, а $F_{C\lambda}$ — уровень локального континуума, т.е. среднее между средними потоками на единицу длины волны, измеренными в строго фиксированных областях длин волн слева и справа от данного индекса (голубой и красный уровни континуума). Всего индексов 25¹¹ [8, 11]. Индексы, центрированные на молекулярные линии CN₁, CN₂, Mg₁, Mg₂, TiO₁ и TiO₂, измеряются в звездных величинах и вычисляются следующим образом:

⁹ http://astro.wsu.edu/worthey/html/system.html

$$Mag = -2.5 \log \left[\left(\frac{1}{\lambda_1 - \lambda_2} \right) \int_{\lambda_1}^{\lambda_2} \frac{F_{I\lambda}}{F_{C\lambda}} d\lambda \right],$$

где буквенные обозначения идентичны использованным в формуле (1).

3.2.2. Популяционный синтез спектров суммарного излучения скоплений. В случае, если отношение сигнал/шум в спектре суммарного излучения скопления порядка, или больше сотни, то сравниваются нормированные на континуум спектры суммарного излучения скоплений и синтетические спектры, полученные методом популяционного синтеза с применением плоскопараллельных гидростатических моделей атмосфер [31]. Параметры атмосфер задаются изохронами звездной эволюции. Количество звезд в каждой стадии рассчитывается с заданной функцией масс звезд. Метод детально изложен в статье Шариной и др. [30], где продемонстрировано сравнение полученных для 40 шаровых скоплений Галактики содержаний элементов Fe, C, O, Na, Mg, Ca, Ti, Cr и Mn, удельного содержания гелия (Y) и возраста с литературными данными. Согласно результатам сравнения, точность применения метода следующая. Возраст и У оцениваются с точностью примерно соответствующей половине шага используемых моделей звездной эволюции по этим параметрам. Ошибки измерения содержаний: σ [C/Fe] ~ 0.15 dex, σ [O/Fe] ~ 0.35 dex, σ [Na/Fe] ~ 0.2 dex, σ [Mg/Fe] ~ 0.15 dex, σ [Ca/Fe] ~ ~ 0.1 dex, σ [Ti/Fe] ~ 0.2 dex, σ [Cr/Fe] ~ 0.2 dex, σ [Mn/Fe] ~ 0.2 dex, σ [Ba/Fe] ~ 0.3 dex, σ [Sr/Fe] ~ ~ 0.3 dex и о[Fe/H] ~ 0.1 dex. Имеется систематический сдвиг между нашими и литературными оценками δ [Fe/H] ~ -0.2 dex. Причины сдвига и случайных ошибок обсуждаются в статье [30].

3.2.3. Влияние функции масс звезд в скоплении и химсостава на измеренные в спектре суммарного излучения Ликские индексы. В использованных моделях звездных населений [25, 26] абсорбционные спектральные индексы в Ликской системе вычисляются для заданных фиксированных значений возраста, металличности и богатства αэлементами с функцией масс звезд [32] (показатель степени $\alpha = -2.35$). Томас и др. [25, 26] используют полную металличность [Z/H], связанную с содержанием железа [Fe/H] и содержанием элементов α -процесса [α /Fe], формулой: [Z/H] = = [Fe/H] + 0.94[α/Fe] (см. раздел 2.2.2 в статье [25] и ссылки в этом разделе). Содержания α-элементов в моделях [25, 26] используются следующие: $[\alpha/Fe] = 0.0, 0.3 \text{ M} 0.5 \text{ dex.}$

Мы решили проверить, как влияет значение показателя степени функции масс звезд и химический состав на результаты определения Ликских индексов. Посчитав среднее современных наклонов функций масс для шаровых скоплений

⁸ ftp://ftp.sao.ru/pub/sme/LickIndOHP/AtmPar/

Рис. 1. Диагностические диаграммы "возраст—металличность" для Ликских индексов, измеренных в синтетических спектрах, рассчитанных методом [30] с использованием степенной функции масс звезд с показателями степени $\alpha = -2.35$ [32] (слева) и -0.83 (справа). Черным показаны линии одинаковой металличности, красным – одинакового возраста. Приведены индексы скоплений Галактики из [36].

Галактики из статьи [33], получили показатель степени $\alpha = -0.83$. Мы вычислили синтетические спектры суммарного излучения скоплений методом [30] с изохронами [34] и возрастом, металличностью и химсоставом, типичными для шаровых скоплений Галактики с [Fe/H] = -1.6 dex [35]([α/Fe] ~ 0.35 dex). Второй вид химсостава был выбран как у скопления NGC 2808 (см. [30] и ссылки в ней), $[\alpha/Fe] \sim 0.1$ dex. Характерные особенности этого химсостава – пониженные содержания С. О. Mg. Са и Ті и повышенное содержание Na. Результат сравнения Ликских индексов, измеренных в полученных синтетических спектрах, рассчитанных для функций масс звезд с показателями степени -2.35 (слева) и -0.83 (справа) и первым химсоставом, показан на рис. 1. Открытыми кружками на рисунке обозначены индексы для 41 шарового скопления Галактики из [36]. Линиями соединены модельные значения индексов с последовательно меняющимися возрастом и металличностью. Диаграммы на рис. 1 называют диагностическими "возраст-металличность". Они показывают индекс НВ, значение которого в основном определяется возрастом, в зависимости от индекса $[MgFe]' = \sqrt{Mgb} \cdot (0.72Fe5270 + 0.28Fe5335), \text{ pac-}$ считанного с использованием индексов, чувствительных к изменению содержаний Fe и Mg. На рис. 1 видно, что значения модельных индексов мало меняются с изменением функции светимости для низких металличностей и старых возрастов, типичных для шаровых скоплений Галактики. Результаты измерения других Ликских индексов в синтетических спектрах, рассчитанных с двумя функциями масс звезд, представлены на сайте CAO¹². На этом же сайте представлены результаты измерения Ликских индексов в синтетических спектрах, рассчитанных со вторым химсоставом, характерным для NGC 2808. Изменения индексов, измеренных в рассчитанных нами синтетических спектрах, с изменением химсостава близки к таковым в моделях [25, 26].

4. РЕЗУЛЬТАТЫ

4.1. Звездная PSF-фотометрия Pal 10

До нашей работы фотометрии с использованием данных снимков (табл. 4, раздел 3.1) в литературе представлено не было. Результаты фотометрии с указанием звезд, попавших в щель спектрографа, и изохронами [37], описывающими распределение звезд скопления на диаграмме "цвет—звездная величина" (СМD), показаны на рис. 2. Для приведения в соответствие теоретических изохрон наблюдаемой СМD Раl 10 выбраны следующие избыток цвета и расстояние до объек-

та: $E(B - V) = 1.4^m$, D = 7.4 кпк. Цветными кружками на рис. 2 показаны звезды, попавшие в щель в одной из 4 позиций спектрографа. Положение на СМD остальных звезд еще в 3 позициях щели спектрографа, вошедших и не вошедших в спектр

¹²ftp://ftp.sao.ru/pub/sme/LickIndOHP/LickIMF/

Рис. 2. Диаграмма "цвет—звездная величина", полученная для Pal 10 (разделы 3.1, 4.1). Звезды в пределах радиуса 1' от центра скопления показаны большими кружками. Цветными кружками отмечены звезды, попавшие в щель в одной из 4 позиций спектрографа. Красными кружками показаны звезды из их числа, не вошедшие в интегральный спектр.

Розовой и голубой линиями показаны изохроны [37] Z = 0.01, $T = 6 \times 10^9$ лет и Z = 0.016, $T = 6 \times 10^9$ лет соответственно.

суммарного излучения Pal 10, показано на рисунках на ftp сайте SAO¹³. На рис. 2 видно большое число фоновых звезд. Это звезды Главной последовательности (ГП) галактического поля ярче точки поворота ГП Pal 10, красные и голубые гиганты поля, а также звезды Галактики, проецирующиеся на эволюционные ветви скопления. Стоит также отметить, что CMD Pal 10 испытывает большое дифференциальное покраснение, что было замечено впервые в статье Кайслер и др. [38], единственного, помимо нашего, исследования CMD скопления на сегодняшний день. Красная горизонтальная ветвь (ГВ) скопления вытягивается в полосу, параллельную вектору покраснения. Кайслер и др. [38] были определены следующие параметры на основе изображений, полученных с ПЗС-детектором в прямом фокусе СFHT: $E(B - V) = 1.66^m$, D = 5.9 кпк, [Fe/H] = = -0.1 dex. Необходимо отметить, что наша CMD Pal 10 более полна яркими звездами, красными гигантами ярче $V \sim 19^m$, по сравнению с CMD в

[38]. Ни нам, ни Кайслер и др. не удалось достичь фотометрической глубины точки поворота ГП.

Фотометрической глубины точки поворота ГП не достигает и CMD (рис. 3, слева), построенная

¹³ftp://ftp.sao.ru/pub/sme/LickIndOHP/CMDpos

Рис. 3. Диаграммы "цвет–звездная величина" для Pal 10, по результатам фотометрии Gaia DR3 (слева) и нашей (см. рис. 2) с селекцией по собственным движениям согласно [41] и исправленные за дифференциальное покраснение (см. раздел 4.1). Звезды в центральной 20" зоне объекта показаны большими черными кружками. Нанесены изохроны из [42] с параметрами, отмеченными на рисунке.

нами по данным третьего релиза миссии Gaia (см. [39, 40] и ссылки в этих статьях) с отбором по собственным движениям, сделанным по предписаниям в [41]: -4.55 < pmra < -4.18, -7.55 < pmdec < -6.98 mas/yr. Положение звезд на CMD скорректировано за дифференциальное покраснение света методом Кайслер и др. [38]. Результаты нашей фотометрии на снимках с VLT также были селектированы по собственным движениям путем отождествления звезд по координатам с данными Gaia DR3 и скорректированы за дифференциальное покраснение света. Очищенная таким способом от фоновых звезд CMD показана на рис. 3 справа.

На рис. 3 показаны также 2 изохроны¹⁴ из Хидалго и др. [42]. Для приведения в соответствие теоретических изохрон и наблюдательных данных выбраны следующие избыток цвета и расстояние до объекта (см. рис. 3): $E(B - V) = 1.42^m$ и D = 5.5 кпк (Gaia DR3, $[\alpha/Fe] = 0.0$ dex); $E(B - V) = 1.38^m$ и D = 4.5 кпк (Gaia DR3, $[\alpha/Fe] = 0.4$ dex); $E(B - V) = 1.35^m$ и D = 8 кпк (VLT, $[\alpha/Fe] = 0.0$ dex); $E(B - V) = 1.31^m$ и D == 7 кпк (VLT, $[\alpha/Fe] = 0.4$ dex). Так как не удалось достичь точки поворота ГП, трудно оценить $[\alpha/Fe]$. По этим данным, $[Fe/H] = -0.1 \pm 0.3$ dex (точность с учетом неопределенности $[\alpha/Fe]$), возраст 9 ± 3 млрд. лет и расстояние до Pal 10 составляет 6 ± 2 кпк, что согласуется с результа-

14http://basti-iac.oa-abruzzo.inaf.it/isocs.html

тами [38]. Значение избытка цвета получается

 $E(B-V) = 1.37 \pm 0.06^m$, что на 0.3^m меньше, чем у Кайслер и др. [38]. На рис. 4 представлена СМD по данным Gaia DR3 [40] для NGC 6426 с селекцией по собственным движениям согласно [41]: -2.054 < pmra < -1.67, -3.186 < pmdec < < -2.802 mas/yr. Подобранные параметры изохроны [42] даны на рис. 4 и соответствуют <math>D = 20 кпк и $E(B-V) = 0.405^m$, что находится в хорошем согласии с таковыми в литературе (см. табл. 1).

4.2. Результаты определения возраста, [Fe/H] и [α/Fe] и сравнение с литературными данными

Ликская система создана на основе индексов, измеренных в спектрах звезд, так называемых Ликских стандартов¹⁵ [8]. Для приведения результатов измерения абсорбционных индексов в стандартную Ликскую систему мы наблюдали некоторые из этих объектов (табл. 3) и строили зависимости между инструментальными и стандартными индексами. Коэффициенты таких зависимостей для наблюдений 2010 г. представлены в табл. 5. Графики построенных зависимостей в сравнении с таковыми, построенными для наблюдений 2008 г. (см. табл. 4 в статье [43]), даны на ftр сайте CAO¹⁶. В целом зависимости получились близкие для диапазонов значений индексов,

¹⁵http://astro.wsu.edu/ftp/WO97/export.dat

¹⁶ftp://ftp.sao.ru/pub/sme/LickIndOHP/LickCalibr/

Рис. 4. Диаграмма "цвет–звездная величина" для NGC 6426 по данным Gaia DR3 с селекцией по собственным движениям согласно [41]. Нанесена изохрона из [42] с параметрами, отмеченными на рисунке.

типичных для 8 исследуемых скоплений (табл. 6 и 7). Главная причина различий в калибровочных зависимостях, построенных для наблюдений в разные годы, состоит в том, что диапазоны значений индексов стандартных звезд были разными.

В частности, наблюдения 2008 г. не включали достаточное число высокометалличных звезд с широкими водородными линиями. Для анализа спектра Pal 3 [43] диапазона измеренных индексов стандартов 2008 г. было достаточно, так как индексы скопления попадают в этот диапазон. Для скоплений нашей выборки мы используем калибровочные соотношения настоящей работы (табл. 5), построенные с использованием более полного списка стандартных звезд.

В табл. 6 и 7 приведены результаты измерения Ликских индексов в спектрах интегрального излучения звезд в центральных областях скоплений исследования, переведенные в стандартную си-

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 98 № 6 2021

стему. Ошибки индексов складываются из ошибок их измерения и ошибок перевода измерений в стандартную Ликскую систему (табл. 5). Таблицы поделены на отдельные секции. Под индексами каждого из исследуемых скоплений с низкой поверхностной яркостью приведены индексы найденных в данном исследовании их аналогов ярких скоплений Галактики.

Графики, представленные на рис. 5, 6 и 7, показывают сравнение Ликских индексов для шаровых скоплений с моделями [25, 26] и значениями индексов для ярких шаровых скоплений Галактики. Модели простых звездных населений [25, 26] содержат значения Ликских индексов, рассчитанные для разного возраста, металличности и [α/Fe].

Диагностические диаграммы "возраст—металличность" показаны на рис. 5 и 6 (верхняя левая панель). Вдоль вертикальной оси на них отложе-

ШАРИНА, МАРИЧЕВА

Индекс	a	b	Диапазон	Единицы
H_{δ_4}	1.04 ± 0.04	-0.13 ± 0.22	[-5, 9]	Å
H_{δ_F}	1.00 ± 0.05	-0.05 ± 0.20	[-1, 7.8]	Å
H_{γ_4}	1.02 ± 0.02	0.33 ± 0.12	[-10, 10]	Å
H_{γ_F}	0.97 ± 0.02	0.32 ± 0.08	[-4, 7.8]	Å
CN_1	1.22 ± 0.08	0.015 ± 0.009	[-0.2, 0.13]	mag
CN_2	1.20 ± 0.07	0.028 ± 0.006	[-0.1, 0.17]	mag
Ca 4227	1.03 ± 0.03	-0.21 ± 0.04	[0, 5.2]	Å
G 4300	1.06 ± 0.07	-0.39 ± 0.21	[-2, 5.8]	Å
Fe 4384	1.10 ± 0.10	-0.18 ± 0.31	[-1, 9.3]	Å
Ca 4455	1.40 ± 0.12	0.24 ± 0.09	[0, 2.3]	Å
Fe 4531	1.24 ± 0.08	-0.40 ± 0.18	[0, 5.4]	Å
Fe 4668	1.07 ± 0.08	-0.22 ± 0.23	[-1, 10]	Å
H _β	1.04 ± 0.03	0.06 ± 0.12	[0.7, 7.2]	Å
Fe 5015	1.03 ± 0.07	-0.05 ± 0.25	[0, 8.5]	Å
Mg_1	1.10 ± 0.03	0.002 ± 0.002	[0.0, 0.23]	mag
Mg_2	1.06 ± 0.02	0.009 ± 0.002	[0.03,0.43]	mag
Mgb	1.09 ± 0.03	-0.31 ± 0.06	[0, 4.8]	Å
Fe 5270	1.09 ± 0.10	-0.14 ± 0.15	[1, 4.5]	Å
Fe 5335	1.07 ± 0.07	-0.22 ± 0.12	[0, 4.5]	Å
Fe 5406	1.03 ± 0.11	-0.14 ± 0.12	[0, 3.3]	Å
Fe 5709	0.88 ± 0.14	0.04 ± 0.07	[-0.1, 0.5]	Å
Fe 5782	0.87 ± 0.14	-0.02 ± 0.08	[0.1, 1.6]	Å
Na 5895	0.96 ± 0.05	-0.49 ± 0.12	[0.8, 6.4]	Å
TiO ₁	0.96 ± 0.05	-0.019 ± 0.003	[0.02, 6.4]	mag
TiO_2	1.03 ± 0.03	-0.009 ± 0.003	[-0.05, 0.1]	mag

Таблица 5. Нульпункты перевода из инструментальной в стандартную систему Ликских индексов (см. раздел 3.2.1): $I_{Lick} = aI_{measured} + b$

Примечание. В столбцах 4 и 5 указаны примерные диапазоны значений измеренных индексов стандартных звезд, по которым выполнялась калибровка, и даны единицы измерения индексов.

ны индексы водородных линий в Ликской системе (см. раздел 3.2.1), изменение значений которых зависит от изменения возраста. Вдоль горизонтальной оси отложены значения [MgFel'. рассчитанные с использованием Ликских индексов, чувствительных к изменению содержаний Fe и Mg. На диагностических диаграммах "металличность-содержание α-элементов" (остальные панели рис. 6) вдоль одной из осей отложены индексы, чувствительные к содержанию железа ([MgFe]' или $\langle Fe \rangle = (Fe5270 + Fe5335)/2)$. Вдоль другой оси приведены индексы, центрированные на линии α-элементов: Ca 4227, Mgb и Mg₂. Диагностические диаграммы "металличность-содержание элементов С и N" (рис. 7) показывают индекс [MgFe]' в зависимости от индексов, центрированных на молекулярные полосы CN, CH и C2 соответственно: CN1, CN2, G4300 и Fe4668 = C₂4668. Pacсмотрение диагностических диаграмм с разными

индексами позволяет более точно оценить возраст, металличность и $[\alpha/Fe]$ объектов и определить степень искажения результатов ошибками измерения индексов.

Полученные в данной работе возраст, металличность и [α /Fe] скоплений приведены в табл. 8. Здесь также суммированы сведения из литературы для восьми объектов исследования и скоплений сравнения. Столбцы таблицы содержат следующие данные: (1) имя скопления; (2) структурная составляющая Галактики (диск – D, балдж – B, гало – H, старое гало – OH, внутреннее гало – IH, толстый диск – TD, звездные потоки, например, Gaia-Enceladus – G-E, неассоциированная группа скоплений – H-E [49]), которой оно, вероятно, принадлежит по литературным данным (C [44], B [45], PV [46], B20 [47], BB20 [48], M19 [49], M–19 [50]); (3) возраст в млрд. лет; (4) отношение индексов $H_{\delta_{\rm F}}/H_{\rm B}$, являющееся, согласно [51], ин-

Of an	ΗδΑ	HδF	ΗγΑ	HγF	CN1	CN2	Ca4227	G4300	Fe4383	Ca4455	Fe4531	Fe4668	Ηβ
OUBERT	Å	Å	Å	Å	mag	mag	Å	Å	Å	Å	Å	Å	Å
Pal 10 (7)	-2.78	0.46	-6.54	-3.45	0.231	0.023	1.20	2.43	3.25	1.65	0.74	_	1.12
	±1.09	±0.9	± 0.81	± 0.78	± 0.06	± 0.051	±0.49	±0.82	±0.86	±0.66	±0.82	_	± 0.45
NGC 6528 ^S	-1.36	0.37	-5.75	-1.27	0.059	0.088	0.88	4.81	4.58	1.16	_	4.41	1.59
Pal 1 (1)	-1.31	0.20	-2.49	-0.02	-0.013	-0.020	-0.40	4.65	3.17	1.65	1.97	2.59	2.17
	± 0.83	± 0.73	± 0.76	± 0.74	± 0.022	± 0.025	±0.29	±0.34	±0.57	±0.47	± 0.55	±0.55	± 0.36
NGC 6304 ^S	-0.91	0.34	-5.08	-1.05	0.037	0.063	0.70	4.84	3.38	0.83	—	2.35	1.49
NGC 6624 ^S	-0.33	0.71	-4.11	-0.50	0.017	0.043	0.55	4.54	2.89	0.75	_	1.77	1.68
Pal 2 (2)	1.85	1.95	-0.47	1.55	-0.089	-0.101	0.59	2.92	1.71	0.67	2.84	0.65	1.97
	± 1.05	± 1.03	±1.11	±1.12	± 0.029	± 0.027	±0.43	±0.63	±0.84	± 0.58	± 0.81	± 0.70	± 0.42
NGC 7006	1.66	1.63	-0.31	1.45	-0.038	0.010	0.21	2.58	1.21	0.45	1.92	0.92	1.99
	± 0.43	±0.44	±0.36	±0.39	± 0.011	± 0.015	±0.29	±0.35	±0.28	±0.33	±0.37	±0.29	± 0.25
Pal 14 (3)	2.84	2.26	1.86	1.75	-0.035	0.014	0.31	2.72	0.03	0.18	2.48	0.21	2.45
	± 1.28	±1.39	±1.21	± 1.18	± 0.025	± 0.022	±0.35	± 0.78	±0.87	±0.64	± 0.85	± 0.81	± 0.41
NGC 6229	2.44	2.37	0.78	1.84	-0.046	0.013	0.44	2.42	1.23	0.66	1.68	0.99	2.37
	±0.46	±0.43	±0.37	± 0.33	± 0.024	± 0.031	±0.12	±0.36	±0.29	±0.37	± 0.38	±0.31	± 0.28
Pal 13 (8)	3.02	2.42	3.60	3.41	-0.086	-0.077	0.33	1.06	-0.02	0.51	1.46	1.46	3.11
	± 0.81	± 0.75	± 0.85	± 0.77	± 0.016	± 0.020	±0.34	± 0.40	±0.59	±0.48	±0.67	±0.62	± 0.52
NGC 6205	3.26	2.71	1.64	2.20	0.056	-0.025	-0.02	1.80	0.61	0.38	1.31	0.30	2.70
	± 0.36	±0.20	±0.14	± 0.10	± 0.001	± 0.001	±0.25	±0.35	±0.26	±0.09	± 0.35	±0.27	± 0.08
NGC 6749 (6)	5.54	2.67	-0.25	1.75	-0.163	-0.080	0.81	1.65	—	0.03	—	0.36	2.29
	± 1.45	±1.23	±1.12	± 0.86	± 0.010	± 0.030	±0.39	±0.73	_	±0.63	_	±0.51	± 0.45
NGC 6779	3.24	2.60	1.25	1.92	-0.081	-0.029	-0.11	2.23	0.15	0.16	1.09	-0.02	2.23
	± 0.47	±0.45	± 0.25	± 0.23	± 0.004	± 0.006	±0.09	±0.32	±0.30	±0.20	± 0.35	±0.32	± 0.27
NGC 6535 (5)	4.44	3.27	1.92	2.33	-0.104	-0.044	0.01	2.34	0.23	0.10	0.38	-0.36	2.66
	± 0.74	± 0.71	± 0.48	± 0.45	± 0.005	± 0.007	±0.20	± 0.55	±0.57	±0.36	± 0.50	±0.49	± 0.46
NGC 6341	4.28	3.29	2.36	2.61	0.017	-0.022	-0.35	1.13	0.25	0.95	0.95	-0.42	2.66
	±0.39	±0.23	±0.12	±0.13	± 0.008	± 0.008	±0.24	±0.34	±0.25	±0.11	± 0.35	±0.25	± 0.10
NGC 6426 (4)	4.54	2.27	-0.49	1.51	-0.038	0.008	-0.05	3.65	0.39	0.52	0.20	0.43	2.06
	± 0.82	±0.74	±0.51	±0.53	± 0.011	±0.013	±0.27	±0.70	±0.67	±0.51	±0.59	±0.63	± 0.52
NGC 7078	3.21	2.58	1.83	2.10	-0.066	-0.010	-0.19	1.16	0.59	0.36	0.60	-0.58	2.31
	±0.43	±0.40	±0.22	±0.19	± 0.005	± 0.006	±0.07	±0.29	±0.23	±0.21	±0.31	±0.26	± 0.24
NGC 2419	1.60	2.01	1.08	1.79	-0.077	-0.073	0.50	1.79	0.69	0.68	1.13	-0.06	2.02

Таблица 6. Ликские индексы (λ ≤ 4900 Å), измеренные в спектрах суммарного излучения звезд в центральных областях скоплений и переведенные стандартную Ликскую систему

дикатором относительного количества звезд в разных частях ГВ¹⁷; (5) металличность [Fe/H], dex; (6-9) содержания элементов С, Mg, Ca и среднее содержание α-элементов (надстрочный

 ± 0.25

 ± 0.24

 ± 0.015

 ± 0.017

 ± 0.20

 ± 0.29

 ± 0.35

 ± 0.48 ± 0.44

индекс⁰ означает, что значение было вычислено в настоящей работе по результатам литературных исследований); (10) метод исследования возраста и содержаний элементов (IL – исследование спектров суммарного излучения скоплений, LR – исследование спектров среднего разрешения отдельных звезд объектов, HR - спектроскопия высокого разрешения звезд скоплений, CMD – исследование диаграмм "цвет-звездная величина", REF – работа, суммирующая литературные данные спектроскопии высокого разрешения звезд

 ± 0.18

 ± 0.45

 ± 0.28

 ± 0.13

 $^{^{17} \}text{Согласно}$ [51], $\text{H}_{\delta_{\text{F}}}/\text{H}_{\beta} \geq 1.05$ у шаровых скоплений с голубой ГВ (HBR = $(B - R)/(B + V + R) \sim 1$), а $H_{\delta_F}/H_{\beta} \le 0.85$ у объектов с красной ГВ (HBR = $(B - R)/(B + V + R) \sim -1$). Промежуточные значения H_{δ_F}/H_{β} присущи, соответственно, скоплениям с примерно равным числом звезд в красной и голубой частях ГВ.

05	Fe5015	Mg ₁	Mg ₂	Mgb	Fe5270	Fe5335	Fe5406	Fe5709	Fe5782	Na5895	TiO ₁	TiO ₂
Объект	Å	Å	mag	Å	mag	Å	Å	Å	Å	Å	mag	mag
Pal 10 (7)	4.97	0.167	0.316	4.11	3.04	2.69	1.97	1.10	1.65	3.88	0.067	0.146
	±0.51	±0.022	±0.021	±0.41	±0.61	±0.53	±0.42	±0.25	±0.37	±0.51	±0.040	±0.028
NGC 6528 ^S	_	0.104	0.252	3.80	2.77	2.42	1.67	1.03	0.80	4.96	0.031	0.112
Pal 1 (1)	4.32	0.043	0.109	1.78	1.83	1.48	0.36	0.76	-0.05	1.85	0.011	-0.004
	±0.56	±0.016	±0.020	±0.33	±0.58	±0.54	±0.40	±0.31	±0.36	±0.35	±0.015	±0.011
NGC 6304 ^S	_	0.066	0.184	3.17	2.15	1.82	1.13	0.82	0.81	3.74	0.015	0.028
NGC 6624 ^S	_	0.054	0.155	2.58	1.94	1.62	1.05	0.72	0.61	2.22	-0.002	0.042
Pal 2 (2)	1.53	0.066	0.113	1.82	1.08	1.35	0.12	0.51	0.82	2.35	0.010	0.001
	±0.49	± 0.020	±0.023	±0.29	±0.67	±0.52	±0.37	±0.20	±0.29	±0.22	± 0.010	±0.006
NGC 7006	1.70	0.040	0.080	0.76	1.03	0.70	0.32	0.51	0.25	1.69	0.011	0.006
	±0.35	± 0.010	± 0.010	±0.25	±0.30	±0.29	±0.27	±0.26	±0.24	±0.39	± 0.006	± 0.007
Pal 14 (3)	3.15	0.016	0.070	0.63	1.21	1.27	0.27	-0.40	-0.14	1.33	-0.003	0.006
	±0.95	±0.025	±0.025	±0.34	±0.60	±0.54	±0.37	±0.17	±0.38	±0.38	±0.023	±0.025
NGC 6229	2.52	0.050	0.096	0.94	1.03	0.89	0.46	0.45	0.36	1.27	0.017	0.015
	± 0.40	± 0.005	± 0.006	±0.19	±0.25	±0.28	±0.26	±0.19	±0.21	±0.25	± 0.006	± 0.008
Pal 13 (8)		0.046	0.050	1.01	0.36	1.09	0.39	-0.46	-0.12	1.63	-0.016	-0.021
	—	±0.017	± 0.018	±0.29	±0.38	±0.50	±0.42	±0.33	±0.37	±0.36	±0.013	±0.009
NGC 6205	1.73	0.032	0.060	0.46	0.84	0.45	0.24	0.27	0.12	1.06	0.008	0.003
	±0.23	± 0.002	± 0.002	±0.26	±0.28	±0.26	±0.27	±0.12	±0.10	±0.50	± 0.040	± 0.020
NGC 6749 (6)	1.14	0.158	0.162	0.72	1.11	0.11	0.46	0.63	0.87	3.89	0.032	0.019
	±0.59	±0.051	± 0.048	±0.34	±0.46	±0.46	±0.43	±0.33	±0.42	±0.50	± 0.007	± 0.006
NGC 6779	1.45	0.032	0.060	0.35	0.60	0.35	0.21	0.25	0.40	1.31	0.006	0.007
	±0.34	± 0.006	± 0.005	±0.17	±0.31	±0.24	±0.24	±0.18	±0.22	±0.27	± 0.006	± 0.006
NGC 6535 (5)	1.33	0.019	0.045	0.31	0.60	0.05	0.14	0.52	0.43	1.87	0.021	0.001
	±0.61	±0.011	± 0.010	±0.37	±0.58	±0.48	±0.44	±0.39	±0.41	±0.52	±0.013	±0.012
NGC 6341	1.32	0.010	0.048	-0.18	0.53	0.25	0.04	0.23	0.08	0.84	0.014	-0.004
	±0.20	± 0.003	±0.003	±0.22	±0.29	±0.23	±0.29	±0.14	±0.14	±0.49	± 0.040	± 0.020
NGC 6426 (4)	1.42	0.033	0.042	0.16	0.59	0.31	-0.17	-0.03	0.18	1.95	0.025	-0.006
	±0.69	±0.015	±0.014	± 0.40	±0.59	±0.52	±0.47	±0.36	±0.41	±0.58	±0.014	±0.014
NGC 7078	0.90	0.028	0.047	0.03	0.22	0.19	0.09	0.13	0.16	1.33	0.001	0.000
	±0.31	± 0.005	± 0.004	±0.12	±0.19	±0.19	±0.19	±0.13	±0.15	±0.24	± 0.004	±0.005
NGC 2419	1.40	0.031	0.056	1.36	0.48	0.96	0.19	0.18	-0.05	1.05	-0.006	-0.012
	±0.23	±0.011	±0.017	±0.14	±0.35	±0.34	±0.14	±0.13	±0.14	±0.13	±0.003	±0.004

Таблица 7. Ликские индексы (λ > 4900 Å), измеренные в спектре суммарного излучения звезд в центральных областях скоплений и переведенные стандартную Ликскую систему

скоплений); (11) источник литературных данных. В случае, если наблюдались отдельные звезды скоплений, в столбце 11 в скобках указано количество звезд. Полученные нами [α /Fe] для всех скоплений, кроме NGC 6535, приблизительны и приведены в таблице без соответствующих ошибок.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как уже говорилось, скопления сравнения были отобраны исходя из сходства их Ликских индексов с таковыми у объектов исследования. Ликские индексы были измерены нами, или взяты из работы Скиавон и др. [36]. Необходимо подчеркнуть, что Скиавон и др. приводят ошибки *измерения* индексов (их табл. 8). Ошибки же перевода значений индексов из инструментальной в стандартную Ликскую систему у этих авторов представлены отдельно в табл. 3–7. Мы же в табл. 8 приводим ошибки индексов с учетом ошибок перевода их измерения в стандартную Ликскую систему (табл. 5). Скопления-аналоги удалось уве-

Рис. 5. Диагностические диаграммы "возраст–металличность" (см. подробное объяснение в разделе 4.2). Значения возраста подписаны справа, металличности – сверху. Открытыми кружками отмечены индексы Галактических скоплений из статьи [36], красными точками – индексы Галактических скоплений из выборки ОНР (нижняя часть табл. 1), черными точками с барами ошибок – исследуемые объекты (верхняя часть табл. 1). Значения индексов даны в табл. 6 и 7.

ренно подобрать для всех скоплений с низкой поверхностной яркостью, кроме Pal 1. Как видно из табл. 6–8, шаровые скопления сравнения, за исключением NGC 6304 и NGC 6624, подобранных для Pal 1, имеют оценки возраста, металличности и содержаний элементов, близкие к таковым у объектов исследования. Заметим, однако, существенный разброс в оценках этих параметров в литературе у отдельных объектов. Так, литературные данные о содержаниях Mg у красных гигантов и, соответственно, содержания α-элементов варьируются в некоторых случаях в широких пределах (табл. 1). Это не удивительно, так как Mg – это один из элементов, участвующий в химических реакциях, ответственных за формирование множественных звездных населений в шаровых скоплениях (см., напр., [73]). Причины же того, что содержания [C/Fe], определенные по спектрам суммарного излучения скоплений, систематически выше таковых, определенных для их отдельных красных гигантов, обсуждались в статье [30] (см. также [74]).

У объектов исследования и их аналогов похожи и типы горизонтальных ветвей, о чем сигнали-

Рис. 6. Диагностические диаграммы "возраст-металличность" (верхняя левая панель) и "металличность [Z/H] – содержание α -элементов" (остальные панели). Индексы скоплений показаны такими же символами, как на предыдущем рисунке. На диаграммах [Z/H]– $[\alpha/Fe]$ показаны значения [Z/H] или/и направление изменения металличности. Разными цветами приведены модельные зависимости для разных $[\alpha/Fe]$. Подробное объяснение к панелям дано в разделе 4.2.

зирует отношение индексов H_{δ_F}/H_{β} [51]. Существенные различия иногда имеются между значениями H_{γ_A} и G4300 у объектов исследования и их аналогов, например: Pal 13 и NGC 6205, NGC 6426 и NGC 7078. Это, по-видимому, не случайно. Области измерения двух индексов включают G-полосу. Ее глубина различна, в основном, по причине различий в содержаниях углерода. Другая причина может заключаться в относительном количестве звезд гигантов, вошедших в интегральный спектр. Заслуживает особого внимания, по нашему мнению, тот факт, что объекты исследования и их аналоги, как оказалось, принадлежат, как правило, к одним и тем же галактическим подсистемам (табл. 8), согласно литературным работам, исследующим их параметры орбит. Для некоторых скоплений имеются, однако, разночтения между результатами в литературе. Взаимодействие скоплений с газом и темной материей в ходе динамической эволюции Галактики может существенно влиять на орбиты и локализацию скоплений. Поэтому определение принадлежности шаровых

-0.1-0.2-2 2 3 2 0 3 4 0 1 4 [MgFe]' [MgFe]'

Рис. 7. Диагностические диаграммы "металличность-индексы, чувствительные к содержаниям С и N". Индексы скоплений показаны такими же символами, как на рис. 5. Подробное объяснение к панелям дано в разделе 4.2.

скоплений к галактическим подсистемам, исходя из данных о пространственном положении и движении объектов, является трудной задачей. Свойства звездных населений свидетельствуют о процессах, происходящих в далеком прошлом [75]. Схожесть возраста и химсостава у двух скоплений является необходимым, но не достаточным условием принадлежности их к одним и тем же подсистемам. Важные сведения, безусловно, дают параметры орбит, которые, как уже говорилось, могут меняться в течение времени. Необходимо еще раз подчеркнуть, что мы в этой работе не определяем подсистемы, к которым принадлежат скопле-

0.15

0.1

0

ния, а лишь суммируем результаты таких работ из литературы для объектов исследования и их аналогов, подобранных в данной статье, исходя из сходства Ликских индексов.

Далее мы приводим замечания об отдельных скоплениях. Литературные оценки возраста Pal 1 варьируются от 4 до 8 млрд. лет [13, 76]). Наша оценка возраста ближе к таковой у [76] (6.3-8 млрд. лет). По результатам исследования спектров отдельных звезд высокого разрешения, у Pal 1 наблюдаются: отсутствие Na/O антикорреляции у красных гигантов, необычные содержания элементов [53, 54, (табл. 4)]. Содержания Мд, Si, Ca, Ti, Co, V, и Y в Pal 1 ниже, а Ва и La – выше

ШАРИНА, МАРИЧЕВА

Таблица 8.	Полученные в данной	работе и литературные сведен	ия об объектах исследования
		Fue e	

Объект	Сист.	Возраст	H_{δ_F}/H_β	[Fe/H]	[C/Fe]	[Mg/Fe]	[Ca/Fe]	[a/Fe]	Метод	Ссылка
Pal 1	D ^B	8-10	0.09	-0.8				0.0	IL	эта работа
				±0.2						
	D^{B20}			-0.6	-0.25	-0.10	0.20	0.1	HR	[52] (N=2)
				-0.6		-0.06	0.10	-0.05	HR	[53] (N=5)
				-0.5		0.11	0.04	0.08^{0}	HR	[54] (N=1)
NGC 6304	D ^C	12.3	0.23 ^S	-0.48				0.20	CMD	[55]
	D ^{B20}	11.25		-0.37					CMD	[56]
NGC 6624	$\mathbf{B}^{\mathbf{PV}}$	12.5 ± 0.9	0.42 ^S	-0.44	-0.29	0.42 ± 0.05	0.40	0.41^{0}	Ref	[57]
	B ^{B20}	13.18		-0.77	-0.15	0.36	0.23	0.30^{0}	IL	[58]
				-0.69		0.42	0.40	0.39	HR	[59] (N = 5)
		11.25		-0.42					CMD	[56]
Pal 2	H ^B	12 ± 2	0.99	-1.5				0.3	IL	эта работа
	H ^{B20}	13.25		[-1.9, -1.6]				[0, 0.4]	CMD	[60]
NGC 7006	H ^B	13.6 ± 1	0.82	-1.8 ± 0.1	-0.07	0.27 ± 0.15	0.2 ± 0.1	0.24^{0}	IL	[30]
	H ^{B20}			-1.69		0.42		0.25	LR	[61] (N=5)
	H^{M-19}			-1.55		0.36	0.23	0.23	Ref	[62]
				-1.55		0.36	0.23		Ref	[50]
Pal 14	OHC	12 ± 1	0.92	-1.3 ± 0.2				0.0	IL	эта работа
	H ^{B20}			-1.44		0.37	0.29	0.34	HR	[63] (N=9)
								±0.17		
	G-E ^{BB20}			-1.22		0.32		0.24	LR	[61](N=6)
	H-E ^{M19}			-1.34		0.37	0.29		Ref	[50]
NGC6229	OH ^C	12.6 ± 1	1.00	-1.65	-0.05	0.15	0.40	0.28	IL	[15]
	$\begin{array}{c} H^{B20} \\ G-E^{M19} \end{array}$			-1.13		[0.05, 0.34]	[0.06, 0.34]	0.2^{0}	HR	[64] (<i>N</i> = 11)
NGC 6426	IHC	13.6 ± 2	1.10	-2.15				0.3	IL	эта работа
	H ^{B20}			-2.34		0.44 ± 0.05	0.25	0.39	HR	[65] (N=4)
				-2.39		0.38		0.24	LR	[61] (N = 5)
NGC 7078	IH ^C	13.6 ± 1	1.00	-2.35	-0.15	0.23	0.15	0.19 ⁰	IL	[66]
	D^{B20}			-2.23		0.41		0.24	LR	[61] ($N = 15$)
	TD^{M-19}	12.9		-2.39	-0.30	0.36	0.31	0.34	Ref	[57]
				-2.28	-0.41	0.11	0.16	0.14^{0}	HR	[67] (N = 23)
				-2.38		0.28	0.27	0.34	Ref	[62]
		12.75		-2.33					CMD	[56]
		±0.25								
				-2.36		0.39	0.19		Ref	[50]

Таблица 8. Окончание

Объект	Сист.	Возраст	H_{δ_F}/H_β	[Fe/H]	[C/Fe]	[Mg/Fe]	[Ca/Fe]	[α/Fe]	Метод	Ссылка
NGC 6535	IH ^{PV}	11.2 ± 1	1.23	-2.2	0.30	-0.1	0.3	0.1	IL	эта работа
	H ^{B20}			-1.95	-0.58	0.48	0.31	0.39^{0}	HR	[68] (N = 7)
				-1.80	[-0.29, -0.58]				LR	[69] (N=2)
		12.75		-1.79	_				CMD	[56]
				-1.95		0.47	0.31		Ref	[50]
NGC 6341	IH ^C	11.2	1.24	-1.80	-0.30	-0.25	0.00	-0.13^{0}	IL	[66]
	H ^{B20}			-2.23	-0.41	0.14	0.10	0.22^{0}	HR	[67] (N = 47)
	H ^{M-19}			-2.29	[-0.40, -0.82]				LR	[69] (N=2)
				-2.34		0.47	0.32	0.33	Ref	[62]
		12.75		-2.35					CMD	[56]
				-2.33		0.30	0.31		Ref	[50]
NGC 6749	IH ^C	10 ± 3	1.17	-1.3				0.3	IL	эта работа
	D ^{B20}			-1.59		0.34		0.17	LR	[61] (N=4)
NGC 6779	$\mathrm{IH}^{\mathrm{C}}, \mathrm{H}^{\mathrm{M}-19}$	12.6 ± 1	1.17	-1.9	-0.15	-0.1	0.25	0.08	IL	[15]
	H ^{B20}	12.75		-2.0					CMD	[56]
Pal 10	D/B ^C	10-13.6	0.41	0.06				0.3	IL	эта работа
	D ^{B20}			-0.24		0.12		0.27	LR	[61] (N=4)
NGC 6528	D/B ^C	12	0.23 ^S	-0.12	-0.35	0.25	0.30	0.28^{0}	Ref	[57]
	B ^{PV}	11.75		-0.23	0.09	0.19	0.03	0.11^{0}	IL	[58]
	B ^{B20}			-0.06		0.11	0.15	0.11	Ref	[62]
	TD^{M-19}			-0.20		0.26	0.03	0.15 ⁰	HR	[70] (N = 7)
		7-10		-0.31		0.02	0.20	0.11^{0}	IL	[71]
				-0.10		0.36	0.23		Ref	[50]
Pal 13	${\rm H}^{\rm B}, {\rm H}^{{\rm M}-19}$	10	0.78	-2.0				0.2	IL	эта работа
	H ^{B20}			-1.91		0.39	0.29	0.34	HR	[72] (N = 18)
								± 0.06		
NGC 6205	H ^B	10	1.00	-1.7	-0.12	0.2	0.3	0.25^{0}	IL	[30]
	H ^{B20}			-1.57		0.13	0.28	0.26	Ref	[62]
	$\mathrm{H}^{\mathrm{M-19}}$	12		-1.58					CMD	[56]
				-1.54		0.13	0.19		Ref	[50]

Примечание. Содержание столбцов описано в разделе 4.2.

чем у звезд диска с такой металличностью. Скопление может быть ассоциировано с областью повышенной плотности звезд Canis Majoris [53, 54]. Мы не нашли скоплений Галактики, абсолютно похожих на Pal 1 по значениям Ликских индексов. Индексы H_{γ_A} , H_{γ_F} , H_{β} , Mg_2 , Mgb и некоторые другие у Pal 1 существенно отличаются от таковых

у подобранных кандидатов в аналоги: NGC 6304 и NGC 6624. Согласно значениям водородных индексов, аналоги намного старше, чем Pal 1. Из табл. 8 видно, что [Fe/H] и [C/Fe] у NGC 6624 похожи на таковые у Pal 1. Содержания α -элементов у NGC 6624 выше, чем у Pal 1. Для NGC 6304 нет данных спектроскопии высокого разрешения.

Для Pal 2 в литературе на сегодняшний день нет данных спектроскопии высокого разрешения. Сараджедини и др. [13] отмечали сходство металличности Pal 2 и NGC 6752 и пониженное покраснение света на расстоянии в -38" к юго-западу от центра Pal 2. Исследование CMD Pal 2 затруднено из-за значительного дифференциального покраснения в направлении на антицентр Галактики [13]. Из результатов фотометрии [13] мы отбирали звезды в пределах ~8" от центра Pal 2. Суммарный спектр был получен для разных позиций щели примерно в той же области. Pal 2 и NGC 7006, помимо сходства Ликских индексов, имеют похожие возрасты, [Fe/H] и содержания α-элементов, определенные различными методами (см. табл. 1). Харрис и др. [77] заметили, что ГВ Pal 2 содержит значительное число звезд в голубой и красной частях. Аналогичную структуру ГВ имеет NGC 7006 (табл. 8), согласно определенному нами $H_{\delta_{r}}/H_{\beta}$.

Pal 14 — это скопление с красной ГВ (табл. 1), находящееся в гало. Однозначного мнения о происхождении объекта нет. Карретта и др. [44] и Байкова и др. [47] считают его сформированным в Галактике. Байкова и Бобылев [48] и Массари и др. [49] считают, что Pal 14 был аккрецирован. Объект гало со схожей металличностью и строением ГВ – это Pal 3 (см. [43] и ссылки в этой статье). Ликские индексы водородных линий у Pal 14 оказались похожими на таковые у NGC 6229 (см. табл. 6 и 7). В отличие от Pal 14, у NGC 6229 имеются звезды в голубой части ГВ. Однако у NGC 6229 большое число звезд ГВ находится также в области так называемого "красного пятна" (red clump). Отношения индексов H_{δ_E}/H_β у Pal 14 и у NGC 6229 похожи: 0.9 и 1.0 соответственно. Они указывают на то, что у объектов горизонтальные ветви промежуточного типа (см. [51]). Видимо, несколько голубых звезд ярче точки поворота ГП попали в спектр Pal 14. Такие звезды видны на CMD Pal 14. Calişkan et al. [63] методами спектроскопии высокого разрешения обнаружили сходство содержаний элементов у нескольких красных гигантов в Pal 14 с соответствующими средними значениями у шаровых скоплений внешнего гало Галактики¹⁸ и у отдельных звезд этой подсистемы, не входящих в скопления. Хамидуллина и др. [15], моделируя тот же спектр суммарного излучения, полученный в ОНР, что использовали и мы, определили для NGC 6229: $\lg T = 10.1, Y = 0.26$ и Z = 0.0004. В данной работе, аппроксимируя CMD Pal 14, построенную по результатам фотометрии [14] изохронами Bertelli

et al. [78], мы получили близкие значения: $\lg T = 10.05, Y = 0.23, Z = 0.0004.$

NGC 6426 – это олно из наиболее низкометалличных и старых шаровых скоплений гало Галактики [79]. Объект находится во внутреннем гало, как и найденный нами его аналог NGC 7078 (табл. 1) – массивное шаровое скопление со множественными звездными населениями [67]. Будушие наблюдения, возможно, дадут явные свидетельства множественности звездных популяций у NGC 6426. Единственное на сегодняшний день исследование [65] спектров высокого разрешения звезд NGC 6426 выявило лишь несколько слабых намеков на этот эффект, например слабая антикорреляция Mg-Si. Ханке и др. [65] отмечают, что полученные ими методом спектроскопии высокого разрешения содержания элементов тяжелее Zn указывают на возможное обогащение протоскопления продуктами вспышек гиперновых и быстрый процесс нуклеосинтеза. Сравнение спектров NGC 6426 и NGC 7078¹⁹ показывает, что G-полоса, образованная в основном линиями молекулы CH 4250-4330 Å, намного интенсивнее у NGC 6426. Это, видимо, говорит о более высоком среднем содержании углерода у NGC 6426. Заметим, что в NGC 6426 обнаружена углеродная звезда [80].

NGC 6535 считают объектом гало из-за его низкой металличности, несмотря на малое расстояние от центра Галактики (см., напр., [44]). Пиотто и др. [81] нашли, что ветвь красных гигантов NGC 6535 показывает расщепление, характерное для скоплений со множественными звездными населениями. Брагаглиа и др. [68] определили содержания элементов для 30 красных гигантов скопления и подтвердили существование множественных звездных населений.

В результате моделирования полученного нами интегрального спектра NGC 6535 методом популяционного синтеза с программным комплексом CLUSTER (см. [30] и ссылки в этой статье) с использованием моделей звездных атмосфер, функции масс [82] и изохрон [78], нами получены значение [Fe/H] = -2.2 dex и следующие параметры изохроны: Z = 0.0004, Y = 0.26 и возраст 11.2 млрд. лет. Сравнение наблюдаемого, сглаженного по 5 точкам, и модельного спектров показано на рис. 8.

Сравнение спектров NGC 6535 и NGC 6341 с помощью программы ULySS (см. раздел 3.2) показано на рис. 9. Видно, что G-полоса является более интенсивной у NGC 6535. [C/Fe], определенные нами и авторами статьи [66] по спектрам ОНР, действительно подтверждают этот вывод (табл. 8). Содержания углерода, определенные по

¹⁸В отличие от скоплений внутреннего гало объекты внешнего гало находятся на расстояниях от центра Галактики больше 15 кпк. Скопления гало Галактики в среднем имеют возраст ≥ 10 млрд. лет и [Fe/H] < -1.3 dex (см., напр., [44]).</p>

¹⁹ftp://ftp.sao.ru/pub/sme/LickIndOHP/SpComp/ULySSngc6426_7078all.ps

471

Рис. 8. Сравнение спектра NGC 6535 (светлая линия) с синтетическим спектром, рассчитанным с изохроной [78] Z = 0.0004, T = 11.2 млрд. лет, Y = 0.26 и функцией масс [82].

отдельным красным гигантам NGC 6535 и NGC 6341 методом спектроскопии высокого разрешения, низкие и составляют [C/Fe] ~ -0.8...-0.3 (табл. 8).

Вписывание изохрон [78] в CMD скопления по результатам фотометрии Сараджедини и др.²⁰ [13] дает более старый возраст порядка 14 млрд. лет. Видимо, вклады в наш спектр голубых горячих звезд ГВ и более слабых голубых звезд на продолжении ГП (голубые бродяги) довольно велики. Полученные нами содержания химических элементов приведены в табл. 8. Помимо этих содержаний, нами были определены [Na/Fe] $= 0.0 \pm 0.25 \text{ dex}, [Ti/Fe] = 0.1 \pm 0.2 \text{ dex}, [Cr/Fe] =$ $= 0.0 \pm 0.2$ dex. Для сравнения приводим содержания, полученные в статье [68] методом спектроскопии высокого разрешения: [Na/FeI] = $= -0.340 \pm 0.136$ dex, [Ti/FeI] $= 0.184 \pm 0.036$ dex, $[Cr/FeI] = -0.177 \pm 0.015$ dex. Определенные нами содержания Na оказались выше, а Mg и, соответственно, α-элементов у NGC 6535 и его аналога NCC 6341 [66] оказались существенно ниже литературных значений для красных гигантов скоплений [68, 67, 62]. Причина, видимо, состоит в том, что конвективные процессы в атмосферах красных гигантов выносят вещество, обогащенное продуктами нуклеосинтеза, из звездных недр на поверхность. В спектры же интегрального излучения большой вклад вносят более слабые звезды, в частности звезды ГП. Полученные нами содержания С и Са для NGC 6535 и NCC 6341 согласуются с литературными данными.

Для NGC 6749 и Pal 10 результаты звездной фотометрии впервые были представлены в статье [38] (см. также данные нашей фотометрии в разделе 4.1). Кайслер и др. [38] оценили [Fe/H] для скоплений по светимости и цвету звезд на ветви красных гигантов и ГВ: [Fe/H] = -0.1 dex для Pal 10 и [Fe/H] = -1.6 dex для NGC 6749 значения, близкие к таковым в табл. 1 и 8. В литературе на сегодняшний день нет данных спектроскопии высокого разрешения для NGC 6749. Вазкис и др. [83] получили оценки металличности Pal 10 по линиям инфракрасного триплета Ca II в широком диапазоне: [Fe/H] = -0.57...-0.27 dex.

Pal 13 — это объект внешнего гало Галактики, расположенный на большом расстоянии от ее центра, с возрастом, сравнимым с возрастом Вселенной [84]. Брадфорд и др. [6] с помощью фото-

²⁰ftp://ftp.sao.ru/pub/sme/LickIndOHP/CMDpos/cmdN6535.ps

Рис. 9. Верхняя панель: сравнение спектров NGC 6535 и NGC 6541 (светлая цветная линия). Тонкая сплошная светлая (голубая) линия — полином, приводящий наблюдаемый спектр в соответствие с модельным. Нижняя панель: разница между наблюдаемым и модельным спектрами. Светлой (зеленой) сплошной линией показана огибающая, соответствующая S/N = 100. Штриховой линией показана линия нуля.

метрических и спектральных наблюдений на CFHT определили [Fe/H] ~ –1.6 dex, возраст 11– 12 Gyr, малую светимость, большой радиус на половине светимости для Pal 13 (см. табл. 1) и большую дисперсию скоростей. На CMD Pal 13 [6] не видно ярко выраженной ГВ, но довольно много голубых бродяг. Коч и Коте [72] определили металличность [Fe/H] = –1.91 dex и содержания 14 химических элементов, используя наблюдения с высоким разрешением со спектрографом Кесk/HIRES. Среднее содержание элементов α -процесса Mg, Si, Ca и Ti [α /Fe] = 0.34 ± 0.06 dex типично для шаровых скоплений и звезд поля гало Галактики при данной металличности.

Полученное нами сходство Ликских индексов Pal 13 и NGC 6205 — массивного скопления со множественными звездными населениями [81] и голубой ГВ подтверждает не только сходство объектов по возрасту и химсоставу, что соответствует имеющимся литературным данным (табл. 8). Сходство Ликских индексов говорит в данном случае об отсутствии вклада самых голубых и горячих звезд ГВ в интегральный спектр NGC 6205 (см. также [30]). Отношение индексов H_{δ_F}/H_{β} свидетельствует о красной ГВ у Pal 13 и промежуточного типа у NGC 6205 по критерию [51]. Несмотря на сходство большинства индексов у Pal 13 и NGC 6205, существенные различия имеются в значениях H_{γ_A} и G4300. Это не случайно. Области измерения двух индексов включают G-полосу. Ее глубина различна у двух объектов, видимо, по причине различий в содержании углерода.

6. ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

Использованы архивные данные длиннощелевой спектроскопии умеренного разрешения со спектрографом CARELEC [7] 1.93-м телескопа ОНР отдельных звезд и групп звезд в восьми шаровых скоплениях Галактики с низкой центральной поверхностной яркостью: Pal 1, Pal 2, Pal 10, Pal 13, Pal 14, NGC 6426, NGC 6535 и NGC 6749. Получены спектры суммарного излучения этих объектов, измерены абсорбционные индексы в Ликской системе [8-12] и выполнено попиксельное сравнение спектров и измеренных индексов с соответствующими данными для ярких компактных шаровых скоплений Галактики. Результаты определения возраста, [Fe/H] и [α/Fe] по спектрам скоплений даны в табл. 8. Отобраны галактические аналоги 8 объектов исследования по принципу совпадения значений Ликских индексов в пределах ошибок их определения. Часть аналогов наблюдались с тем же инструментом и в те же наблюдательные ночи в OHP: NGC 7006, 6229, 6205, 6779, 6341 и 7078. Для них и для NGC 2419 в данной работе измерены Ликские индексы. Для Pal 10 и Pal 1 скопления со сходными значениями индексов были найдены в работе [36].

Полный набор Ликских индексов позволяет определить возраст и металличность, а также включает индексы, спектральные диапазоны измерения которых центрированы на линии Са, Mg, C и молекулярные полосы CN, CH и TiO. Таким образом, сходство у скоплений полного набора Ликских индексов означает сходство по возрасту и химическому составу.

Следует отметить, что для Pal 1 полного сходства по значениям индексов не было найдено ни с одним объектом, исследованным нами и в [36]. Индексы линий водорода и Mg y Pal 1 существенно отличаются от таковых у NGC 6304 и NGC 6624. По результатам нашего исследования и по литературным данным, возраст у Pal 1 моложе, а содержания α -элементов ниже, чем у NGC 6304 и NGC 6624. Эти факты не противоречат выводу [53] о возможном внегалактическом происхождении Pal 1. Сходство абсорбционных индексов NGC 2419 не было установлено ни с одним из объектов исследования.

Моделируя спектры суммарного излучения скоплений с помощью метода популяционного синтеза [30], мы выяснили, что значения Ликских индексов, измеренных в спектрах скоплений с возрастом больше 5 млрд. лет, мало зависят от значения показателя степени функции масс звезд в следующих пределах его изменения: $\alpha = -(0.83-2.35)$.

Выполнена звездная фотометрия Pal 10 на снимках из архива VLT, а также проанализирована фотометрия Gaia DR3 с селекцией по собственным движениям согласно [41]. Результаты исправлены за дифференциальное покраснение света по методу [38]. Сравнение с моделями звездной эволюции [42] дало значения возраста и металличности: $T = 9 \pm 3$ млрд. лет и [Fe/H] = $= -0.1 \pm 0.3$ dex, что согласуется с данными Кайслер и др. [38] и с результатами нашего спектроскопического исследования (табл. 8). Расстояние и избыток цвета составили: $D = 6 \pm 2$ кпк, $E(B - V) = 1.37 \pm 0.06^m$.

Проанализирована СМD, построенная по данным Gaia DR3 [39] для NGC 6426 с селекцией по собственным движениям согласно [41]. Определенные с помощью фотометрических данных Gaia DR3 [39] и аппроксимации изохронами [42] возраст T = 12.7 млрд. лет, металличность [Fe/H] = -2.5 dex, $[\alpha/Fe] = 0.4$ dex, избыток цвета $E(B-V) = 0.405^m$ и расстояние *D* кпк находятся в

хорошем согласии с литературными данными и результатами нашего спектроскопического исследования (табл. 1, 8).

Согласно литературным данным, подобранные нами галактические скопления — аналоги с Ликскими индексами, совпадающими в пределах ошибок с таковыми у Pal 2, Pal 10, Pal 13, Pal 14, NGC 6426, NGC 6535 и NGC 6749, не только соответствуют им по возрасту и химическому составу, но и, как оказалось, принадлежат, как правило, тем же компонентам структуры Галактики, что и объекты исследования. Этот факт иллюстрирует большой потенциал использованного подхода [75] для исследования структуры и эволюции нашей и других галактик.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке гранта РФФИ 18-02-00167а.

БЛАГОДАРНОСТИ

Авторы благодарят Е. Давуста и ОНР за предоставление данных наблюдательного архива ОНР. Это исследование было выполнено на основе наблюдений, собранных в Европейской организации астрономических исследований в Южном полушарии в рамках программы ESO 077.D-0775, и использовало сервисы Научного архивного фонда ESO. В этой работе использовались данные миссии Gaia Европейского космического агентства (ESA)²¹, обработанные системой Gaia. Консорциум обработки и анализа DPAC²². Финансирование DPAC было предоставлено национальными учреждениями, в частности учреждениями, участвующими в Многостороннем соглашении Gaia.

СПИСОК ЛИТЕРАТУРЫ

- 1. G. O. Abell, Publ. Astron. Soc. Pacific 67, 258 (1955).
- 2. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Ann. Rev. Astron. Astrophys. 47, 481 (2009).
- 3. R. Zinn and M. J. West, Astrophys. J. Suppl. 55, 45 (1984).
- 4. W. E. Harris, Astron. J. 112, 1487 (1996).
- 5. A. Sollima, D. Martínez-Delgado, D. Valls-Gabaud, and J. Penarrubia, Astrophys. J. **726**, id. 47 (2011).
- 6. J. D. Bradford, M. Geha, R. R. Münoz, F. A. Santana, et al., Astrophys. J. **743**, id. 167 (2011).
- 7. G. Lemaitre, D. Kohler, D. Lacroix, J. P. Meunier, and A. Vin, Astron. and Astrophys. **228**, 546 (1990).
- 8. G. Worthey, S. M. Faber, J. J. Gonzalez, and D. Burstein, Astrophys. J. Suppl. 94, 687 (1994).
- 9. D. Burstein, S. M. Faber, C. M. Gaskell, and N. Krumm, Astrophys. J. 287, 586 (1984).

²¹https://www.cosmos.esa.int/gaia

²²https://www.cosmos.esa.int/web/gaia/dpac/consortium

- 10. G. Worthey, Astrophys. J. Suppl. 95, 107 (1994).
- 11. G. Worthey and D. L. Ottaviani, Astrophys. J. Suppl. 111, 377 (1997).
- 12. S. C. Trager, G. Worthey, S. M. Faber, D. Burstein, and J. J. Gonzalez, Astrophys. J. Suppl. 116, 1 (1997).
- 13. A. Sarajedini, L. R. Bedin, B. Chaboyer, A. Dotter, et al., Astron. J. **133**, 1658 (2007).
- 14. M. Hilker, Astron. and Astrophys. 448, 171 (2006).
- 15. D. A. Khamidullina, M. E. Sharina, V. V. Shimansky, and E. Davoust, Astrophys. Bull. 69, 409 (2014).
- K. Banse, Ph. Crane, Ch. Ounnas, and D. Ponz, in Proc. of the DECUS Europe Symp. (Digital Equipment Corporation, Maynard, MA, USA), p. 87 (1983).
- D. Tody, in Astronomical Data Analysis Software and Systems II, edited by R. J. Hanisch, R. J. V. Brissenden, and J. Barnes (San Francisco, CA: ASP), ASP Conf. Ser. 52, 173 (1993).
- P. B. Stetson, L. E. Davis, and D. R. Crabtree, in CCDs in Astronomy (San Francisco: ASP), ASP Conf. Ser. 8, 289 (1990).
- M. Koleva, P. Prugniel, P. Ocvirk, D. Le Borgne, and C. Soubiran, Monthly Not. Roy. Astron. Soc. 385, 1998 (2008).
- 20. *M. Koleva, P. Prugniel, A. Bouchard, and Y. Wu*, Astron. and Astrophys. **501**, 1269 (2009).
- 21. P. Prugniel and C. Soubiran, Astron. and Astrophys. 369, 1048 (2001).
- 22. P. Prugniel, C. Soubiran, M. Koleva, and D. Le Borgne, VizieR Online Data Catalog: III/251 (2007).
- 23. A. Alonso, S. Arribas, and C. Martínez-Roger, Astron. and Astrophys. Suppl. Ser. 140, 261 (1999).
- 24. I. Ramírez and J. Meléndez, Astrophys. J. 626, 465 (2005).
- 25. *D. Thomas, C. Maraston, and R. Bender*, Monthly Not. Roy. Astron. Soc. **343**, 279 (2003).
- 26. *D. Thomas, C. Maraston, and A. Korn*, Monthly Not. Roy. Astron. Soc. **351**, L19 (2004).
- D. Le Borgne, B. Rocca-Volmerange, P. Prugniel, A. Lancon, M. Fioc, and C. Soubiran, Astron. and Astrophys. 425, 881 (2004).
- A. Vazdekis, P. Sanchez-Blazquez, J. Falcon-Barroso, A. J. Cenarro, M. A. Beasley, N. Cardiel, J. Gorgas, and R. F. Peletier, Monthly Not. Roy. Astron. Soc. 404, 1639 (2010).
- P. Sánchez-Blázquez, R. F. Peletier, J. Jiménez-Vicente, N. Cardiel, et al., Monthly Not. Roy. Astron. Soc. 371, 703 (2006).
- 30. M. E. Sharina, V. V. Shimansky, and N. N. Shimanskaya, Astrophys. Bull. **75**, 247 (2020).
- F. Castelli and R. L. Kurucz, Modelling of Stellar Atmospheres, Poster Contributions, Proc. of the 210th Symp. of the IAU held at Uppsala University, Uppsala, Sweden, 17–21 June, 2002; edited by N. Piskunov, W. W. Weiss, and D. F. Gray, Astron. Soc. Pacific 210, id. A20 (2003).
- 32. E. E. Salpeter, Astrophys. J. 121, 161 (1955).
- 33. A. Sollima and H. Baumgardt, Monthly Not. Roy. Astron. Soc. 471, 3668 (2017).
- 34. A. Pietrinferni, S. Cassisi, M. Salaris, and S. Hidalgo, Astron. and Astrophys. 558, id. 46 (2013).

- 35. M. E. Sharina, V. V. Shimansky and A. Y. Kniazev, Monthly Not. Roy. Astron. Soc. **471**, 1955 (2017).
- R. P. Schiavon, N. M. Caldwell, H. P. Heather, S. Courteau, L. A. MacArthur, and G. J. Graves, Astron. J. 143, id. 14 (2012).
- 37. P. Marigo, L. Girardi, A. Bressan, P. Rosenfield, et al., Astrophys. J. 835, id. 77 (2017).
- D. Kaisler, W. E. Harris, and D. E. McLaughlin, Publ. Astron. Soc. Pacific 109, 926 (1997).
- 39. T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, et al., Astron. and Astrophys. 595, id. A1 (2016).
- 40. M. Riello, F. De Angeli, D. W. Evans, P. Montegriffo, et al., arXiv:2012.01916 [astro-ph.IM] (2020).
- 41. *E. Vasiliev*, Monthly Not. Roy. Astron. Soc. **484**, 2832 (2019).
- 42. S. L. Hidalgo, A. Pietrinferni, S. Cassisi, M. Salaris, et al., Astrophys. J. 856, id. 125 (2018).
- 43. *M. E. Sharina, M. V. Ryabova, M. I. Maricheva, and A. S. Gorban*, Astron. Rep. **62**, 733 (2018).
- 44. E. Carretta, A. Bragaglia, R. G. Gratton, A. Recio-Blanco, S. Lucatello, V. D'Orazi, and S. Cassisi, Astron. and Astrophys. **516**, 55 (2010).
- 45. E. Bica, S. Ortolani, and B. Barbuy, Publ. Astron. Soc. Australia 33, 28 (2016).
- 46. A. Pérez-Villegas, B. Barbuy, L. Kerber, S. Ortolani, S. O. Souza, and E. Bica, Monthly Not. Roy. Astron. Soc. 491, 3251 (2020).
- A. T. Bajkova, G. Carraro, V. I. Korchagin, N. O. Budanova, and V. V. Bobylev, Astrophys. J. 895, id. 69 (2020).
- 48. A. T. Bajkova and V. V. Bobylev, arXiv:2008.13624 [astroph.GA] (2020).
- 49. D. Massari, H. H. Koppelman, and A. Helmil, Astron. and Astrophys. 630, id. L4 (2019).
- 50. V. A. Marsakov, V. V. Koval', and M. L. Gozha, Astron. Rep. 63, 274 (2019).
- 51. R. P. Schiavon, J.A. Rose, S. Courteau, and L. A. MacArthur, Astrophys. J. 608, L33 (2004).
- 52. *F. Jahandar, K. A. Venn, M. D. Shetrone, M. Irwin, et al.*, Monthly Not. Roy. Astron. Soc. **470**, 4782 (2017).
- 53. C. M. Sakari, K. A. Venn, M. Irwin, W. Aoki, N. Arimoto, and A. Dotter, Astrophys. J. **740**, id. 106 (2011).
- 54. L. Monaco, I. Saviane, M. Correnti, P. Bonifacio, and D. Geisler, Astron. and Astrophys. **525**, id. A124 (2011).
- 55. R. A. P. Oliveira, S. O. Souza, L. O. Kerber, B. Barbuy, et al., Astrophys. J. **891**, id. 37 (2020).
- 56. D. A. VandenBerg, K. Brogaard, R. Leaman, and L. Casagrande, Astrophys. J. 775, id. 134 (2013).
- 57. J. C. Roediger, S. Courteau, G. Graves, and R. P. Schiavon, Astrophys. J. Suppl. 210, id. 10 (2014).
- 58. C. Conroy, A. Villaume, P. G. van Dokkum, and K. Lind, Astrophys. J. **854**(2), id. 139 (2018).
- 59. E. Valenti, L. Origlia and R. M. Rich, Monthly Not. Roy. Astron. Soc. 414, 2690 (2011).
- M. Bonatto and A. L. Chies-Santos, Monthly Not. Roy. Astron. Soc. 493, 2688 (2020).
- 61. B. Dias, B. Barbuy, I. Saviane, E. V. Held, G. S. Da Costa, S. Ortolani, M. Gullieuszik, and S. Vásquez, Astron. and Astrophys. **590**, id. 9 (2016).

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 98 № 6 2021

- 62. B. J. Pritzl, K. A. Venn, and M. Irvin, Astron. J. 130, 2140 (2005).
- 63. *Ş. Çalışkan, N. Christlieb, and E. K. Grebel*, Astron. and Astrophys. **537**, id. 83 (2012).
- 64. C. I. Johnson, N. Caldwell, R. M. Rich, and M. G. Walker, Astron. J. 154, id. 155 (2017).
- 65. M. Hanke, A. Koch, C. J. Hansen, and A. McWilliam, Astron. and Astrophys. **599**, id. 97 (2017).
- M. E. Sharina, V. V. Shimansky, and D. A. Khamidullina, Astrophys. Bull. 73, 337 (2018).
- 67. S. Meszáros, S. L. Martell, M. Shetrone, S. Lucatello, et al., Astron. J. 149, id. 153 (2015).
- A. Bragaglia, E. Carretta, V. D'Orazi, A. Sollima, P. Donati, R. G. Gratton, and S. Lucatello, Astron. and Astrophys. 607, id. 44 (2017).
- S. L. Martell, G. H. Smith, and M. M. Briley, Astron. J. 136, 2522 (2008).
- C. Mũnoz, D. Geisler, S. Villanova, I. Saviane, et al., Astron. and Astrophys. 620, id. 96 (2018).
- J. E. Colucci, R. A. Bernstein, and A. McWilliam, Astrophys. J. 834(2), 105 (2017).
- A. Koch and P. Côté, Astron. and Astrophys. 632, id. 55 (2019).

- 73. *R. G. Gratton, E. Carretta, and A. Bragaglia*, Astron. and Astrophys. Rev. **20**, 50 (2012).
- 74. R. P. Kraft, Publ. Astron. Soc. Pacific 106, 553 (1994).
- 75. *M. J. West, P. Côté, R. O. Marzke, and J. Andrés*, Nature **427**, 31 (2004).
- A. Rosenberg, I. Saviane, G. Piotto, A. Aparicio, and S. R. Zaggia, Astron. J. 115, 648 (1998).
- 77. W. E. Harris, P. R. Durrell, G. R. Petitpas, T. M. Webb, and S. C. Woodworth, Astron. J. 114, 103 (1997).
- 78. G. Bertelli, L. Girardi, P. Marigo, and E. Nasi, Astron. and Astrophys. 484, 815 (2008).
- 79. *M. Salaris and A. Weiss*, Astron. and Astrophys. **388**, 492 (2002).
- 80. M. Sharina, B. Aringer, E. Davoust, A. Y. Kniazev and C. J. Donzelli, Monthly Not. Roy. Astron. Soc. 426, L31 (2012).
- 81. *G. Piotto, A. P. Milone, L. R. Bedin*, J. Anderson, et al., Astron. J. **149**, id. 91 (2015).
- G. Chabrier, Astrophys. Space Sci. Library 327, 41 (2005).
- 83. S. Vásques, I. Saviane, E. V. Held, G. S. Da Costa, et al., Astron. and Astrophys. 619, id. A13 (2018).
- 84. P. Côté, S. G. Djorgovski, G. Meylan, S. Castro, and J. K. McCarthy, Astron. J. 574, 783 (2002).