ПРЕЦЕССИЯ ПРОБНЫХ ОРБИТ В ЦИРКУМБИНАРНЫХ ЭКЗОПЛАНЕТНЫХ СИСТЕМАХ

© 2022 г. Б. П. Кондратьев^{1, 2, *}, В. С. Корноухов¹

 ¹ Московский государственный университет им. М.В. Ломоносова, Физический факультет, Государственный астрономический институт им. П.К. Штернберга, Москва, Россия
 ² Главная (Пулковская) Астрономическая обсерватория РАН, Санкт-Петербург, Россия

> *E-mail: work@boris-kondratyev.ru Поступила в редакцию 14.06.2022 г. После доработки 02.09.2022 г. Принята к публикации 30.09.2022 г.

Новым аналитическим методом R-тороидов изучается апсидальная и нодальная прецессия пробных орбит в циркумбинарных экзосистемах Kepler-16, Kepler-35, Kepler-38, Kepler-413, Kepler-453, Kepler-1661, Kepler-1647 и TOI-1338. Для каждой системы из выборки (1) построена суперпозиция из трех R-тороидов, (2) рассчитаны угловые моменты звездной пары и планеты относительно плоскости Лапласа, (3) найдены коэффициенты 2-й и 4-й зональных гармоник внешнего потенциала для R-тороидов, (4) выведены и решены уравнения для частот обеих видов прецессии у пробных орбит. Найдено, что в гравитационном поле R-тороида отношение периодов апсидальной и нодальной прецессии у кольца Гаусса с нулевым наклонением равно (-2). Установлено, что известные из литературы методы исследования циркумбинарных систем являются частным случаем развитого здесь подхода; у нас дополнительно учитываются эксцентриситеты и наклоны орбит тел к плоскости Лапласа, а также гравитационное возмущение от третьего тела (планеты).

Ключевые слова: планеты у двойных звезд, метод R-тороидов, пробные орбиты, прецессия: индивидуально: апсидальная и нодальная

DOI: 10.31857/S000462992211010X

1. ВВЕДЕНИЕ

В работе [1] для исследования долгопериодических и вековых возмущений в небесной механике был разработан аналитический метод, получивший название модели R-тороида. Эта модель представляет собой 3D обобщение прецессирующего кольца Гаусса, и способ ее построения сводится к цепочке преобразований: 1D кольцо Гаусса – 2D R-кольцо – 3D R-тороид. Аббревиатура "R" в названиях "R-кольцо" и "R-тороид" означает "Розеточный", от термина "розеточная" орбита. Если кольцо Гаусса хорошо известно, то относительно R-кольца напомним, что последнее образуется при усреднении движения тела по розеточной орбите (или, что эквивалентно, при усреднении равномерного движения линии апсид прецессирующего кольца Гаусса), см. [2, 3]. Но в некоторых более сложных случаях в небесной механике плоскость R-кольца также может прецессировать, и логично провести еще одно усреднение орбиты по углу этой нодальной прецессии: при этом получается фигура R-тороида, см. рис. 1.

В [1] были изучены форма, внутренняя структура и внешний гравитационный потенциал Rтороида и, что особенно важно для приложений, найдена взаимная энергия W_{mut} системы "R-то-

Рис. 1. Трехмерное изображение R-тороида. Рисунок из работы [1].

роид-кольцо Гаусса". С помощью этой функции W_{mut} , заменяющей в методе R-тороидов классическую функцию возмущений Лагранжа, была получена система из шести дифференциальных уравнений, описывающих вековую эволюцию оскулирующих орбит в гравитационных полях как отдельного R-тороида, так и в суперпозиции из трех этих фигур.

Модель R-тороида можно применять для изучения актуальных задач вековой динамики экзопланет, о которых накопилась большая наблюдательная информация. В частности, с помощью модели R-тороида в [1] был рассчитан график частот прецессии пробной орбиты в поле прецессирующей центральной звезды и планеты PTFO 8-8695b, об этой экзосистеме см. также [4, 5].

Кроме того, в настоящее время в обширной экзопланетной тематике можно выделить две задачи с применением метода R-тороидов: это изучение эволюции орбит горячих юпитеров с рекордно коротким (сутки или даже часы!) временем обращения данных объектов вокруг центральных звезд, а также исследование вековой эволюции циркумбинарных систем, состоящих из тесной пары звезд и обращающейся вокруг них отдаленной экзопланеты.

Исследование циркумбинарных экзосистем ставит перед астрономами важные задачи: их открытие не только расширяет наши представления о существовании в природе новых удивительных конфигураций звезд и планет, в которых может существовать жизнь, но и на конкретных примерах позволяет изучать интересный динамический эффект — дестабилизирующее действие двойной системы по сравнению со случаем замены двойной системы одной звездой. Кроме того, встречающиеся здесь орбитальные конфигурации и трехчастичные гравитационные взаимодействия позволяют прямые и точные измерения масс и радиусов звезд и планет.

Изучению циркумбинарных тройных систем посвящено немало работ. В работе [6] изучаются процессы образования (в 1978 г. еще гипотетических!) экзопланет вокруг двойных звезд. Изучая динамику планетезималей, Неррепheimer пришел к выводу, что образование планет из планетезималей возможно только на орбитах с малыми эксцентриситетами.

В статье Демидовой и Шевченко [7] (см. также монографию И.И. Шевченко [8]) методы Нерpenheimer и Могіwaki & Nakagawa [9] объединяются и модифицируются для расчета частот апсидальной прецессии орбиты планеты. Заметим, что в работах [6–9] рассматривается только компланарный вариант задачи (частота апсидальной прецессии в компланарном случае соответствует скорости изменения долготы перицентра), а гравитационное влияние третьего тела (планеты) не учитывается. В [7] обсуждается характерный для циркумбинарных систем эффект пульсации эксцентриситета орбиты планеты; в системе Kepler-16 период этих пульсаций был найден немного меньше 50 лет. Обратим внимание на то, что в применяемом в работах [6—9] методе при описании движения пробной частицы используется специальная терминология и надо различать прецессию орбиты с вынужденным эксцентриситетом и апсидальную прецессию орбиты с эксцентриситетом невозмущенным (собственным). С учетом особенностей терминологии наши результаты согласуются с полученными в [7].

Из исследований по циркумбинарным системам, предшествовавшим методу R-тороидов, отметим еще статьи [10–12]. В последней из них, например, численным методом исследовалась устойчивость орбит предполагаемых (но пока не наблюдаемых) спутников вокруг планет в двойных звездных системах.

Первое исследование двух циркумбинарных экзопланет (Kepler-413 и Kepler-453) методом, основанным на системе из трех R-тороидов, проводилось в работе [13]. Здесь мы продолжаем изучать методом R-тороидов прецессию пробных орбит в шести новых циркумбинарных экзосистемах; дается и дополнительная информация о двух экзосистемах, упомянутых в работе [13]. Суть нашего подхода в том, что для каждого тела в циркумбинарной системе (две звезды и одна планета) создается отдельная модель R-тороида, затем находится их суперпозиция, и в суммарном гравитационном поле трех R-тороидов исследуется апсидальная и нодальная прецессия пробных орбит.

План статьи следующий. В разделах 2, 3 дана постановка задачи, вводится плоскость Лапласа и находятся углы ориентации и угловые моменты в циркумбинарных системах. В подразделе 4.1 даны выражения для зональных гармоник внешнего потенциала R-тороида, а в 4.2 и 4.3 выводятся уравнения и рассчитываются частоты апсидальной и нодальной прецессии пробных орбит в суммарном гравитационном поле трех R-тороидов. Результаты представлены графически на 8 рисунках. Результаты работы обсуждаются в разделе 5.

2. ПОСТАНОВКА ЗАДАЧИ. ПЛОСКОСТЬ ЛАПЛАСА И УГЛЫ ОРИЕНТАЦИИ ОРБИТ

Рассмотрим циркумбинарную тройную систему, в которой одна экзопланета движется по внешней отдаленной орбите вокруг тесной пары звезд. Для описания движения тел в такой системе надо знать массы и орбитальные параметры двух звезд ($M_1, M_2, a_1, a_2, e_{12}, i'_{12}$) и планеты (m, a_p, e_p , i'_p). Углы наклонов орбит звезд i'_{12} и планеты i'_p бу-

Рис. 2. Схема векторов угловых орбитальных моментов в тройной циркумбинарной системе. Штрихами показана плоскость Лапласа. Рисунок из работы [14].

дем отсчитывать от общей плоскости Лапласа (рис. 2).

Угловой момент орбитального эллиптического движения тела (на единицу массы) в заданной тройной системе равен

$$L = \sqrt{\mu a \left(1 - e^2\right)},\tag{1}$$

где *а* и *е* — большая полуось и эксцентриситет орбиты, $\mu = G\overline{M}$ — аналог гравитационного параметра тела. Полагая начало координат в центре масс двойной звезды и принимая условие $m \ll M_1 + M_2$, находим отмеченные верхней чертой величины \overline{M} :

$$\bar{M}_1 = \frac{M_2^3}{(M_1 + M_2)^2}; \quad \bar{M}_2 = \frac{M_1^3}{(M_1 + M_2)^2}.$$
 (2)

Тогда орбитальный угловой момент звездной пары дается формулой

$$L_{12} = M_1 \sqrt{G\bar{M}_1 a_1 \left(1 - e_{12}^2\right)} + M_2 \sqrt{G\bar{M}_2 a_2 \left(1 - e_{12}^2\right)}, \quad (3)$$

причем полуоси орбиты каждой звезды (с фокусом в общем центре масс) связаны соотношениями

$$a_1 + a_2 = a_{12}, \quad a_1 M_1 = a_2 M_2.$$
 (4)

Орбитальный угловой момент планеты массой *m*_n будет равен

$$L_{\rm p} = m_{\rm p} \sqrt{G(M_1 + M_2)a_{\rm p}(1 - e_{\rm p}^2)}.$$
 (5)

По определению, плоскость Лапласа должна быть нормальна вектору полного орбитального углового момента системы $\mathbf{L}_{tot} = \mathbf{L}_{12} + \mathbf{L}_{p}$. Если i'_{p} и i'_{12} – вспомогательные углы наклона плоскостей

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 11 2022

орбит планеты и звезд к плоскости Лапласа (рис. 2), то условие перпендикулярности вектора L_{tot} к плоскости Лапласа выполняется, если (см. [1, 14])

$$L_{\rm p}\sin i'_{\rm p} = L_{12}\sin i'_{12}.$$
 (6)

Для вспомогательных углов i'_p и i'_{12} имеем систему двух уравнений

$$\frac{\sin i_{\rm p}}{\sin i_{\rm l2}} = \frac{L_{12}}{L_{\rm p}} = \gamma, \quad i_{\rm p}' + i_{12}' = \Delta i.$$
(7)

Две формулы (7) можно объединить в одну, выразив наклон плоскости орбит двойной звезды *i*₁₂ к плоскости Лапласа через суммарный угол *Δi*

$$i'_{12} = \arctan \frac{\sin \Delta i}{\gamma + \cos \Delta i}.$$
 (8)

Тогда, согласно формулам (3) и (5), отношение модулей угловых орбитальных моментов двойной звезды и планеты в циркумбинарной системе будет равно

$$\gamma = \frac{L_{12}}{L_p} = \sqrt{\frac{1 - e_{12}^2}{1 - e_p^2}} \left[\frac{M_1 \sqrt{\overline{M}_1 a_1} + M_2 \sqrt{\overline{M}_2 a_2}}{m \sqrt{(M_1 + M_2) a_p}} \right].$$
 (9)

3. РАСЧЕТ ОРИЕНТАЦИИ УГЛОВЫХ МОМЕНТОВ В ЦИРКУМБИНАРНЫХ ЭКЗОСИСТЕМАХ

Из литературы была собрана необходимая информация о восьми циркумбинарных экзосистемах, которую мы разместили в табл. 1 и 2. В этих таблицах приводятся известные из наблюдений для каждой системы данные о массах (M_1, M_2, m_p) ,

Система	Kepler-16	Kepler-35	Kepler-38	*Kepler-413
$M_1[M_{Sun}]$	0.6897 ± 0.0035	0.888 ± 0.005	0.95 ± 0.06	0.820 ± 0.015
$M_2[M_{Sun}]$	0.2026 ± 0.0007	0.809 ± 0.004	0.249 ± 0.009	0.542 ± 0.008
<i>a</i> ₁₂ [a.e.]	0.22431 ± 0.00035	$0.17617 \pm 0.00\ 030$	0.1469 ± 0.0026	0.10148 ± 0.00057
<i>e</i> ₁₂	0.1594 ± 0.0006	0.1421 ± 0.0015	0.1032 ± 0.0012	0.0365 ± 0.0023
<i>i</i> ₁₂ [°]	90.3399 ± 0.0018	90.424 ± 0.008	89.265 ± 0.026	87.332 ± 0.050
ω ₁₂ [°]	263.464 ± 0.026	86.513 ± 0.037	-91.320 ± 0.036	279.74 ± 0.62
$m_{\rm p} \left[M_{\rm Earth} \right]$	106 ± 5	40 ± 6	70 ± 41	67 ± 21
<i>a</i> _p [a.e.]	0.7048 ± 0.0011	0.6035 ± 0.0010	0.464 ± 0.008	0.355 ± 0.002
e_{p}	0.0067 ± 0.0012	0.043 ± 0.006	0.005 ± 0.010	0.1181 ± 0.0018
<i>i</i> _p [°]	90.0322 ± 0.0022	90.77 ± 0.11	89.446 ± 0.030	89.929 ± 0.024
ω _p [°]	312 ± 16	62 ± 26	33 ± 72	94.6 ± 2.2
$\Delta \Omega_{ m p}$ [°]	0.003 ± 0.013	-1.28 ± 0.29	-0.01 ± 0.05	3.139 ± 0.080
Δi [°]	0.308 ± 0.003	1.33 ± 0.28	0.182 ± 0.040	4.073 ± 0.113

Таблица 1. Параметры циркумбинарных систем Kepler-16 (Doyle et al. [15]); Kepler-35 (Welsh et al. [16]); Kepler-38 (Orosz et al. [17]); Kepler-413 (Kostov et al. [18]). Звездочкой "*" отмечена экзосистема, частично изученная в [13]

Таблица 2. Параметры циркумбинарных систем Kepler-1647 (Kostov et al. [19]); Kepler-1661 (Socia et al. [20]); TOI-1338 (Kostov et al. [21]); Kepler-453 (Welsh et al. [16]). Звездочкой "*" отмечена экзосистема, частично изученная в [13]

Система	Kepler-1647	Kepler-1661	TOI-1338	*Kepler-453
$M_1[M_{\rm Sun}]$	1.221 ± 0.011	0.841 ± 0.022	1.04 ± 0.07	0.944 ± 0.010
$M_2[M_{Sun}]$	0.968 ± 0.004	0.262 ± 0.005	0.297 ± 0.012	0.1951 ± 0.0020
<i>a</i> ₁₂ [a.e.]	0.1276 ± 0.0002	0.187 ± 0.002	0.1288 ± 0.0025	0.18539 ± 0.00066
<i>e</i> ₁₂	0.1602 ± 0.0004	0.112 ± 0.002	0.1560 ± 0.0002	0.0524 ± 0.0037
<i>i</i> ₁₂ [°]	87.916 ± 0.015	88.76 ± 0.02	89.69 ± 0.15	90.266 ± 0.052
ω ₁₂ [°]	300.54 ± 0.09	36.4 ± 1.1	117.56 ± 0.07	263.05 ± 0.48
$m_{\rm p} \left[M_{\rm Earth} \right]$	483 ± 206	17 ± 12	30 ± 20	0.2 ± 16.0
<i>a</i> _p [a.e.]	2.721 ± 0.007	0.633 ± 0.005	0.449 ± 0.009	0.7903 ± 0.0028
e_{p}	0.06 ± 0.07	0.057 ± 0.005	0.0933 ± 0.0038	0.0359 ± 0.0088
<i>i</i> _p [°]	90.097 ± 0.004	89.46 ± 0.02	89.3 ± 0.3	89.4429 ± 0.0091
ω _p [°]	155 ± 147	67 ± 5	263 ± 4	185.1 ± 3.7
$\Delta \Omega_{ m p}$ [°]	-2.04 ± 0.36	0.61 ± 0.03	0.87 ± 0.35	2.103 ± 0.055
Δ <i>i</i> [°]	2.99 ± 0.25	0.93 ± 0.03	0.97 ± 0.35	2.258 ± 0.039

полуосях (a_{12}, a_p) , эксцентриситетах (e_{12}, e_p) и ориентации орбит $(i_{12}, i_p, \omega_{12}, \omega_p, \Delta \Omega_p)$ для звезд и планеты. Для удобства весь массив из восьми экзосистем разбит на две группы.

Во второй таблице аналогичные сведения даны о другой группе циркумбинарных экзосистем.

Затем с помощью формул (7), (8) и (9) мы рассчитали четыре важные характеристики для каждой циркумбинарной экзосистемы. Прежде всего это отношение модулей угловых орбитальных моментов двойной звезды и планеты $\gamma = \frac{L_{12}}{L_p}$. Кроме того, в каждой экзосистеме были найдены вспомогательные углы наклона плоскостей орбит двойной звезды i'_{12} и планеты i'_p к плоскости Лапласа. Это позволило вычислить и четвертую величину Δi , представляющую угол взаимного наклона плоскости орбиты планеты и плоскости орбит звезд. Результаты этих расчетов даны в табл. 3 и 4.

ПРЕЦЕССИЯ ПРОБНЫХ ОРБИТ

Таблица 3. Величины, рассчитанные для первой группы циркумбинарных экзосистем: это отношение модулей угловых орбитальных моментов двойной звезды и планеты $\gamma = \frac{L_{12}}{L_p}$, а также наклоны орбитальных моментов звездной пары i'_{12} и планеты i'_p к суммарному угловому моменту. Сумма двух последних углов равна Δi

Система	Kepler-16	Kepler-35	Kepler-38	Kepler-413
γ	274	1870	529	873
<i>i</i> ₁₂ [°]	$(1.12 \pm 0.05) \times 10^{-3}$	$(7 \pm 2) \times 10^{-4}$	$(3 \pm 2) \times 10^{-4}$	$(4.7 \pm 1.5) \times 10^{-3}$
<i>i</i> 'p [°]	0.307 ± 0.003	1.3 ± 0.3	0.18 ± 0.04	4.07 ± 0.11

Таблица 4. Значения тех же характеристик, как и в табл. 3, для второй группы циркумбинарных экзосистем

Система	Kepler-1647	Kepler-1661	TOI-1338	Kepler-453
γ	80	2120	1360	1.3×10^{5}
<i>i</i> ₁₂ [°]	$(3 \pm 2) \times 10^{-2}$	$(4 \pm 3) \times 10^{-4}$	$(7 \pm 5) \times 10^{-4}$	$(0.2 \pm 13.9) \times 10^{-4}$
<i>i</i> ' _p [°]	2.95 ± 0.25	0.93 ± 0.03	0.97 ± 0.35	2.26 ± 0.04

Большие значения $\gamma = \frac{L_{12}}{L_p}$ у всех экзосистем в

табл. 3 и 4 объясняются тем, что в числителе этого отношения стоит величина орбитального (а не спинового) углового момента звезд. Доминирующий характер углового момента звездной пары в рассматриваемых циркумбинарных системах виден и по малому значению угла i_{12}^{i} .

Обратим также внимание на то, что для всех рассматриваемых циркумбинарных систем угол $\Delta i \neq 0$, что говорит о некомпланарности орбит звезд и планеты относительно плоскости Лапласа, именно некомпланарность плоскостей орбит и приводит к прецессии узлов у всех трех тел. Подробнее эту нодальную прецессию мы рассматриваем в разделе 4.

4. ВЕКОВАЯ ПРЕЦЕССИЯ ПРОБНЫХ ОРБИТ В ЦИРКУМБИНАРНЫХ СИСТЕМАХ

Для изучения эволюции внешних орбит прежде всего надо знать внешний гравитационный потенциал R-тороида. Так как фигура R-тороида имеет круговую симметрию, нас интересуют, прежде всего.

4.1. Зональные гармоники внешнего потенциала *R*-тороида

Как показано в [1], см. также [13], две главные зональные гармоники внешнего потенциала R-тороида равны

$$C_{20}^{R} = -\frac{1}{2} \left(1 + \frac{3}{2} e_{R}^{2} \right) \frac{3 \cos^{2} i_{R} - 1}{2};$$

$$C_{40}^{R} = \frac{3}{8} \left(1 + 5e_{R}^{2} + \frac{15}{8} e_{R}^{4} \right) \frac{35 \cos^{4} i_{R} - 30 \cos^{2} i_{R} + 3}{8}.$$
(10)

Здесь e_R , i_R — эксцентриситет и наклон орбиты к плоскости Лапласа для той звезды или планеты, для которой создана модель **R**-тороида.

По формулам (10), с учетом данных в табл. 1 и 2 эксцентриситетов орбит и рассчитанных выше углов ориентации (см. табл. 3 и 4), мы нашли значения двух коэффициентов C_{20}^R и C_{40}^R зональных гармоник потенциала R-тороидов. Эти результаты размещены в соответствующих строках в табл. 5 и 6.

4.2. Уравнения прецессии пробных орбит в гравитационном поле R-тороида

Согласно [1], применение модели R-тороида справедливо для пробных тел с орбитальными периодами большими, чем период узловой прецессии кольца Гаусса T_{Ω} , заполняющего тороид. Следовательно, в данном подходе можно рассматривать только те пробные орбиты, полуоси которых больше некоторого критического значения a_{cr}

$$a_{\rm cr} = \left(\frac{\mu}{4\pi^2}\right)^{\frac{1}{3}} T_{\Omega}^{\frac{2}{3}}.$$
 (11)

Скорость прецессии линии узлов и линии апсид пробной орбиты под влиянием гравитацион-

Таблица 5. Оценки коэффициентов 2-й и 4-й зональных гармоник R-тороидов двух звезд C_{20}^1 , C_{20}^2 , C_{40}^1 , C_{40}^2 и планеты C_{20}^p , C_{40}^p . Здесь даны также: скорости $\dot{\Omega}_R^0$ прецессии линии узлов орбиты пробной планеты от отдельного взятого тороида из трех в вырожденном случае (a = 1 а.е., e = 0, $i = 0^\circ$), где индекс принимает значения $R = \{1, 2, p\}$; скорости прецессии линии узлов и линии апсид орбиты пробной планеты от всех тороидов в вырожденном случае $\dot{\Omega}_{12p}^0$, $\dot{\omega}_{12p}^0$, $\dot{\omega}_{12p}^0$, a также соответствующие этим скоростям периоды прецессии $(T_{\Omega}^{12p})_{0}$ и $(T_{\omega}^{12p})_{0}$

Система	Kepler-16	Kepler-35	Kepler-38	Kepler-413
$C_{20}^1 = C_{20}^2$	-0.5191 ± 0.0001	-0.5151 ± 0.0003	-0.5080 ± 0.0002	-0.5010 ± 0.0001
$C_{40}^1 = C_{40}^2$	0.4231 ± 0.0004	0.4131 ± 0.0008	0.3950 ± 0.0005	0.3775 ± 0.0003
C_{20}^{p}	-0.50001 ± 0.00001	-0.5010 ± 0.0004	-0.50001 ± 0.00008	-0.5066 ± 0.0003
$C_{40}^{ m p}$	0.37503 ± 0.00003	0.377 ± 0.001	0.3750 ± 0.0002	0.3912 ± 0.0010
$\dot{\Omega}_{1}^{0} [10^{-10} \mathrm{c}^{-1}]$	-2.93 ± 0.02	-7.40 ± 0.04	-1.23 ± 0.11	-1.72 ± 0.04
$\dot{\Omega}_{2}^{0}$ [10 ⁻¹⁰ c ⁻¹]	-10.00 ± 0.03	-8.12 ± 0.04	-4.67 ± 0.18	-2.60 ± 0.04
$\dot{\Omega}_{\rm p}^0 [10^{-10} {\rm c}^{-1}]$	-0.25 ± 0.01	-0.05 ± 0.01	-0.06 ± 0.04	-0.03 ± 0.01
$\dot{\Omega}_{12p}^{0} [10^{-9} \mathrm{c}^{-1}]$	-1.32 ± 0.01	-1.56 ± 0.01	-0.60 ± 0.03	-0.43 ± 0.06
$\dot{\omega}_{12p}^0 [10^{-9} c^{-1}]$	2.64 ± 0.01	3.01 ± 0.01	1.19 ± 0.05	0.84 ± 0.11
$(T_{O}^{12p})_{0}$ [лет]	151.1 ± 0.6	127.9 ± 0.5	334 ± 15	459 ± 6
(T_{ω}^{12p}) ₀ [лет]	75.6 ± 0.3	63.9 ± 0.3	167 ± 8	229 ± 3

Таблица 6. Даны те же самые величины, что и в табл. 5, для второй группы экзопланет

Система	Kepler-1647	Kepler-1661	TOI-1338	Kepler-453
$C_{20}^1 = C_{20}^2$	-0.5192 ± 0.0001	-0.5094 ± 0.0003	-0.51825 ± 0.00004	-0.5021 ± 0.0003
$C_{40}^1 = C_{40}^2$	0.4236 ± 0.0002	0.3986 ± 0.0008	0.42105 ± 0.00009	0.3802 ± 0.0007
C_{20}^{p}	-0.501 ± 0.006	-0.5022 ± 0.0004	-0.5063 ± 0.0006	-0.4998 ± 0.0005
$C_{40}^{ m p}$	0.376 ± 0.015	0.381 ± 0.001	0.3908 ± 0.0014	0.3745 ± 0.0012
$\dot{\Omega}_{1}^{0} [10^{-10} \mathrm{c}^{-1}]$	-4.07 ± 0.02	-2.4 ± 0.1	-1.1 ± 0.1	-1.34 ± 0.03
$\dot{\Omega}_{2}^{0} [10^{-10} \mathrm{c}^{-1}]$	-5.14 ± 0.03	-7.7 ± 0.2	-4.0 ± 0.2	-6.47 ± 0.06
$\dot{\Omega}_{\rm p}^0 [10^{-10} {\rm c}^{-1}]$	-11 ± 5	-0.03 ± 0.02	-0.024 ± 0.016	-0.0005 ± 0.04
$\dot{\Omega}_{12p}^{0} [10^{-9} c^{-1}]$	-2.0 ± 0.5	-1.01 ± 0.03	-0.52 ± 0.02	-0.78 ± 0.01
$\dot{\omega}_{12p}^0$ [10 ⁻⁹ c ⁻¹]	4.0 ± 0.9	2.02 ± 0.05	1.03 ± 0.05	1.56 ± 0.02
$(T_{\Omega}^{12p})_{0}$ [лет]	99 ± 23	196 ± 5	386 ± 18	255 ± 3
$(T_{\omega}^{12p})_0$ [лет]	50 ± 13	98 ± 3	193 ± 9	128 ± 2

ного поля R-тороида описываются дифференциальными уравнениями

$$\left(\frac{d\Omega}{dt}\right)_{R} = \dot{\Omega}_{R}^{0} \left(\frac{a_{\rm E}}{a}\right)^{\frac{7}{2}} \frac{\cos i}{\left(1-e^{2}\right)^{2}}; \tag{12}$$

$$\left(\frac{d\omega}{dt}\right)_{R} = \dot{\omega}_{R}^{0} \left(\frac{a_{\rm E}}{a}\right)^{\frac{j}{2}} \frac{5\cos^{2}i - 1}{4\left(1 - e^{2}\right)^{2}},\tag{13}$$

где $R = \{1, 2, p\}$ – индекс, обозначающий конкретный R-тороид, a_E равно одной астрономической единице в нужных единицах измерения; коэффициенты частот равны

$$\dot{\Omega}_{R}^{0} = \frac{3}{2} C_{20}^{R} \frac{m_{R}}{M_{1} + M_{2}} \sqrt{\frac{G(M_{1} + M_{2})}{a_{R}^{3}}} \left(\frac{a_{R}}{a_{E}}\right)^{\frac{1}{2}}, \quad (14)$$
$$\dot{\omega}_{R}^{0} = -2\dot{\Omega}_{R}^{0}.$$

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 11 2022

Заметим, что коэффициенты (14) равны частотам прецессии линии узлов и линии апсид пробной планеты *под влиянием каждого из трех тороидов в вырожденном случае* (a = 1 a.e., e = 0, $i = 0^{\circ}$).

4.3. Расчет частот и периодов прецессии пробных орбит в суммарном гравитационном поле трех R-тороидов

В данной задаче для изучения вековой динамики циркумбинарной системы была создана совокупность из трех моделей R-тороида (две звезды плюс планета). Рассмотрим теперь суммарное влияние силовых полей этих трех тороидов на прецессию пробных орбит. Прежде всего для суперпозиции введенных выше коэффициентов имеем уравнения

$$\dot{\Omega}_{12p}^{0} = \dot{\Omega}_{1}^{0} + \dot{\Omega}_{2}^{0} + \dot{\Omega}_{p}^{0}; \quad \dot{\omega}_{12p}^{0} = -2\dot{\Omega}_{12p}^{0}; \quad (15)$$

$$(T_{\Omega}^{12p})_{0} = \frac{2\pi}{\left| \left(\frac{d\Omega}{dt} \right)_{12p}^{0} \right|}; \quad (T_{\omega}^{12p})_{0} = \frac{1}{2} T_{\Omega}^{12p}, \quad (16)$$

а соответствующие этим коэффициентам частот коэффициенты периодов прецессии запишутся в виде

$$(T_{\Omega}^{12p})_{0} = \frac{2\pi}{\left| \left(\frac{d\Omega}{dt} \right)_{12p}^{0} \right|}; \quad (T_{\omega}^{12p})_{0} = \frac{1}{2} T_{\Omega}^{12p}. \quad (16a, b)$$

Следовательно, периоды узловой и апсидальной прецессии пробной планеты под влиянием трех тороидов будут равны

$$T_{\Omega}^{12p} = (T_{\Omega}^{12p})_0 \left(\frac{a}{a_{\rm E}}\right)^{\frac{7}{2}} \frac{(1-e^2)^2}{\cos i};$$
(17)

$$T_{\omega}^{12p} = (T_{\omega}^{12p})_0 \left(\frac{a}{a_{\rm E}}\right)^{\frac{7}{2}} \frac{4(1-e^2)^2}{5\cos^2 i - 1}.$$
 (18)

Результаты расчетов по этим формулам показаны в табл. 5 и 6.

Из формул (17) и (18) находим отношение периодов нодальной и апсидальной прецессии для пробной орбиты (или, представляющего эту орбиту оскулирующего кольца Гаусса)

$$\frac{T_{\Omega}^{12p}}{T_{\omega}^{12p}} = -\frac{5\cos^2 i - 1}{2\cos i} \approx -2\left(1 - \frac{3}{4}i^2 + O(i^6)\right).$$
(19)

Из (19) следует, что модуль отношения периодов нодальной и апсидальной прецессии у внешнего кольца Гаусса, имеющего малый наклон *i* и

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 11 2022

находящегося в гравитационном поле R-тороида, оказывается чуть меньше 2:

$$\frac{T'_{\Omega}}{T'_{\omega}} \le 2. \tag{20}$$

Результат (20) подтверждается при моделировании экзопланеты KOI 120.01 в [16].

Заметим, что прецессия при больших углах наклона пробных орбит в нашей работе не рассматривается.

Рассчитаем теперь по формулам (17) и (18) периоды прецессии пробной планеты в зависимости от большой полуоси орбиты в случае нулевых значений эксцентриситета и наклона орбиты к главной плоскости ($a = a_{cr}, e = 0, i = 0^{\circ}$).

Графики на рис. 3–10 построены от критического (наименьшего возможного в модели) значения полуоси пробной планеты $a_{\rm cr}$. Например, для системы Kepler-413 при значении $a = a_{\rm cr}$ имеем оценку периода апсидальной прецессии $T_{\omega}^{12p} =$ $= (102 \pm 1) \times 10^3$ лет, а для периода прецессии долготы восходящего узла $T_{\Omega}^{12p} = (203 \pm 3) \times 10^3$ лет. Для системы Kepler-453, соответственно, находим $T_{\omega}^{12p} = (87 \pm 1) \times 10^5$ лет и $T_{\Omega}^{12p} = (173 \pm 2) \times 10^5$ лет.

5. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исследование циркумбинарных экзосистем, состоящих из двойной звезды и внешней экзопланеты — важная задача в астрономии: открытие таких тройных систем не только расширяет наши представления о существовании в природе новых удивительных конфигураций звезд и планет, в которых, между прочим, может существовать жизнь, но и на конкретных примерах позволяет изучать интересный динамический эффект — дестабилизирующее действие двойной системы по сравнению со случаем замены двойной системы одной звездой.

В русле данного направления лежит и наша работа, где изучается прецессия пробных орбит в циркумбинарных системах. О важности постановки задачи о пробных орбитах свидетельствуют многие работы, см., например, статьи [5] и [12], где численным методом исследовалась устойчивость пробных орбит спутников экзопланет в циркумбинарных системах (причем сами спутники пока не обнаружены).

Для изучения апсидальной и нодальной прецессии пробных орбит у нас был разработан (см. также [1] и [13]) новый метод, опирающийся на суперпозицию из трех R-тороидов. Здесь данный метод применяется к восьми экзосистемам: Kepler-16, Kepler-35, Kepler-38, Kepler-413, Kepler-

Рис. 3. Графики (в логарифмической шкале по обеим осям) зависимости периода прецессии орбиты пробной планеты (в годах) от ее полуоси, измеряемой в астрономических единицах для системы Kepler-16 в вырожденном случае e = 0 и i = 0: слева – для прецессии перицентра линии апсид $T_{\omega}^{12p}(a)$, справа – для прецессии восходящего узла $T_{\Omega}^{12p}(a)$.

Рис. 4. То же самое, что на рис. 3, но для планеты Kepler-35.

Рис. 5. То же самое, что на рис. 3, но для планеты Kepler-38 (две дополнительные линии появились здесь вследствие неопределенности наблюдаемых величин).

453, Kepler-1661, Kepler-1647 и TOI-1338. Для каждой экзосистемы были найдены углы ориентации угловых моментов звездной пары L_{12} и экзопланеты L_p относительно плоскости Лапласа, вычислены отношения $\gamma = L_{12}/L_p$ и зональные гармоники внешних гравитационных потенциалов трех R-тороидов. Затем, используя найденное в [1] выражение взаимной энергии между тороидом и

Рис. 6. То же самое, что на рис. 3, но для планеты Kepler-413.

Рис. 7. То же самое, что на рис. 3, но для планеты Kepler-453.

Рис. 8. То же самое, что на рис. 3, но для планеты Kepler-1647 (две дополнительные линии появились здесь вследствие неопределенности наблюдаемых величин).

2022

кольцом Гаусса, были получены уравнения для частот апсидальной и нодальной прецессии *пробных* орбит. Анализ решений этих уравнений показал, что основной вклад в прецессию орбит вносят R-тороиды звездной пары (однако, в случае

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ

Kepler-1647 [19] влияние планеты является заметным и его также необходимо учитывать).

Было установлено, что в гравитационном поле R-тороида отношение периодов апсидальной и нодальной прецессии у кольца Гаусса слабо зави-

№ 11

том 99

Рис. 9. То же самое, что на рис. 3, но для планеты Kepler-1661.

Рис. 10. То же самое, что на рис. 3, но для планеты TOI-1338 (две дополнительные линии появились здесь вследствие неопределенности наблюдаемых величин).

сит от угла наклона и имеет значение чуть больше (-2), см. формулу (19). Подчеркнем, что известные из литературы методы изучения циркумбинарных систем (Heppenheimer [6], Moriwaki & Nakagawa [9], Demidova & Shevchenko [7], Shevchenko [8]) являются частными случаями изложенного здесь метода R-тороидов, так как у нас дополнительно учитываются не только эксцентриситеты орбит основных тел, но также наклон этих орбит к плоскости Лапласа и гравитационное возмущение от третьего тела (планеты). Важность более общего подхода очевидна, так как именно при учете наклона орбит и возникает сам процесс их нодальной прецессии.

Заметим также, что отмеченный в работах [6, 7, 9] эффект периодических пульсаций эксцентриситета орбиты планеты в циркумбинарных системах не препятствуют применению указанного метода R-тороидов. Дело в том, что все объекты в нашей выборке имеют малые эксцентриситеты орбит (e_{12}, e_p), поэтому влияние колебаний малого эксцентриситета будет также незначительным. В связи с этим напомним, что в отмеченной выше работе [6] одним из основных выводов как раз и является возможность образования планет из планетезималей на орбитах именно с малыми эксцентриситетами. Но в принципе, даже если у какой-то циркумбинарной системы эксцентриситет орбиты планеты будет заметно отличаться от нуля, формулы нашего метода все равно будут работать, для этого достаточно выполнить лишь одно дополнительное усреднение.

В заключение заметим, что в проблеме циркумбинарных экзосистем кроме изучения пробных орбит, большой интерес представляет и исследование эволюции орбит самих трех тел (двух звезд и экзопланеты), из которых состоит экзосистема. Решение этой задачи мы проведем в следующей работе.

ФИНАНСИРОВАНИЕ

Авторы признательны Междисциплинарной научно-образовательной школе МГУ "Фундаментальные и прикладные космические исследования".

СПИСОК ЛИТЕРАТУРЫ

- 1. Б. П. Кондратьев, В. С. Корноухов, Астрон. журн. 98, № 5, 434 (2021).
- 2. B. P. Kondratyev, N. G. Trubitsyna, and E. Sh. Mukhametshina, Order and Chaos in Stellar and Planetary Systems (San Francisco, p. 326, 2004).
- 3. *B. P. Kondratyev*, Monthly Not. Roy. Astron. Soc. **442**, 1755 (2014).
- 4. *St. Raetz et al.*, Monthly Not. Roy. Astron. Soc. **460**, 2834 (2016).
- 5. *A. S. Hamers et al.*, Monthly Not. Roy. Astron. Soc. **480**, 3, 3800 (2018).
- 6. *T. A. Heppenheimer*, Astron. and Astrophys. **65**, 421 (1978).
- T. V. Demidova and I. I. Shevchenko, Astrophys. J. 805, 38 (2015).
- 8. I. I. Shevchenko, Dynamical Chaos in Planetary Systems (Springer Nature, 2020).
- 9. *K. Moriwaki and Y. Nakagawa*, Astrophys. J. **609**, 1065 (2004).

- 10. J. W. Barnes et al., Astrophys. J. 774, 53 (2013).
- 11. Ch. Chen, A. Franchini, S. H. Lubow, G. Rebecca, and R. G. Martin, Monthly Not. Roy. Astron. Soc. 490, 5634 (2019).
- 12. *B. C. Bromley and S. J. Kenyon*, Astron. J. **161**, 1, id. 25, 12 (2021).
- 13. Б. П. Кондратьев, В. С. Корноухов, Астрон. журн. 98, 571 (2021).
- 14. *B. P. Kondratyev*, Solar System Research **46**, 352 (2014).
- 15. *Doyle et al.*, Science **333**, 6049, 1602 (2011). https://doi.org/10.1126/science.1210923
- W. F. Welsh et al., Astrophys. J. 809, article id. 26, 17 B (2015).
- 17. J. A. Orosz et al., Astrophys. J. **758**, 2, article id. 87, 14 (2012).
- 18. B. Kostov et al., Astrophys. J. 784, 14, 18 (2014).
- 19. V. B. Kostov et al., Astrophys. J. 827, 1, id. 86, 26 (2016).
- 20. Q. J. Socia et al., Astron. J. 159, 3, id. 94, 17 (2020).
- 21. V. B. Kostov et al., Astrophys. J. 160, 4, id.174, 9 (2020).