ОГРАНИЧЕНИЕ НА КОЛИЧЕСТВО ПЕРВИЧНЫХ ЧЕРНЫХ ДЫР ИЗ-ЗА ВЗАИМОДЕЙСТВИЯ С ПЫЛЬЮ

© 2022 г. А. Н. Мелихов^{1, *}, Е. В. Михеева^{1, **}

¹Физический институт им. П.Н. Лебедева РАН, Москва, Россия *E-mail: melikhov94@inbox.ru **E-mail: helen@asc.rssi.ru Поступила в редакцию 27.12.2021 г. После доработки 18.01.2022 г.

Принята к публикации 24.01.2022 г.

Фотоны, излученные первичными черными дырами (ПЧД) вследствие эффекта Хокинга, являются одним из факторов нагрева межзвездной пыли. На основе данных о температуре пыли найдены ограничения на долю ПЧД в темной материи для разных распределений ПЧД с массами $10^{15} < M < 10^{17}$ г.

Ключевые слова: первичные черные дыры. **DOI:** 10.31857/S0004629922050048

1. ВВЕДЕНИЕ

Интерес к ПЧД значительно усилился после недавнего детектирования LIGO гравитационных волн от сливающихся черных лыр [1]. В ходе анализа данных было обнаружено, что собственный момент вращения этих черных дыр близок к нулю, что сложно объяснить для астрофизических черных дыр, но вполне логично для ПЧД. Помимо этого, массы сливающихся черных дыр, детектированных LIGO, оказались гораздо больше, чем у черных дыр, известных по другим наблюдательным данным (например, по анализу рентгеновских двойных) (см., напр., обзор [2] и анализ, проведенный в [3]). Кроме того, до сих пор открыт вопрос о том, что является носителем темной материи (см. недавний обзор [4]): стерильные нейтрино с массой около 3 эВ, в пользу существования которых были недавно получены обнадеживающие результаты [5-7] не могут полностью решить проблему темной материи. Поэтому, на данный момент рассматриваются и такие кандидаты на эту роль, как ПЧД, космологические свойства которых делают их реальными кандидатами в холодную темную материю. Впервые идея о том, что ПЧД могут составлять темную материю, была высказана в [8].

В данной работе мы рассматриваем ПЧД в диапазоне масс от 10^{15} до 10^{17} г. ПЧД могли возникнуть в результате гравитационного коллапса неоднородностей первичного вещества в ранней Вселенной и могут составлять значительную часть темной материи [9–15]. Рождающиеся чер-

ные дыры будут иметь массы порядка величины массы внутри горизонта в момент их образования: $M \sim c^3 t/G \simeq 5 \times 10^{-19} (t/10^{-23} \text{ с}) M_{\odot}$, где c – скорость света, G – гравитационная постоянная, M_{\odot} – масса Солнца. Имеются ограничения на фракцию ПЧД в темной материи, полученные путем анализа внегалактического и галактического фонов гамма-излучения ([16–19] и [20–25], соответственно), фона реликтового излучения [26–30] и фона космических лучей [31].

2. МЕЖЗВЕЗДНАЯ ПЫЛЬ

Как известно, межзвездная пыль является одним из компонентов межзвездной среды наряду с межзвездным газом, межзвездными электромагнитными полями, космическими лучами и темной материей [32]. Масса межзвездной пыли составляет примерно 1% от массы межзвездного газа. Образование пыли в основном происходит в медленно истекающих атмосферах звезд - красных карликах, а также при взрывных процессах на звездах и выбросе газа из ядер галактик. Также пыль образуется в планетарных и протозвездных туманностях, звездных атмосферах и межзвездных облаках. Под действием газовых потоков и давления излучения пылинки выносятся в межзвездную среду, где они тормозятся, взаимодействуя с газом, и остывают до температур 10-20 К. Это приводит к намерзанию малолетучих молекул из межзвездного газа, в результате чего на пылинках образуется оболочка из "грязного льда" -

Рис. 1. Оптическая толща для колонковой плотности 10^{22} атомов Н [см⁻²] как функция обратной длины волны. Жирная линия – кривая, соответствующая модели MRN, точки – экспериментальные данные, штриховая линия – вклад графитовых частиц [32].

молекул воды с примесью многих других молекул. Под действием налипания электронов и фотоионизации пылинок излучением звезд, пылинки становятся электрически заряженными и поэтому способны взаимодействовать с электромагнитными полями. Наблюдательными проявлениями межзвездной пыли является поглошение ею света звезд, в результате чего свет звезд ослабевает и краснеет, поскольку в оптическом диапазоне экстинкция обратно пропорциональна длине волны. Спектр излучения межзвездной пыли в инфракрасном и субмиллиметровом диапазоне частот служит индикатором физических условий, а излучаемая мощность может давать информацию о популяциях звезд, которую невозможно узнать другими способами. Межзвездная пыль принимает активное участие в охлаждении межзвездной среды, а значит, способствует процессам звездообразования [32].

Фотон, поглощаемый пылинкой, приводит в тепловое движение частицы пылинки. При этом пылинка начинает излучать в непрерывном спектре, который может быть аппроксимирован планковским спектром излучения абсолютно черного тела. В Галактике большая часть ультрафиолетового излучения звезд перерабатывается в инфракрасное излучение пылинок.

В настоящее время нет единого мнения о химическом составе и форме межзвездной пыли. Сушествует несколько моделей, объясняющих свойства межзвездной пыли. В данной работе рассматривается модель MRN, предложенная в [33]. Согласно этой модели межзвездная пыль состоит из смеси графитовых и силикатных частиц примерно в равной массовой пропорции, при этом частицы имеют сферическую форму и размеры 0.005 < a < 0.25 мкм, а их распределение по размеру имеет степенной характер, $n(a) \sim a^{-3.5}$. Преимущество этой модели в том, что она хорошо объясняет кривую межзвездного поглощения в диапазоне длин волн 1100–10000 Å. На рис. 1 приведены наблюдательные данные по межзвездному поглощению, теоретическая кривая, следующая из модели MRN, и показан вклад графитовых частиц. Графитовые частицы ответственны за избыточное поглощение на длине волны 2175 Å.

3. ТЕПЛОВОЙ БАЛАНС И ТЕМПЕРАТУРА ПЫЛИ

Эффективность поглощения пыли играет важную роль в энергетическом балансе. Она равна отношению сечения поглощения к геометрическому сечению пылинки:

$$Q(\lambda) = \frac{C_{abs}}{\sigma_d},\tag{1}$$

где геометрическое сечение пылинки σ_d равно πa^2 , a - pадиус пылинки.

Часто для оценочных расчетов эффективность поглощения принимают как предложено в [34]

$$Q(\lambda) = \begin{cases} 1, & \lambda \le 2\pi a, \\ \frac{2\pi a}{\lambda}, & \lambda > 2\pi a. \end{cases}$$
(2)

Одной из важнейших характеристик пыли является ее температура. Равновесная температура пылинки определяется из условий энергетического баланса нагрева и охлаждения пылинки. Скорость нагрева пылинки определяется выражением

$$\frac{dE^{abs}}{dt} = 4\pi\sigma_d \int_0^{\infty} Q(\lambda)J(\lambda)d\lambda, \qquad (3)$$

где $J(\lambda)$ — интенсивность излучения на длине волны λ , в которое помещена пылинка [34]. Скорость охлаждения пылинки равна

$$\frac{dE^{rad}}{dt} = 4\pi\sigma_d \int_0^{\infty} Q(\lambda)B(T_d,\lambda)d\lambda, \qquad (4)$$

где T_d — равновесная температура пылинки, $B(T_d, \lambda)$ — функция Планка.

Выражения (3) и (4) справедливы только для крупных частиц ($a \ge 0.01$ мкм). Для малых частиц характерна малая теплоемкость, что приводит к резкому возрастанию температуры мелких пылинок даже при поглощении небольших порций энергии, и поэтому температура пыли меняется скачкообразно. Между скачками температуры большинство мелких частиц охлаждаются до температуры реликтового излучения (2.7 К). Излучение пылинок происходит в основном, когда T_d выше равновесной [32]. Поэтому в нашей модели мы будем рассматривать только крупные пылинки с размерами от 0.01 до 0.25 мкм.

Температура пыли варьируется в зависимости от того, в какой области Галактики она находится. Вдали от околозвездных оболочек, в областях атомарного и молекулярного водорода, температура пыли может опускаться до 10-20 К. Если пыль находится в зонах НІІ, то ее температура лежит в диапазоне 30-200 К. Самые высокие значения температуры у пыли возникают в околозвездных оболочках. Здесь температура пылинок достигает 1000-1500 К [32]. Также внутри плотных облаков, где излучение от звезд сильно ослаблено, и пыль нагревается преимущественно за счет реликтового микроволнового излучения, температура пыли может падать до 6 К [34].

В работе [34] также приведены приближенные значения температуры для силикатной и графитовой составляющей пыли в зависимости от размера пылинки. Так, для силикатной составляющей пыли приближенное значение температуры равно

$$T_{sil} = 13.6 \left(\frac{1 \text{ MKM}}{a}\right)^{0.06} \text{ K},$$
(5)

для графитовой составляющей

$$T_{gra} = 15.8 \left(\frac{1 \text{ MKM}}{a}\right)^{0.06} \text{ K.}$$
 (6)

4. МОДЕЛЬ ИЗЛУЧЕНИЯ ПЧД

Предполагая, что ПЧД равномерно распределены во Вселенной, а пылинки – в нашей Галактике, рассмотрим ПЧД с массами $10^{15} \le M \le 10^{17}$ г. Пылинки принимают фотоны, излученные первичными черными дырами вследствие эффекта Хокинга. Считаем, что фотоны распространяются свободно, и поэтому взаимодействием с материей можно пренебречь. Поглощая энергию на всех длинах волн от ПЧД, пылинки нагреваются и излучают как абсолютно черное тело в инфракрасном диапазоне с равновесной температурой T_d, которая определяется из условия теплового баланса. При расчете скорости нагрева пылинки мы не учитываем нагрев от других источников. Сравнивая скорость нагрева и скорость охлаждения пыли, мы получаем ограничение на долю ПЧД, составляющих темную материю.

Согласно [35, 36], температура излучения ПЧД, *T*, определяется выражением:

$$k_{\rm B}T = \frac{\hbar c^3}{8\pi GM},\tag{7}$$

где $k_{\rm B}$ — постоянная Больцмана, при этом энергетический спектр фотонов от испарения одной ПЧД дается формулой:

$$\frac{dN_{\gamma}}{dt\,dE} = \frac{\Gamma}{2\pi\hbar} [\exp(E/k_{\rm B}T) - 1]^{-1},\tag{8}$$

где Г – серый фактор, который для высоких энер-

гий принимает вид
$$\Gamma = \frac{27G^2M^2E^2}{\hbar^2c^6}$$
 [37].

5. РЕЗУЛЬТАТЫ

Поток излучения от ПЧД как функцию энергии и времени можно рассчитать следующим образом:

$$F(E,t) = \frac{c}{4\pi}u(E,t),$$
(9)

где u — плотность энергии, t — космологическое время, на котором испаряется черная дыра.

Рис. 2. Ограничения на долю ПЧД, составляющих темную материю, для монохроматической функции масс. Сплошной черной линией показаны ограничения, если излучение от ПЧД поглощается силикатной составляющей пыли, а пунктирной черной линией — графитовой составляющей. Также приведены ограничения, полученные по внегалактическому и галактическому фонам гамма-излучения в работах [16, 22, 23, 31] (цветные линии).

Плотность энергии ПЧД, регистрируемая в настоящий момент времени, задается выражением [16, 17, 38]

$$u_{0} = (1+z)^{-3}u(E,t_{em}) = n_{PBH}(t_{0})\int_{0}^{\infty} g(M)dM \times \\ \times \int_{t_{rec}}^{t_{0}} dt \int_{0}^{\infty} (1+z)^{2} E_{0} \frac{dN_{\gamma}}{dtdE} (E_{0}(1+z))dE = \\ = \frac{f\rho_{DM}}{M} \int_{0}^{\infty} g(M)dM \int_{z_{rec}}^{z_{0}} \left| \frac{dt}{dz} \right| dz \int_{0}^{\infty} (1+z)^{2} \times \\ \times E_{0} \frac{dN_{\gamma}}{dtdE} (E_{0}(1+z))dE,$$
(10)

где E_0 , $n_{PBH}(t_0)$, ρ_{DM} — энергия фотона, концентрация ПЧД и плотность темной материи на данный момент, соответственно; g(M) — функция масс ПЧД; t_{rec} , z_{rec} — время и красное смещение момента рекомбинации;

$$\left|\frac{dt}{dz}\right| = \frac{1}{(1+z)H_0[\Omega_m(1+z)^3 + \Omega_\Lambda + \Omega_\gamma(1+z)^4]^{0.5}},(11)$$

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 99 № 5 2022

где H_0 – постоянная Хаббла, Ω_m , Ω_Λ , Ω_γ – космологические плотности вещества, темной энергии и излучения соответственно.

Таким образом, поток излучения от ПЧД на настоящий момент времени равен

$$F_0 = \frac{c}{4\pi} u_0. \tag{12}$$

Подставляя (12) в (3), получаем скорость нагрева пылинки:

$$\frac{dE^{abs}}{dt} = 4\pi\sigma_d F_0.$$
(13)

Поскольку мы рассматриваем ПЧД с массами $10^{15}-10^{17}$ г, энергия их излучения ~1–100 МэВ. Даже если они расположены на $z = z_{rec}$, на данный момент фотоны от таких ПЧД должны доходить с энергией ~1–100 кэВ, что соответствует рентгеновскому излучению. Поэтому длины волн, на которых излучают ПЧД, $\lambda_{PBH} \ll 2\pi a$, и для расчета скорости нагрева пылинки мы принимаем $Q(\lambda) = 1$.

Рис. 3. Ограничения на долю ПЧД, составляющих темную материю, для логнормального распределения. Сплошными линиями показаны ограничения, если излучение от ПЧД поглощается силикатной составляющей пыли, пунктирными – графитовой составляющей. Для сравнения приведены результаты, полученные по внегалактическому и галактическому фону в работах [22, 24, 31] для логнормального распределения при $\sigma = 2$ (красные линии).

Пылинка при охлаждении излучает в инфракрасном диапазоне, поэтому для нее $\lambda_d > 2\pi a$, и для расчета скорости охлаждения мы принимаем $Q(\lambda) = 2\pi/\lambda$. Подставляя $Q(\lambda)$ в (4), найдем скорость охлаждения пылинки:

$$\frac{dE^{rad}}{dt} = 4\pi\sigma_d F_d,\tag{14}$$

где F_d — поток излучения пылинки.

В качестве функции масс мы рассмотрели два варианта — монохроматическую функцию масс (δ-функцию) и впервые предложенное в [9] логнормальное распределение, плотность вероятности которого имеет вид [39]:

$$g(M) = \frac{1}{\sqrt{2\pi\sigma}M} \exp\left(\frac{-\lg^2(M/\mu)}{2\sigma^2}\right),$$
 (15)

где μ и σ – параметры распределения. Нормировка логнормального распредления на f учтена в формуле (10).

Самые строгие ограничения на долю ПЧД, составляющих темную материю, получаются, если принять минимальный размер пылинки a = 0.01 мкм. Для данного размера температура пыли графитовой и силикатной составляющей соответственно равна $T_{gra} = 17.93$ К, $T_{sil} = 20.83$ К. В результате получилась следующая скорость нагрева пылинки фотонами излучения Хокинга:

$$\frac{dE^{abs}}{dt} = 1.27 \times 10^{-11} f \left(\frac{10^{15} \text{ r}}{M}\right)^3 \text{ spr/c.}$$
(16)

Скорость охлаждения для силикатной составляющей пыли получается

$$\left(\frac{dE^{rad}}{dt}\right)_{sil} = 2.76 \times 10^{-14} \text{ spr/c.}$$
(17)

А для графитовой составляющей скорость охлаждения равна

$$\left(\frac{dE^{rad}}{dt}\right)_{gra} = 5.84 \times 10^{-14} \text{ spr/c.}$$
(18)

Ограничение на долю ПЧД, составляющих темную материю, может быть получено при сравнении скорости нагрева и охлаждения пыли из предположения о том, что скорость нагрева должна быть меньше скорости охлаждения. Тем-

386

пературы пыли рассматриваем те, которые указаны в выражениях (5) и (6).

На рис. 2 приведены результаты для монохроматической функции масс, т.е. показан верхний предел на долю ПЧД в космологической плотности темной материи f в зависимости от массы M. Эти ограничения можно сравнить с ограничениями, полученными по внегалактическому и галактическому фонам [16, 22, 23, 31]. Полученные при нашем анализе ограничения для монохроматической функции масс оказались значительно слабее.

На рис. 3 приведены результаты для логнормального распределения и показан верхний предел на долю ПЧД f в зависимости от значения μ . Также на рисунке показаны ограничения, полученные ранее другими авторами по внегалактическому и галактическому фонам излучения для логнормального распределения при значении параметра $\sigma = 2$ [22, 24, 31]. Для этого значения σ , полученные данным методом ограничения, получились слабее, чем в работе [24] (на основе данных по гамма-фону), но строже, чем в работе [22] и в [31] при $\mu \sim 10^{15}$ –3×10¹⁶ г.

6. ЗАКЛЮЧЕНИЕ

Важность изучения ПЧД заключается в том, что они могут быть важны при объяснении различных явлений, от темной материи до формирования сверхмассивных черных дыр. Разнообразие явлений, в которых могут участвовать ПЧД, обусловлено широким диапазоном их масс. Однако необходимо учитывать, что физические эффекты ПЧД не должны противоречить измеренным эффектам.

В данной работе впервые был рассмотрен процесс нагрева пылинок ПЧД, равномерно заполняющих Вселенную. Вклад остальных источников излучения в нагрев пыли не учитывался. В работе были рассмотрены монохроматическая функция масс и логнормальное распределение. Для монохроматической функции масс полученные в работе ограничения оказались слабее, чем в предыдущих работах, где ограничения были получены от вклада ПЧД в гамма-фон. Для логнормального распределения ПЧД по массе ограничения получились более строгими, чем в работах [22, 31], но менее строгими, чем в [24], для того же значения $\sigma = 2$.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке гранта РФФИ 19-02-00199.

БЛАГОДАРНОСТИ

Авторы благодарны В.Н. Лукашу и П.Б. Иванову за ознакомление со статьей и высказанные замечания, а также рецензенту за комментарии и предложения.

СПИСОК ЛИТЕРАТУРЫ

- 1. B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, et. al., Phys. Rev. Lett. 116, id. 061102 (2016).
- 2. *R. A. Remillard and J. E. McClintock*, Ann. Rev. Astron. Astrophys. **44**, 49 (2006).
- 3. G. Hütsi, M. Raidal, V. Vaskonen, and H. Veermäe, J. Cosmology and Astroparticle Phys. 03, id. 068 (2021).
- А. Б. Александров, А. Б. Дашкина, Н. С. Коновалова, Н. М. Окатьева и др., Успехи физ. наук 191, 905 (2021).
- 5. A. P. Serebrov, R. M. Samoilov, V. G. Ivochkin, A. K. Fomin, et. al., Phys. Rev. D 104, id. 032003 (2021).
- 6. V. V. Barinov, B. T. Cleveland, S. N. Danshin, H. Ejiri, et al., arXiv:2109.11482 [nucl-ex] (2021).
- 7. V. Barinov and D. Gorbunov, arXiv:2109.14654 [hep-ph] (2021).
- 8. S. Hawking, Monthly Not. Roy. Astron. Soc. 152, 75 (1971).
- 9. A. D. Dolgov and J. Silk, Phys. Rev. D 47, 4244 (1993).
- 10. *Я. Б. Зельдович, И. Д. Новиков*, Астрон. журн. **43**, 758 (1966).
- 11. B. Carr and S. Hawking, Monthly Not. Roy. Astron. Soc. 168, 399 (1974).
- 12. G. F. Chapline, Nature 253, 251 (1975).
- 13. P. Meszaros, Astron. and Astrophys. 38, 5 (1975).
- 14. B. J. Carr, Astrophys. J. 201, 1 (1975).
- 15. *M. Sasaki*, Classical and Quantum Gravity **35**, id. 063001 (2018).
- 16. B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Phys. Rev. D. 81, id. 104019 (2010).
- 17. A. Arbey, J. Auffinger, and J. Silk, Phys. Rev. D 101(2), id. 023010 (2020).
- G. Ballesteros, J. Coronado, and D. Gaggero, Phys. Letters B 808, id. 135624 (2020).
- 19. B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Reports Progress Phys. 84, 53 (2021).
- 20. B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Phys. Rev. D. 94, id. 044029 (2016).
- 21. W. DeRocco and P. Graham, Phys. Rev. Lett. 123, id. 251102 (2019).
- 22. R. Laha, Phys. Rev. Lett. 123, id. 251101 (2019).
- 23. *R. Laha, J. B. Mu noz, and T. R. Slatyer*, Phys. Rev. D. **101**, id. 123514 (2020).
- 24. *B. Carr and F. Kühnel*, arXiv:2110.02821 [astro-ph.CO] (2021).
- 25. *M. Chan and C. Lee*, Monthly Not. Roy. Astron. Soc. **497**, 1212 (2020).
- 26. S. J. Clark, B. Dutta, Y. Gao, L. E. Strigari, and S. Watson, Phys. Rev. D. 95, id. 083006 (2017).
- P. Stöcker, M. Krämer, J. Lesgourgues, and V. Poulin, J. Cosmology and Astroparticle Phys. 03, id. 018 (2018).

- 28. H. Poulter, Y. Ali-Haimoud, J. Hamann, M. White, and A. G. Williams, arXiv:1907.06485 [astro-ph.CO](2019).
- 29. S. Acharya and R. Khatri, J. Cosmology and Astroparticle Phys. 02, id. 010 (2020).
- 30. S. Acharya and R. Khatri, J. Cosmology and Astroparticle Phys. 06, id. 018 (2020).
- 31. *M. Boudaud and M. Cirelli*, Phys. Rev. Lett. **122**, id. 041104 (2019).
- 32. Н. Г. Бочкарев, Основы физики межзвездной среды (М.: Изд-во МГУ, 1991).
- 33. J. S. Mathis, W. Rumpl, and K. H. Nordsieck, Astrophys. J. 217, 425 (1977).

- 34. A. Tielens, The physics and chemistry of the interstellar medium (Cambridge University Press, 2005).
- 35. S. Hawking, Nature 248, 30 (1974).
- 36. S. Hawking, Comm. Math. Phys. 43, 199 (1975).
- 37. J. MacGibbon and B. Webber, Phys. Rev. D 41, 3052 (1990).
- 38. G. Ballesteros, J. Coronado-Blázquez, and D. Gaggero, Phys. Lett. B. 808, id. 135624 (2020).
- 39. K. Krishnamoorthy, Handbook of Statistical Distributions with Applications (Taylor and Francis Group, LLC, 2006).