УДК 524.35

ПЕРЕМЕННОСТЬ СПЕКТРА МОЛОДОГО ОСТАТКА СВЕРХНОВОЙ G11.2–0.3

© 2021 г. В. П. Иванов^{1, *}, А. В. Ипатов¹, И. А. Рахимов¹, Т. С. Андреева¹

¹ Институт прикладной астрономии РАН, Санкт-Петербург, Россия

**E-mail: ivanov_vp41@mail.ru* Поступила в редакцию 20.01.2021 г. После доработки 23.03.2021 г. Принята к публикации 31.03.2021 г.

Уточнен спектр G11.2–0.3 путем приведения опубликованных данных измерений интенсивностей к шкале потоков "искусственная луна" и исследована динамика его изменений на различных временных шкалах от 0.4 до более ~50 лет. Обнаружен рост потоков радиоизлучения G11.2–0.3 в течение \geq 30 лет на волнах 3 см $\leq \lambda \leq$ 375 см с частотной зависимостью: средняя скорость изменений убывает пропорционально log(f), и на частотах $f \geq$ 10 ГГц рост сменился падением. Измерения на радиотелескопе PT-32 обсерватории "Светлое" (ИПА РАН) в 2013–2019 гг. показали уменьшение потоков G11.2–0.3 на фоне быстрых нестационарных изменений со средней скоростью (-5.4 ± 6.6)%/год на длине волны $\lambda = 6.2$ см и (-1.5 ± 0.9)%/год на $\lambda = 3.5$ см. Этапы роста и падения потоков разделяет эпоха 2016.9 \pm 0.6. Спектр G11.2–0.3 является суммой спектров оболочки и плериона, параметры каждого из них были определены по разработанной нами методике на эпоху 1972.5. Получены значения спектральных индексов α 1 оболочки и α 2 PWN: α l₁₉₇₂ = 0.77; α 2₁₉₇₂ = 0.251. Динамика радиоизлучения остатка отражает сценарий взаимодействия ударной волны и CSM. Обсуждаются возможные причины эволюционных и нестационарных изменений.

Ключевые слова: остаток сверхновой, плерион, ударная волна, радиотелескоп **DOI:** 10.31857/S0004629921080053

1. ВВЕДЕНИЕ

Остаток сверхновой (ОСН) G11.2–0.3 относится к типу "С" остатков, называемых комбинированными, т.е. имеет расширяющуюся оболочку с расположенной внутри нее туманностью пульсарного ветра (PWN, плерион), окружающей центральный пульсар PSR J1811–1925. Впервые плерион и пульсар в G11.2–0.3 обнаружены в рентгеновском диапазоне из наблюдений ASCA, о чем сообщалось в [1, 2].

G11.2–0.3 – один из трех или четырех самых молодых OCH с коллапсом ядра (core-collapse supernovae, CC SNR) в Галактике. Оставшаяся после взрыва нейтронная звезда действует как пульсар, создавая PWN в середине расширяющегося выброса. В работе [3] отмечена особенность морфологии плериона в жестком рентгеновском диапазоне: источник синхротронного излучения содержит две противоположно направленные струи, не имеющие аналогов в радиоизлучении.

Возраст остатка по данным измерения скорости расширения туманности в рентгеновском диапазоне на основе наблюдений Chandra оценивается в пределах 1400–2400 лет [3]. Измерения в

радиодиапазоне с высоким угловым разрешением выявили круговую симметрию внешней границы G11.2-0.3. Зависимость плотности потока S от частоты f близка к степенной в виде $S(f) \propto f^{-\alpha}$ со спектральным индексом $\alpha = 0.5$ [4]. По данным [5], спектральные индексы оболочки плериона составляют $\alpha_s = 0.56 \pm 0.02$ И $\alpha_P = 0.25^{+0.05}_{-0.10}$ соответственно, а плотности потоков имеют следующие значения: $S_t = 16.6 \pm 0.9$ Ян $(\lambda$ см) и 8.4 ± 0.9 Ян (λ = 6 см), S_P = 0.36 ± 0.23 Ян $(\lambda \text{ см})$ и 0.32 ± 0.18 Ян ($\lambda = 6 \text{ см}$), $S_S = 16.2 \pm 1.1$ Ян $(\lambda \text{ см})$ и 8.0 ± 1.1 Ян ($\lambda = 6 \text{ см}$), где обозначено: S_t - плотности потоков всего источника, S_P плериона и S₅ – оболочки. Опираясь на эти данные, можно оценить вклад плериона в полный поток ОСН. На длинах волн $\lambda = 20$ см и 6 см он составил 2.2 и 3.8% соответственно.

Угловой диаметр оболочки G11.2–0.3 составляет 4' [4], объект находится, согласно [6], на расстоянии $d \approx 5$ кпк от земного наблюдателя; по другим оценкам d может быть равным от 4.4 кпк [6] до 5.5–7 кпк [7].

Таблица 1. Параметры радиотелескопа РТ-32 обсерватории "Светлое" (ИПА РАН)

f, МГц	<i>T</i> _{пр} , К	<i>Т</i> _{ша} , К	<i>Т</i> _{сис} , К	$\Delta f, M \Gamma$ ц	КИП	HPBW, '
1550	10	38	48	450	0.6	21.9
2370	10	37	50	450	0.48	14.6
4840	10	23	33	1000	0.6	6.96
8450	12	27	39	1000	0.56	3.94

Примечание. Приведены: f – частота; $T_{\rm пp}$ – шумовая температура входа приемника; $T_{\rm ша}$ – шумовая температура антенны; $T_{\rm сис}$ – шумовая температура системы; Δf – полоса пропускания приемника; КИП – коэффициент использования поверхности; НРВW – ширина диаграммы направленности на уровне 0.5 по мощности в угловых минутах. Поляризация всех облучателей круговая.

На основании морфологии ОСН по данным наблюдений G11.2-0.3 на VLA с разрешением 3" на двух частотах авторы [6] пришли к выводу, что G11.2-0.3 - это аналог Cas A на более поздней стадии эволюции. В работе [8], опубликованной в 1960 г., И.С. Шкловский предсказал эволюционное вековое уменьшение потока у остатков сверхновых и показал, что у молодых ОСН, в частности у Cas A, эффект может быть измерен, что вскоре подтвердилось наблюдениями. Установлено, что радиоспектры молодых ОСН испытывают эволюционные и нестационарные изменения [9–13], изучение которых важно для понимания физики этих объектов, поэтому актуальна задача обнаружения и изучения переменности ОСН G11.2-0.3. Данные радионаблюдений ОСН G11.2-0.3 на разных частотах опубликованы в нескольких десятках работ. Для уточнения спектра G11.2-0.3, выявления динамики его эволюционных и нестационарных изменений необходимы как дальнейшие измерения плотностей потоков, так и приведение опубликованных данных в единую систему на основе точной абсолютной шкалы потоков.

В работе представлены измерения плотностей потоков G11.2–0.3 на радиотелескопе РТ-32 обсерватории "Светлое" (ИПА РАН), а также результаты сведения опубликованных данных в единую систему на основе шкалы потоков "искусственная луна" (ИЛ) [14] с целью уточнения спектра этого источника и исследования его вариаций.

2. ИЗМЕРЕНИЯ НА РАДИОТЕЛЕСКОПЕ РТ-32 ОБСЕРВАТОРИИ "СВЕТЛОЕ" (ИПА РАН)

Измерения плотностей потоков ОСН G11.2– 0.3 относительно стандартов шкалы потоков ИЛ в 2013–2019 гг. Параметры полноповоротного параболического радиотелескопа РТ-32 диаметром 32 м обсерватории "Светлое" (ИПА РАН) приведены в табл. 1 [15–17].

Плотности потоков исследуемых источников измерены относительно источников – стандартов шкалы потоков ИЛ [14]. Шкала потоков ИЛ основана на абсолютных измерениях по методу "искусственной луны", превосходящему по точности другие методы и включает в себя более 15 стандартных источников со спектрами, перекрывающими диапазон частот 38 МГц-200 ГГц. Существенным отличием от других шкал и преимуществом шкалы ИЛ является независимый от абсолютных измерений контроль формы спектров источников (метод относительных спектров). Шкала потоков ИЛ адаптирована на частоты до 200 ГГи и более на основе стандартного спектра Крабовидной туманности, подробно исследованного путем абсолютных измерений по методу "искусственной луны" [10]. Спектр Крабовидной туманности степенной, и на основе метода относительных спектров показано, что степенной закон выполняется, по крайней мере, до 200 ГГи:

$$S(f) = S_0 \left(\frac{f}{f_0}\right)^{-\alpha},\tag{1}$$

где S(f) Ян — плотность потока на частоте f МГц; S_0 Ян — параметр, равный плотности потока на частоте f_0 МГц; α — спектральный индекс. Среднее значение $\alpha = 0.327 \pm 0.002$ и не зависит от времени; $\frac{1}{S} \frac{dS}{dt} = (-0.159 \pm 0.024)$ %/год; $S_0 = (937 \pm 22)$ Ян на частоте $f_0 = 1$ ГГц на эпоху 1992.7.

Основным стандартом радиоизлучения в шкале потоков ИЛ является внегалактический источник 3C295. Его характеризуют стабильное на волнах длиннее 1 см радиоизлучение и малые угловые размеры: $5'' \times 1''$ [18]. В шкале потоков ИЛ спектр 3C295 в диапазоне частот 1425—8450 МГц определяется степенной функцией (1) с параметрами: $\alpha = 1.007$; $S_0 = 8.249$ Ян на частоте $f_0 = 3500$ МГц.

На радиотелескопе PT-32 можно измерять отношения плотностей потоков исследуемых источников и стандартов шкалы потоков ИЛ на 4 частотах: 1550, 2370, 4840, 8450 МГц. Абсолютные плотности потоков ОСН получены по измеренным отношениям потоков ОСН и стандартов шкалы ИЛ.

Методика коррекции данных и определения погрешностей измерений подробно изложена в работе [13]. Погрешности измерений включают среднеквадратичное отклонение отношений пиковых антенных температур, которое не превышало 3%, а также погрешности поправки за частичное разрешение G11.2–0.3 диаграммой направленности антенны. Методика определения этой поправки также подробно описана в работе [13]. Погрешность коррекции за разрешение источника зависит от разности профилей антенной температуры скана и аппроксимирующей гауссианы. В случае G11.2-0.3 профили сканов вдоль обеих осей мало отличаются от гауссиан, и погрешность поправок, максимальная для длины волны $\lambda = 3.5$ см, не превысила 2.5%. Профили определялись путем усреднения двух противоположно направленных сканов. При наблюдениях применялась методика "on"-"off" и направление позиционного угла источника при наведении на него антенны с круговой поляризацией и круговой симметрией луча поправок не требует. Коррекция за атмосферное поглощение вводилась в виде множителя e^{γ} , где $\gamma = A_{\lambda} / \sin(h)$, h -угол места (высота) антенны. Для волн 18, 13, 6.2 и 3.5 см *А*, составляет, соответственно, 0.01, 0.011, 0.012 и

0.013. Причиной погрешности определения плотности потока ОСН при сравнении со стандартом 3С295 может быть различие спектральных индексов (соответственно ≈0.5 и 1.007). В нашем случае погрешность не превышает 0.3% и поправки не вволились.

Измерения плотностей потоков G11.2–0.3 выполнены на частотах 4840 и 8450 МГц между апрелем 2013 г. и октябрем 2019 г. На обеих частотах измерения повторялись с целью выявления изменений в излучении источника. Плотности потоков G11.2–0.3, определенные на частотах 4840 и 8450 МГц между эпохами 2013.34 и 2019.89 в шкале потоков ИЛ, приведены в табл. 2. Поскольку измерения выполнялись на одном радиотелескопе и в одинаковых условиях, в табл. 2 приведены только случайные погрешности.

Рисунок 1 представляет данные табл. 2 в логарифмическом масштабе, что позволяет визуально оценить соответствие временных последовательностей log(S) линейному закону. log(S) зависит от времени линейно, если скорость изменения

потока
$$\frac{1}{S}\frac{dS}{dt} = \text{const.}$$

Рисунок 2 также иллюстрирует данные табл. 2, однако для лучшего восприятия деталей наблюдаемого процесса, на рис. 2 временной интервал ограничен в пределах 2018.2–2020.0.

Линейная аппроксимация зависимости log(S(t)) на волне $\lambda = 6.2$ см по данным табл. 2 имеет вид:

$$\log_{10}(S) = (48.19 \pm 57.63) - (0.023 \pm 0.029)t.$$
(2)

То же на волне $\lambda = 3.5$ см:

$$\log_{10}(S) = (13.84 \pm 7.58) - (0.0065 \pm 0.0038)t, \quad (3)$$

где t = Epoch.

Таблица 2. Плотности потоков ОСН G11.2–0.3 по данным измерений на радиотелескопе РТ-32

Epoch	f, МГц	Sam, Ян	σ, Ян
2013.34	8450	7.016	0.20
2015.509	8450	6.543	0.19
2017.949	4840	8.811	0.26
2017.99	4840	9.153	0.30
2018.03	4840	8.703	0.25
2018.209	4840	8.426	0.24
2018.38	8450	6.979	0.33
2018.387	8450	6.846	0.20
2018.39	8450	6.386	0.10
2018.39	4840	8.081	0.23
2018.40	4840	8.895	0.28
2018.518	8450	6.679	0.20
2018.54	8450	6.575	0.19
2018.57	8450	6.758	0.21
2018.74	4840	11.853	0.34
2018.79	8450	6.719	0.20
2018.80	4840	7.945	0.32
2018.81	4840	8.427	0.24
2018.85	8450	6.799	0.20
2018.86	4840	7.977	0.27
2018.89	4840	7.766	0.23
2018.97	4840	7.136	0.39
2019.09	8450	6.611	0.59
2019.11	4840	7.643	0.31
2019.26	8450	5.616	0.16
2019.29	4840	8.309	0.30
2019.37	8450	6.320	0.40
2019.66	4840	8.213	0.33
2019.89	8450	6.236	0.18

Примечание. Приведены: Еросh — эпоха измерения; f — частота; Sam — плотность потока (am — artificial moon); σ — случайная погрешность измерения.

На волне $\lambda = 6.2$ см в интервале времени 2017.95–2019.66 плотность потока в среднем уменьшалась со скоростью: $d(\ln S(t))/dt = -(0.054 \pm \pm 0.066)$, т.е. $\frac{1}{S} \frac{dS}{dt} = (-5.4 \pm 6.6)$ %/год, а на волне $\lambda = 3.5$ см в интервале времени 2013.34–2019.89 плотность потока также в среднем уменьшалась со скоростью: $d(\ln S(t))/dt = -(0.015 \pm 0.009)$, т.е. $\frac{1}{S} \frac{dS}{dt} = (-1.5 \pm 0.9)$ %/год.

Наблюдалось крупномасштабное во времени уменьшение плотностей потоков на обеих частотах в указанных временны́х интервалах при нали-

Рис. 1. Логарифмы плотностей потоков ОСН G11.2-0.3 по данным табл. 2.

Рис. 2. Распределение логарифмов плотностей потоков ОСН G11.2-0.3 в интервале времени 2018.3-2020.0 на длинах волн $\lambda = 6.2$ и 3.5 см по данным табл. 2.

чии значимых быстрых отклонений текущих значений log(S) от средних зависимостей. Наибольшие отклонения log(S) от средних значений наблюдались на волне $\lambda = 6.2$ см в эпохи 2018.74 (+11.7 σ) и 2018.97 (-3.1 σ), а на волне $\lambda = 3.5$ см в эпоху 2019.26 (-5.2 σ).

На волне $\lambda = 6.2$ см в интервале времени 2018.74—2019.58 наблюдался процесс изменения *S* относительно среднего уровня от (+39%) в эпоху 2018.74 до (-18%) в эпоху 2018.97 и выход на средний уровень в эпоху 2019.58. Подобная, но менее подробная картина наблюдалась на волне

п	Epoch	f, МГц	Sam, Ян	Err, Ян	Ѕр, Ян	Source	k	Ссылки
1	1966.95	2695	9.61	0.96	11	3C274	0.87	19
2	1967.68	5000	10.11	1.01	11	3C274	0.92	19
3	1967.78	635	12.28	1.25	13.2	3C218	0.93	20
4	1967.78	1410	11.89	1.15	12.6	3C218	0.94	20
5	1967.78	2650	10.81	1.02	11.8	3C218	0.92	20
6	1968	80	36.72	4.92	36	Sample	1.02	21
7	1968.67	5000	8.3	0.83	8.9	3C218	0.93	22
8	1968.67	408	29.88	2.99	36	Sample	0.83	23
9	1969	2700	10.68	1.07	12	19–46	0.89	24
10	1971	80	45.33	10.3	44	Sample	1.03	25
11	1974	80	54.6	16.48	53	Sample	1.03	26
12	1974	160	42.66	2.98	43	Sample	0.99	26
13	1974.2	10630	5.1	0.7	5.8	3C123, 3C218	0.88	27
14	1975.5	1415	13.34	0.67	14.5	3C147	0.92	28
15	1983.1	2695	10.18	0.44	11.49	3C286	0.89	29
16	1984.29	1408	15.96	0.63	17.69	3C286	0.90	30
17	1986	32000	3.39	0.2	4.04	3C286, NGC 7027	0.84	31
18	1987	23000	4.34	0.46	4.7	NGC 7027	0.92	32
19	1987.87	330	32.37	0.01	39	3C48, 3C286	0.83	33
20	1996.1	14700	5.22	0.37	5.7	NGC 7027	0.92	32
21	1996.12	4850	8.59	0.45	9.6	3C286	0.89	32
22	1999.33	32000	3.08	0.32	3.8	3C286	0.81	32
23	1999.62	10450	5.79	0.37	6.3	3C286	0.92	32

Таблица 3. Плотности потоков ОСН G11.2-0.3 по опубликованным данным, приведенным к шкале потоков ИЛ

Примечание. Приведены: номер строки n; эпоха измерений Epoch; частота измерений f; плотность потока в шкале потоков ИЛ Sam и ее абсолютная погрешность Err; опубликованное значение плотности потока G11.2–0.3 Sp; источник-калибратор Source (если стандартных источников несколько – Sample); множители перехода к шкале ИЛ k; ссылки на первоисточник.

 $\lambda = 3.5$ см: "провал" глубиной (-16%) относительно среднего уровня наблюдался в эпоху 2019.26.

3. СПЕКТР И ПЕРЕМЕННОСТЬ СПЕКТРА ОСН G11.2–0.3

Для уточнения спектра G11.2–0.3 и исследования его эволюционных изменений на длительном временном интервале в широком диапазоне частот опубликованные в литературе данные измерений, позволяющие сравнить плотности потоков G11.2–0.3 и стандартных источников, были приведены нами к шкале потоков ИЛ [14]. Преимущества шкалы ИЛ перед широко используемой шкалой BGPW [19] обсуждались в [14]. Приведенные к шкале потоков ИЛ плотности потоков G11.2–0.3 представлены в табл. 3. Таким образом, была получена единая система данных, определенная на временном интервале 1966.95–2019.89 в диапазоне частот 80 МГц – 32 ГГц.

На рис. 3 представлены плотности потоков G11.2-0.3 в зависимости от частоты по данным табл. 3.

Следует отметить, что погрешности измерений, указанные в опубликованных работах, содержат неопределенность абсолютной привязки, вклад которой значителен. При представлении этих данных в шкале потоков ИЛ погрешности должны снижаться из-за устранения этой составляющей, но ввиду ее неопределенности погрешности сохранены. Вследствие значительной неопределенности погрешностей измерений данные табл. 3 аппроксимировались степенно́й зависимостью плотности потока от частоты в виде (1) без учета веса данных измерений. Кроме того, не учитывалась точка на частоте 635 МГц (эпоха 1967.78) с отклонением от среднего спектра более,

Рис. 3. Плотности потоков G11.2-0.3 в зависимости от частоты по данным табл. 3.

чем на 5*б*. Получена аппроксимирующая степенная функция

$$S_c = S_0 \left(\frac{f}{f_0}\right)^{-\alpha} \tag{4}$$

с параметрами: $\alpha = 0.445 \pm 0.02$; $S_0 = (16.51 \pm 0.52)$ Ян; $f_0 = 1$ ГГц.

На рис. 4 представлены логарифмы измеренных потоков Sam из табл. 3, нормированных на расчетные значения S_c на разных частотах в зависимости от времени; нормирование позволяет представить все данные в одинаковом крупном масштабе. Изменения плотностей потоков содержат значительную нестационарную составляющую, скорости изменений $R = d(\ln S)/dt$ различны на разных частотах, а на отдельных частотах меняются во времени. Оценки R для большинства частот ограничены временными интервалами ($6 \le \Delta t \le 17$) лет, при этом для большинства частот R положительны и уменьшаются с ростом частоты. Имели место "избытки" и "провалы" потока в течение коротких временных интервалов, что отмечалось и в данных наших наблюдений на РТ-32.

Для определения параметра $R = d(\ln S)/dt$ на частотах 80, 1410, 4840, 8450 и 32000 МГц использовались данные табл. 2 и 3, приведенные к указанным частотам на основе значения $\alpha = 0.445 \pm 0.002$). Для определения *R*(80 МГц) использовались данные 80 МГц в эпохи 1968, 1971 и 1974;

R(1410 МГц) — данные 1410 МГц (эпоха 1967.78), 1415 МГц (эпоха 1975.5) и 1408 МГц (эпоха 1984.287);

R(2695 МГц) — данные 2695 МГц (эпоха 1966.95), 2650 МГц (эпоха 1967.78), 2.7 МГц (эпоха 1969.0) и 2695 МГц (эпоха 1983.1);

R(4840 МГц) — данные 5000 МГц (эпоха 1967.68), 5000 МГц (эпоха 1968.67), 4850 МГц (эпоха 1996.12) и 4840 МГц (эпоха 2017.95);

R(8450 МГц) — данные 10 630 МГц (эпоха 1968.67), 10 450 МГц (эпоха 1999.62) и 8450 МГц (эпоха 2013.34);

R(32 000 МГц) — данные 32 000 МГц в эпохи 1986.0 и 1999.33.

Параметры эволюционной переменности радиоизлучения определялись сравнением не только плотностей потоков на отдельных частотах, но и разнесенных во времени текущих спектров G11.2–0.3. В табл. 3 данные измерений расположены в хронологическом порядке и естественно разделяются на три группы, объединяющие близкие по времени измерений (≤8.55 года) данные. На основе этих групп определены три текуших спектра для средних эпох: 1970.38, 1985.65 и 1997.79. Спектр 1970.38 включает данные измерений между эпохами 1966.95 и 1975.5, за исключением точки на частоте 635 МГц (эпоха 1967.78) с большим отклонением от среднего спектра, спектр 1985.65 основан на измерениях в интервале от 1983.1 до 1987.87, а спектр 1997.79 включает

Рис. 4. Логарифмы отношений измеренных потоков Sam к расчетным значениям *S_c* на разных частотах в зависимости от времени.

измерения от 1996.1 до 1999.62. Параметры этих спектров определялись в виде (1) без учета веса данных измерений, они приведены в табл. 4.

Таблица 4 иллюстрируется рис. 5 и 6, где показаны зависимости спектрального индекса α и параметра S_0 от времени соответственно.

Как видно из рис. 5 и 6, зависимости α и $\log(S_0)$ от времени близки к линейным:

$$\alpha(t) = (0.412 \pm 0.009) + (0.00351 \pm 0.0005)t, \quad (5a)$$

$$log(S_0(t)) = (1.191 \pm 0.003) + (5b) + (0.00354 \pm 0.0002)t,$$

где t = (Epoch - 1965.0).

Из (1) следует:

$$\log(S) = \log(S_0) - \alpha \log(f/f_0), \tag{6}$$

Таблица 4. Параметры текущих спектров G11.2-0.3, вычисленные по данным табл. 3

Epoch	δƒ, ГГц	α	σ_{α}	<i>S</i> ₀ , Ян	σ _{S0} , Ян	<i>f</i> ₀ , ГГц
1970.38	0.08-10.63	0.433	0.026	16.24	0.74	1
1985.65	0.33-32	0.481	0.021	18.31	0.85	1
1997.79	4.85-32	0.536	0.045	20.5	2.53	1

Примечание. Приведены: средняя эпоха измерений Еросh; диапазон частот δf ; спектральный индекс α и его погрешность σ_{α} ; плотность потока S_0 на частоте f_0 и его погрешность σ_{S_0} ; частота f_0 .

$$\ln(S(f,t)) = 2.3[(1.191 + 0.00354t) - (0.412 + 0.00351t)\log(f/f_0)].$$
(7)

Скорость изменения потока $R = \frac{1}{S} \frac{dS}{dt} = d(\ln S)/dt$. Дифференцируя (4), определяем

$$R = \frac{1}{S} \frac{dS}{dt} = 2.3(0.00354 - 0.00351\log(f/f_0)).$$
 (8)

Средняя скорость изменения потока на временном интервале 1967—2000 гг. зависит от частоты: рост потока наблюдался на частотах ниже 10.2 ГГц, на более высоких частотах поток падал. Значения частот f [MHz], скоростей R [%/год], погрешностей определения R, σR [%/год] и интервал времени Δt приведены в табл. 5.

Зависимость R(f) по спектрам определяется соотношением (7), или его эквивалентом:

$$R [\%/год] = 3.236 - 0.807 \log(f [МГц]).$$
 (8')

На рис. 7 представлены скорости изменения потоков ОСН G11.2–0.3, определенные по текущим спектрам и по измерениям на одной частоте по данным табл. 5.

На рис. 7 видно, что скорости изменения потоков, определяемые на отдельных частотах и по спектрам, различны в пределах погрешностей, за исключением частоты 80 МГц, где интервалы Δt , в которых определялись значения R, наиболее различны.

Рис. 5. Зависимость спектрального индекса α от времени.

Рис. 6. Зависимость параметра S_0 от времени.

Пользуясь соотношением (8'), данные табл. 3 можно скорректировать к общей эпохе для компенсации крупномасштабной переменности. Для эпохи 1972.5 был получен спектр с параметрами:

$$\alpha_{1972} = 0.497 \pm 0.02,$$

 $(S_0)_{1972} = (18.731 \pm 0.878)$ Ян.

Комбинированный ОСН G11.2–0.3 состоит из оболочки и плериона с пульсаром в центре. Спектры оболочки и плериона степенные, с разными спектральными индексами, что позволяет разделить общий спектр источника при достаточно точном его определении на две части, соответствующие компонентам источника. Методика

Рис. 7. Скорости изменения потоков ОСН G11.2–0.3, определенные по текущим спектрам и по измерениям на одной частоте.

изложена в [13], где она применялась к ОСН 3С396. Коротко, процесс заключается в следующем.

1. Для уточнения спектра комбинированного источника усреднялись логарифмы потоков, измеренных на близких частотах; средний логарифм потока соответствует среднему логарифму частоты. При усреднении не учитывались данные с быстрыми отклонениями от средних значений более 2σ . Усреднение минимизирует эффект быстрой переменности и погрешности измерений. Уточненный спектр не включает однократно измеренные данные, а также данные с признаками быстрых изменений во времени. В табл. 6 представлен спектр на эпоху 1972.5. Функция $\langle \log(Sam) \rangle = F(\log(f))$ аппроксимируется полиномом второй степени.

В табл. 6 данные усреднены в следующих интервалах частот:

i = 1, частоты 1410, 1415, 1408 МГц;

i = 2, частоты 2695, 2650, 2700, 2695 МГц;

i = 3, частоты 5000, 4850 МГц;

i = 4, частоты 10 630, 10 450 МГц;

i = 5, частоты 32 000, 32 000 МГц.

Таблица 5. Скорость изменения потока ОСН G11.2–0.3, определенная по измерениям на одной частоте и по текущим спектрам

f, МГц		На одной част	готе	По спектрам		
	<i>R</i> , %/год	σ <i>R</i> , %/год	Δt	<i>R</i> , %/год	σ <i>R</i> , %/год	Δt
80	6.70	0.02	1968.0-1974.0	1.7	0.82	1966.95-1999.62
1410	1.89	-0.01	1967.78-1984.29	0.69	0.81	1966.95-1999.62
2695	-0.1		1966.95-1983.1	0.47	0.82	1966.95-1999.62
4840	-0.06	-0.01	1967.68-2017.95	0.26	0.82	1966.95-1999.62
8450	0.97	0.01	1974.2-2013.34	0.07	0.82	1966.95-1999.62
32000	-0.72		1986.0-1999.33	-0.4	0.83	1966.95-1999.62

Примечание. Приведены: частота f; результаты, полученные на одной частоте – средняя скорость изменения потока R в интервале времени Δt и ее погрешность σR в том же интервале, используемый интервал времени Δt (начало-конец); результаты, полученные по спектрам, – скорость изменения потока R и погрешность ее определения σR , интервал времени Δt , на котором определялся параметр R.

i	$\left\langle f_{i} ight angle $, МГц	$\langle \operatorname{Sam}_{1972,i} \rangle$, Ян	Err, Ян	<i>n</i> (табл. 3)
1	1411	16.12	0.6	4, 14, 17
2	2685	11.77	0.52	1, 5, 9, 16
3	4924	8.22	0.67	7, 23
4	10540	5.44	0.56	13
5	32000	3.51	0.27	18

Таблица 6. Средние значения (Sam) измеренных плотностей потоков, приведенных к эпохе 1972.5

Примечание. Приведены: номер *i* интервала усреднения плотностей потоков и частот (см. текст); средняя в *i* -м интервале частота измерений $\langle f_i \rangle$; среднее в *i* -м интервале частот значение плотности потока $\langle \text{Sam}_{1972,i} \rangle$ и его погрешность Егг; перечислены номера строк табл. 3, входящих в *i* -й интервал и содержащих информацию об усредняемых данных.

2. Обозначим S_{1_c} и S_{2_c} спектры компонентов 1 и 2 (оболочки и плериона, соответственно), а $\langle Sam_i \rangle$ – усредненные плотности потоков на частотах f_i . Параметры одной из двух составляющих спектра, α l и S_{01} , задаются произвольно, и расчет плотностей потоков $S_{1_c}(f_i)$ на частотах f_i выполняется по формуле:

$$S_{l_c}(f_i) = S_{0l} \left(\frac{f_i}{f_0}\right)^{-\alpha l}$$
 (9)

Оптимальные параметры, при которых среднеквадратичное отклонение суммы расчетных значений $S_{1_c} + S_{2_c}$ от значений log $\langle \text{Sam}_{1972,i} \rangle$ достигает минимума, определялись по следующей схеме. Плотности потоков второй составляющей S_{2_c} на частотах f_i определяются как разность $\langle \text{Sam}_i \rangle - S_{1_c}(f_i)$, а параметры степенной зависимости $S_{2_c}(f)$, $\alpha 2$ и S_{02} определяются в виде подгонки степенной функции для выборки значений разностей:

$$S_{2_c}(f_i) = S_{02} \left(\frac{f_i}{f_0}\right)^{-\alpha 2}$$
 (10)

Среднеквадратичное отклонение σ двухкомпонентной модели определяется по совокупности сравнений квадратичной аппроксимации $\langle \text{Sam}_i \rangle$ из табл. 6 и сумм $S_{\Sigma}(f_i) = S_{1_c}(f_i) + S_{2_c}(f_i)$, вычисленных согласно (8) и (10). Паре значений α I и S_{01} однозначно соответствуют α 2 и S_{02} , с их изменением меняется среднеквадратичная погрешность двухкомпонентной модели, достигая минимума при оптимальных значениях параметров α I, S_{01} , α 2, S_{02} .

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 98 № 8 2021

Для эпохи 1972.5 получены следующие значения параметров:

$$\alpha 1 = 0.77 \pm 0.027,$$

$$S_{01} = 14.4 \pm 0.5 \text{ Ян};$$

$$\alpha 2 = 0.251 \pm 0.029,$$

$$S_{02} = 5.9 \pm 1.1 \text{ Ян}.$$

(11)

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На основе приведенных к шкале потоков "искусственная луна" (ИЛ) опубликованных данных измерений плотностей потоков ОСН G11.2-0.3 получена единая система данных о частотно-временном распределении интенсивности радиоизлучения источника в интервале времени 1966.95-1999.62 на частотах от 80 МГц до 32 ГГц. Обнаружена переменность излучения на временных шкалах от 0.8 до ~50 лет. Эволюционные (усредненные) изменения потоков происходят на фоне их быстрой нестационарной переменности (рис. 4) и описываются выражением (6). Плотность потока на частоте f менялась со средней скоростью, убывающей пропорционально $\log(f/f_0)$, где $f_0 = 1000$ МГц. На частотах 80—10000 МГц плотности потоков росли, выше по частоте они падали со временем.

Интенсивности ОСН G11.2-0.3 регулярно измерялись на ллинах волн $\lambda = 6.2$ и 3.5 см в 2013— 2019 гг. на радиотелескопе РТ-32 обсерватории "Светлое" (ИПА РАН). Были получены убывающие временные последовательности плотностей потоков (рис. 1 и 2). На обеих длинах волн наблюдались значительные нестационарные отклонения данных от линейной подгонки. Средние скорости уменьшения потока составили (-5.4 ± 6.6) и (-1.5 ± 0.9) %/год на волнах $\lambda = 6.2$ и 3.5 см соответственно. Временные последовательности аппроксимируются линейными соотношениями (2) и (3), которые в истории эволюции источника являются продолжением во времени ранее протекавших процессов, описываемых соотношением (7). Временные зависимости (7) переходят в (2) и (3) в эпохи 2017.5 для λ = 6.2 см и 2016.3 для $\lambda = 3.5$ см, где рост потоков сменился их падением.

И.С. Шкловский показал, что у молодых остатков сверхновых, расширяющихся в однородной межзвездной среде, интенсивность радиоизлучения с течением времени испытывает эволюционное уменьшение, которое он назвал вековым [8]. Наблюдения исторических ОСН подтвердили предсказанный эффект (напр., [9, 10]). Эволюция излучения G11.2–0.3 протекает по другому сценарию.

Хотя рост потоков у G11.2–0.3 нельзя отнести к типичным явлениям, он не является исключением: рост мощности радиоизлучения наблюда-

ется у очень молодого ОСН 1987А в Большом Магеллановом Облаке [34, 35]. Источники G11.2-0.3 и 1987А принадлежат к числу ОСН с коллапсом ядра и имеют много подобных признаков, но отметим главное: в обоих случаях ударная волна взрыва распространяется в сильно неоднородной околозвездной среде (CSM) с плотностью, растущей с удалением от центра. Радиоизлучение ОСН 1987А экспоненциально растет, указывая на то, что распространяющаяся ударная волна и связанный с ней возрастающий ударный объем взаимодействуют со все более плотной областью CSM. Синхротронное излучение связано с ускорением частиц в результате механизма Ферми первого порядка, процесса, в котором частицы движутся между верхней и нижней по потоку областями прямой ударной волны, набирая энергию [35].

На основании морфологии в рентгене, авторы [3] относят G11.2–0.3 к категории остатков сверхновых, образовавшихся в результате взрыва после потери большей части водородной оболочки прародителя (несколько солнечных масс) до взрыва. После взрыва ударная волна сверхновой столкнулась с этой потерянной массой, как радиально, так и азимутально неоднородной, и рост потока оболочки ОСН обусловлен ускорением электронов на фронте прямой ударной волны с возрастающей эффективностью.

Динамика спектров ОСН 1987А и G11.2-0.3 различна: спектр G11.2-0.3 становился со временем круче (табл. 4), в отличие от спектров 1987А, а также CasA, которые со временем становятся более плоскими. В двух последних случаях взаимодействуют прямая ударная волна и окружающая среда, в отличие от G11.2-0.3, где необходимо учитывать взаимодействие плериона и обратной ударной волны, достигшей, согласно [3], центра остатка. Можно ожидать, что крутизна спектра оболочки G11.2-0.3 со временем уменьшается подобно ОСН 1987А, а общий рост спектрального индекса обусловлен вкладом плериона, подвергшегося воздействию обратной ударной волны. Вследствие сжатия обратной ударной волной, в центральном объеме остатка должно усилиться магнитное поле. Синхротронное излучение при этом также усиливается, но одновременно растут потери энергии на синхротронное излучение релятивистских частиц [36]. Этот эффект может наблюдаться в виде излома спектра. Согласно [37] экстраполяция спектра мощности PWN в рентгеновском диапазоне на радио приводит к частоте "излома" ~8 ГГц с возрастанием спектрального индекса на 0.5, ожидаемым значением от синхротронных потерь в однородном источнике с постоянной инжекцией электронов. Для реализации такого сценария при предполагаемом возрасте остатка 2000 лет требуется напряженность магнитного поля около 3 мГс. Если излом спектра на частоте $f_b \sim 8$ ГГц обусловлен синхротронными потерями, то поток радиоизлучения плериона на частотах $f \geq f_b$ должен со временем падать, а средний спектральный индекс в диапазоне частот 0.08–32 ГГц возрастать.

Перечисленные наблюдательные факты и связанные с ними выводы можно сопоставить с нашими результатами определения параметров спектров оболочки и PWN.

На частоте 1410 МГц вклад плериона в полный поток G11.2-0.3 в 1972 г. составил 34%. Эту оценку можно сравнить с оценками, полученными в [5], приведенными в разделе 1. Оценки [5] относятся к эпохе 1985.0. Наш спектральный индекс плериона $\alpha 2_{1972}$ совпадает с α_P [5], хотя отличие нашего αl_{1972} от α_s оболочки [5] выходит за пределы погрешностей. Однако оценки вклада PWN в полный поток остатка отличаются заметно. На длине волны λ см в эпоху 1972.5 мы оцениваем отношение $S_P/S_t = 0.34$, в отличие от $S_P/S_t = 0.02$ согласно [5]. Чтобы выяснить, какой результат ближе к истине, следует отождествить компонент источника, в котором могут происходить быстрые и глубокие "провалы" радиоизлучения. Длительность процесса накладывает ограничение на линейный размер области, в которой он действует. При наблюдениях на радиотелескопе РТ-32 (раздел 2) отмечены провалы относительно средних значений на волнах λ = 3.5 и 6.2 см в 16 и 18% соответственно в интервалах времени $\Delta t \leq 0.4$ года. Таблица 3 содержит данные о "провалах" на частотах f = 80 МГц (-17%) и f = 635 МГц (-28%) относительно среднего спектра, длившихся не более 4-5 лет. При расстоянии 5 кпс оболочка G11.2-0.3 имеет диаметр 5.8 пк (19 св. лет), что ограничивает минимальное характерное время нестационарной переменности ее излучения и исключает локализацию всех наблюдаемых "провалов" в оболочке. Следовательно, "провалы" связаны с излучением PWN и не могут превышать вклад этого компонента в общий поток ОСН. Наши оценки согласуются с этим условием, в отличие от [5].

Быстрые нестационарные изменения потока, отмеченные при наблюдениях G11.2–0.3 на радиотелескопе PT-32 обсерватории "Светлое" (ИПА РАН), имеют признаки, общие для многих плерионов. Ранее они отмечались у 3С58 [11], G21.5–0.9 [12], 3С396 [13]. В этих источниках существуют потоки релятивистских частиц и магнитные поля, инжектируемые пульсаром. В динамике процессов имеется аналогия с солнечными вспышками, физический механизм которых основан на перезамыкании силовых линий магнитного поля с быстрым освобождением энергии магнитного поля и всплеском мощности радиоизлучения, сменяющимся его кратковременным ослаблением. Быстрые нестационарные изменения радиоизлучения плерионов могут быть обусловлены перезамыканием силовых линий магнитного поля.

Альтернативное объяснение быстрых нестационарных изменений радиоизлучения предложено в [13]. Предполагается, что радиоизлучение компактных источников, находящихся в PWN, может взаимодействовать с оболочкой, выполняющей роль случайного фазового экрана, и создающей в плоскости наблюдателя дифракционную картину. Переменность этой картины обусловлена собственными движениями в оболочке.

Еще одной возможной причиной отклонений от степенного закона в спектрах радиоизлучения плерионов могут быть подобные отклонения в энергетических спектрах излучающих релятивистских электронов, инжектируемых пульсаром в туманность.

5. ЗАКЛЮЧЕНИЕ

В настоящей работе исследовались спектр и переменность радиоизлучения ОСН G11.2–0.3. Применение шкалы потоков "искусственная луна" в качестве основы для объединения данных измерений плотностей потоков G11.2–0.3, накопленных в течение более 50 лет наблюдений, а также собственных наблюдений, позволило уточнить спектр источника и динамику его изменений во времени. В результате:

• обнаружены необычные свойства эволюции G11.2-0.3 – рост потоков в широкой полосе частот на длительном временном интервале. Необычно то, что ранее рост потоков наблюдался только у очень молодых остатков – G1.9+0.3 и 1987А, в то время, как G11.2-0.3 находится в продвинутой стадии эволюции – близко к фазе Седова при возрасте ~2000 лет;

• рост потоков на длинах волн $\lambda = 6.2$ и 3.5 см сменился падением в эпоху 2016.9 ± 0.6. Изменения в динамике радиоизлучения остатка могут быть обусловлены либо выходом переднего фронта ударной волны за пределы области с высокой плотностью CSM, либо ослаблением воздействия обратной ударной волны на PWN;

• определены параметры спектров компонентов композитного OCH – оболочки и PWN, а также исследованы их изменения во времени.

Получены данные о быстрых нестационарных изменениях интенсивности радиоизлучения G11.2—0.3. Возможными физическими механизмами явления могут быть: перезамыкание силовых линий магнитного поля, дифракция компактных источников, находящихся в PWN, на случайном фазовом экране, который представляет собой оболочка OCH, а также отклонения от степенно́го закона в энергетических спектрах излучающих релятивистских электронов, инжектируемых пульсаром в туманность. Однако этот вопрос нуждается в специальном исследовании.

Отмечая уникальные свойства ОСН G11.2– 0.3, можно предположить, что дальнейшие наблюдения и теоретические исследования этого объекта будут результативными.

СПИСОК ЛИТЕРАТУРЫ

- 1. G. Vasisht, T. Aoki, T. Detani, S. R. Kulkarni, and F. Nagase, Astrophys. J. 456, L59 (1996).
- 2. K. Torii, H. Tsunemi, T. Dotani, and K. Mitsuda, Astrophys. J. 489, L145 (1997).
- 3. K. J. Borkowski, S. P. Reynolds, and M. S. E. Roberts, Astrophys. J. 819, id. 160 (2016).
- 4. D. A. Green, Bull. Astron. Soc. India 42, 47 (2014).
- 5. C. Tam, M. S. E. Roberts, and V. M. Kaspi, Astrophys. J. 572, 202 (2002).
- 6. *D. A. Green, S. F. Gull, S. M. Tan, and A. J. B. Simon*, Monthly Not. Roy. Astron. Soc. **231**, 735 (1988).
- 7. A. H. Minter, F. Camilo, S. M. Ransom, J. P. Halpern, and N. Zimmerman, **676**, 1189 (2008).
- 8. И. С. Шкловский, Астрон. журн. 37, 256 (1960).
- 9. К. С. Станкевич, В. П. Иванов, С. П. Столяров, Письма в Астрон. журн. **25**, 584 (1999).
- В. П. Иванов, К. С. Станкевич, С. П. Столяров, Астрон. журн. 71 (5а), 737 (1994).
- 11. V. P. Ivanov, A. V. Ipatov, I. A. Rakhimov, and T. S. Andreeva, Astrophys. Bull. **74** (2), 128 (2019).
- 12. В. П. Иванов, А. В. Ипатов, И. А. Рахимов, С. А. Гренков, Т. С. Андреева, Астрон. журн. **96**, 628 (2019).
- 13. В. П. Иванов, А. В. Ипатов, И. А. Рахимов, Т. С. Андреева, Астрон. журн. 97, 619 (2020).
- 14. В. П. Иванов, А. В. Ипатов, И. А. Рахимов, С. А. Гренков, Т. С. Андреева, Астрон. журн. **95** (8), 609 (2018).
- 15. А. М. Финкельштейн, Наука в России 5, 20 (2001).
- A. Finkelstein, A. Ipatov, and S. Smolentsev, in Proc. of the Fourth APSGP WorkShop, edited by H. Cheng, Q. Zhi-han (Shanghai: Shanghai Scientific and Technical Publishers, 2002), p. 47.
- И. А. Рахимов, Ш. Б. Ахмедов, А. А. Зборовский, Д. В. Иванов, А. В. Ипатов, С. Г. Смоленцев, А. М. Финкельштейн, Всероссийская астрон. конференция. Тезисы докладов (Санкт-Петербург: ИПА РАН, 2001), с. 152.
- M. Ott, A. Witzel, A. Quirrenbach, T. P. Krichbaum, K. J. Standke, C. J. Schalinski, and C. A. Hummel, Astron. and Astrophys. 284, 331 (1994).
- 19. W. J. Altenhoff, D. Downes, L. Goad, A. Maxwell, and R. Rinehart, Astron. and Astrophys. Suppl. Ser. 1, 319 (1970).
- 20. D. K. Milne, T. L. Wilson, F. F. Gardner, and P. G. Mezger, Astrophys. Lett. 4, 121 (1969).
- 21. O. B. Slee and C. S. Higgins, Australian J. Physics and Astrophys. Suppl. 27, 1 (1973).
- 22. W. M. Goss and P. A. Shaver, Australian J. Physics and Astrophys. Suppl. 14, 1 (1970).

- 23. P. A. Shaver, W. M. Goss, Australian J. Physics and Astrophys. Suppl. 14, 77 (1970).
- 24. W. M. Goss and G. A. Day, Australian J. Physics and Astrophys. Suppl. 13, 3 (1970).
- 25. *G. A. Dulk and O. B. Slee*, Australian J. Physics **25**, 429 (1972).
- 26. G. A. Dulk and O. B. Slee, Astrophys. J. 199, 61 (1975).
- 27. R. H. Becker and M. R. Kundu, Astron. J. 80, 679 (1975).
- P. A. Shaver and K. W. Weiler, Astron. and Astrophys. 53, 237 (1976).
- 29. W. Reich, E. Furst, P. Steffen, K. Reif, and C. G. T. Haslam, Astron. and Astrophys. Suppl. Ser. 58, 197 (1984).
- W. Reich, R. Reich, and E. Furst, Astron. and Astrophys. Suppl. Ser. 83, 539 (1990).

- 31. *H. W. Morsi and W. Reich*, Astron. and Astrophys. Suppl. Ser. **71**, 189 (1987).
- 32. *R. Kothes and W. Reich*, Astron. and Astrophys. **372**, 627 (2001).
- 33. N. E. Kassim, Astron. J. 103, 943 (1992).
- D. A. Green, S. P. Reynolds, K. J. Borkowski, U. Hwang, I. Harrus, and R. Petre, Monthly Not. Roy. Astron. Soc. 387, L54 (2008).
- 35. G. Zanardo, L. Staveley-Smith, L. Ball, B. M. Gaensler, et al., Soviet Astron. 710, 1515 (2010).
- 36. N. S. Kardashev, Soviet Astron. 6, 317 (1962).
- 37. M. S. E. Roberts, C. R. Tam, V. M. Kaspi, M. Lyutikov, G. Vasisht, M. Pivovaroff, E. V. Gotthelf, and N. Kawai, Astrophys. J. **588**, 992 (2003).