ОПТИЧЕСКАЯ СПЕКТРОСКОПИЯ ВЫСОКОГО РАЗРЕШЕНИЯ СПЯЩЕЙ LBV-ЗВЕЗДЫ Р Суд

© 2023 г. В. Г. Клочкова^{1,*}, В. Е. Панчук¹, Н. С. Таволжанская¹

¹Специальная астрофизическая обсерватория РАН, Нижний Архыз, Россия *E-mail: Valentina.R11@yandex.ru Поступила в редакцию 15.09.2023 г. После доработки 23.10.2023 г. Принята к публикации 23.10.2023 г.

На телескопе БТА получены оптические спектры высокого разрешения (R = 60000) спящей LBV-звезды Р Суд в диапазоне длин волн $\Delta\lambda = 477-780$ нм. Выполнив детальное отождествление различных линий (фотосферные абсорбции, разрешенные и запрещенные эмиссии, компоненты линий с профилями типа Р Суд), мы изучили переменность их профилей и картины лучевых скоростей. Лучевая скорость по запрещенным эмиссиям ([N II] 5754.64, [Fe II] 5261.62, [Fe II] 7155.14 и [Ni II] 7377.83 Å) принята в качестве системной $V_{sys} = -34 \pm 1.4$ км/с. В спектрах отождествлены около дюжины фотосферных абсорбций ионов CNO-триады и Si III. Их стабильное положение, $V_r(abs) = -73.8$ км/с, сдвинутое относительно V_{sys} на –40 км/с, указывает на то, что эти абсорбции формируются в области псевдофотосферы. В спектрах отсутствуют эмиссии высокого возбуждения ([O I] 5577, 6300, 6363 Å, [O III] 4959 и 5007 Å, а также Не II 4686 Å). Лучевая скорость $V_r(DIB_s) = -11.8$ км/с по многочисленным DIBs согласуется с положением межзвездных компонентов D-линий Na I и K I, формирующихся в галактическом рукаве Персея. По измерениям эквивалентных ширин 9 DIBs определены избыток цвета $E(B - V) = 0.34 \pm 0.03^m$ и межзвездное поглощение $A_v = 1.09^m$.

Ключевые слова: массивные звезды, LBV, околозвездная среда, оптические спектры, переменность **DOI:** 10.31857/S0004629923120046, **EDN:** CYKTJG

1. ВВЕДЕНИЕ

Данная статья посвящена детальному изучению оптического спектра голубого сверхгиганта Р Суд (Sp B1-2 Ia-0ер). История поведения блеска звезды Р Суд в XVII-XVIII вв. после внезапного роста ее блеска на 3 звездные величины, зарегистрированного в начале 1600 гг., изложена в обширной публикации де Гроут [1]. Зафиксированный эпизод активного состояния в течение нескольких лет позволил впоследствии классифицировать Р Суд в качестве ближайшей к солнечной системе LBV-звезды. Понятие "Luminous Blue Variable" (и краткий термин LBV) было введено в 1984 г. [2]. Фотометрический мониторинг Р Суд в последующие 400 лет показывает, что в основном звезда пребывает в спокойном (спящем) состоянии.

Более подробно история фотометрического поведения первой исторически известной и ближайшей к нам LBV-звезды Р Суg, а также суммирование первых результатов спектроскопии этой звезды изложены Хэмфрис и Дэвидсоном [3],

Изрельяном и де Гроотом [4]. Спектроскопия Р Суд стартовала спустя почти три столетия после гигантской вспышки 1600 г. Уже в 1895 г. Кэмпбелл [5] в своем обзоре, посвященном звездам, спектры которых содержат и яркие, и темные линии водорода, предлагает выделить в отдельный тип звезды, спектры которых содержат интенсивные эмиссии, сдвинутые в коротковолновую область абсорбции. Пулковский астроном А. Белопольский [6], получив в 1899 г. с призменным спектрографом спектры Р Суд в диапазоне длин от Нγ до Нβ и отождествив ряд деталей, не обнаружил значимых изменений между спектрами, полученными в промежутке времени от 21 сентября до 1 октября 1899 г. Но уже в начале XX в. была отмечена переменность спектра Р Суд [7]. Позже Адамс и Меррилл [8] выявили вариации интенсивности и структуры абсорбций в спектре звезды.

Высокий темп потери массы и эруптивные события, обусловленные высоким отношением светимости звезд к их массе, приводят к форми-

рованию газовых туманностей в околозвездной среде массивных звезд. Вследствие этих процессов поверхность ряда подобных звезд скрыта, поэтому их наблюдаемые особенности (прежде всего – характер профилей специфических спектральных деталей и их переменность) в основном отражают проявление нестабильных процессов в оболочках. Авторы статьи [9] подчеркивают, что для звезд этого типа параметры не имеют отношения к звездной фотосфере и относятся к области ветра. Зачастую причудливый на первый взгляд спектр этих звезд является комплексным, формирующимся в околозвездной среде, и может вовсе не содержать деталей звездной атмосферы. Именно к этому типу спектров относится и спектр известной звезды Р Суд, для которой база данных SIMBAD среди основополагающих сведений содержит указание о наличии комплексной эмиссионной туманности, окружающей звезду.

Изучив выборку спектров Р Суд, полученных в 1942–1964 гг. на нескольких телескопах, де Гроут [1] получил данные о профилях линий и лучевых скоростях по основным спектральным деталям (H I, He I, C II, N II, Si II, S II, Fe II, Fe III и других ионов). Изучив переменность их коротковолновых абсорбционных компонентов, автор сделал вывод об их формировании в расширяющейся околозвездной среде. В этой же работе сделана оценка высокого темпа потери массы $2 \times 10^{-4} M_{\odot}$ /год и указана пульсация как причина переменности блеска звезды. Наджаро и др. в более поздней работе [10], выполнив моделирование данных оптической и ИК спектроскопии, определили набор основных параметров Р Суд, рассчитали теоретические профили линий Н I, Не I, и значительно понизили темп потери

вещества до $3 \times 10^{-5} M_{\odot}$ /год.

Главные особенности оптического спектра Р Суд были выявлены в 1980-е годы по фотографическим спектрам: мощные эмиссии H I, He I с абсорбционными структурированными компонентами [11]. Спектральный атлас [11] создан на базе фотографических спектров с невысоким отношением сигнала к шуму (S/N). Широко цитируется и спектральный атлас [12, 13], основанный на эшелле-спектрах в широком интервале длин волн, зарегистрированных с помощью CCD-матрицы. Значимость этой работы обеспечена детальным отождествлением спектра Р Суд в широком диапазоне длин волн, около 500 нм. Анализ ланных с умеренным разрешением (R = 12000) позволил авторам работы [13] выявить переменность интенсивности эмиссий до 30% и лучевой скорости (30-50 км/с) на временной шкале в несколько месяцев. Важно отметить, что Шталь и др. не обнаружили четкой корреляции в поведении спектральных и фотометрических особенностей. Эти авторы не обнаружили и расщепления абсорбций, найденной ранее [14]. Отметим, что атлас [12] базируется на данных, которые для повышения S/N получены усреднением спектров, полученных в различные даты 1989—1991 гг. со спектрографами в нескольких обсерваториях. Для звезды с переменным спектром в ходе процедуры усреднения теряются некоторые сведения о поведении профилей линий и лучевых скоростей.

В настоящее время Р Суд – полноправный прототип горячих нестабильных звезд предельно высокой светимости (LBV). Показательно положение этой звезды на диаграмме Герцшпрунга-Рассела вблизи предела светимости в полосе нестабильности LBV-звезд (см., напр., информативный рисунок в обзоре [15], рис. 3). Основные параметры звезды приведены в работе [16] и сопоставлены с параметрами родственных LBV-звезд и LBV-кандидатов в статье [17], табл. 1). Среди родственных LBV-звезд Р Суд стоит особняком благодаря двум факторам. Во-первых, наряду с n Car. она принадлежит к двум звездам в нашей Галактике, для которых в прошлом были зафиксированы значительные изменения блеска. Во-вторых, Р Суд имеет оптический спектр, насыщенный интенсивными переменными эмиссионно-абсорбционными профилями H I, He I, N II. S II. Fe II и других ионов, что свидетельствует об истечении звездного вещества за счет переменного ветра. Эта особенность профилей послужила выделению широко известного теперь спектрального феномена – профиль типа Р Суд (или обратного Р Суд). Насыщенность спектра Р Суд эмиссиями различной природы требует для его изучения детальной спектроскопии. Отметим, что еще в ранней работе де Гроут [1] были введены в практику спектроскопии термины "профиль типа P Cygni" и звезды типа P Cyg. Позже Ламерс [18] расширил круг объектов с особенностями профилей типа Р Суд и ввел понятие "астрофизический феномен профилей типа Р Суд". Совокупность наблюдаемых фотометрических и спектральных особенностей Р Суд представлена в статье [19]. Основой данной работы послужили уже упомянутые нами обширные наблюдения де Гроут [1]. Важным результатом работы [19] является вывод об отсутствии определенного периода изменений параметров: многолетние данные слабой фотометрической переменности указывают на возможный интервал значений периода от 0.5 дней до 18 лет.

К настоящему времени опубликовано несколько работ на основе спектров Р Суд, полученных в различные моменты времени, еще меньше спектральных данных высокого разрешения. Очевидна значимость работы [9], основанной на выборке спектров высокого разрешения (R == 80000) и высокого отношения сигнала к шуму, S/N, полученных в ночи 28.05–04.06.1999. Де Ягер и Израельян пришли к выводу о том, что

Тип деталей	26.10.2021	08.09.2022	09.09.2022
Pure absorptions	-74.4 ± 1.3 (13)	-74.0 ± 2.3 (12)	-73.0 ± 1.7 (13)
Pure emis permit	-38.3 ± 3.7 (23)	-44.5 ± 1.8 (27)	-43.5 ± 1.0 (30)
Pure emis forb	-48.7 ± 5.5 (8)	-42.3 ± 3.3 (8)	-41.7 ± 2.6 (7)
P Cyg em H I He I	-17.5 ± 1.5 (9)	-12.2 ± 4.4 (8)	-18.1 ± 3.3 (8)
P Cyg ab H I He I	-147.8 ± 9.1 (10)	-139.8 ± 14.3 (10)	-147.2 ± 8.9 (10)
P Cyg other em	-23.1 ± 1.3 (23)	-23.5 ± 1.3 (19)	-23.5 ± 1.2 (25)
P Cyg other ab	-97.3 ± 2.4 (29)	-99.0 ± 2.1 (29)	-95.1 ± 2.2 (29)
DIBs	-12.1 ± 0.5 (20)	-11.5 ± 0.5 (31)	-12.1 ± 0.4 (24)

Table 1. Результаты измерений гелиоцентрической скорости V_r в спектрах Р Суд по измерениям набора разных типов линий

Примечание. В скобках указано число спектральных деталей, использованных при усреднении значений скорости.

есть два периода переменности: согласующийся с фотометрическим, равным 17.3^{*d*}, и длительный порядка 100^{*d*}. Очевидно, что наблюдения в течение недели недостаточны для изучения спектральной переменности. Как отметили де Ягер и Израельян [9], поиск переменности параметров такой звезды — очень хитрая задача (tricky task).

Именно отсутствие спектральных данных необходимого качества и объема послужило для нас стимулом к началу долговременной спектроскопии Р Суд для обеспечения поиска переменности профилей спектральных деталей и картины лучевых скоростей на основе однородных высококачественных спектральных данных. Эта задача потребует многократных и, возможно, многолетних наблюдений с высоким спектральным разрешением в широком интервале длин волн. В данной статье мы представляем результаты первого этапа работы, проведенной с целью уточнения отождествления деталей спектра, измерения лучевых скоростей и выявления переменности спектра на основе наблюдений Р Суд в 2021-2022 гг. В разделе 2 данной статьи кратко описаны методы наблюдений и анализа данных. В разделе 3 приведены полученные результаты, в разделах 4 и 5 приводим обсуждение наших результатов и их сопоставление с опубликованными ранее, и основные выводы.

2. ЭШЕЛЛЕ-СПЕКТРОСКОПИЯ НА БТА

Используемые в данной работе спектры получены нами с эшелле-спектрографом НЭС [20], стационарно расположенном в фокусе Нэсмита 6-м телескопа БТА. Даты наблюдений звезды приведены в табл. 1. Спектрограф оснащен матрицей ПЗС с числом элементов 4608 × 2048, размер элемента 0.0135×0.0135 мм; шум считывания $1.8e^{-1}$. Мониторинг Р Суд проводится в диапазоне длин волн $\Delta \lambda = 470-778$ нм. Для уменьшения

потерь потока на входной щели спектрограф НЭС снабжен резателем изображения звезды. С использованием резателя каждый спектральный порядок повторяется трижды. Спектральное разрешение HЭС $R = \lambda/\Delta\lambda \ge 60\,000$. В спектрах Р Суд отношение уровня сигнала к шуму, S/N, изменяется на несколько порядков, от уровня континуума до вершин сильнейших эмиссий. В континууме вблизи 5000 Å отношение S/N = 300–360 для разных дат наблюдений. Экстракция одномерных спектров из двумерных эшелле-кадров выполнена с использованием модифицированного с vчетом геометрии эшелле-кадра контекста ECHELLE пакета MIDAS. Все детали процедуры описаны Юшкиным и Клочковой [21]. Следы космических частиц удалены стандартным приемом — за счет медианного усреднения пары спектров, полученных последовательно. Для калибровки длин волн использовалась Th-Ar лампа. Все последующие шаги в обработке одномерных спектров выполнены с использованием современной версии пакета DECH [22]. Систематическая ошибка измерений гелиоцентрической лучевой скорости V, по набору теллурических деталей и межзвездных линий дублета Na I не превышает 0.25 км/с по одной линии. Для усредненных значений скорости в табл. 1 ошибки среднего зависят от типа и количества измеренных линий.

Отождествление деталей в спектрах Р Суд мы выполнили, используя списки линий из статей, основанных на спектроскопии на БТА + НЭС родственных горячих звезд высокой светимости, включая и звезды с феноменом В[е] [23–26]. Кроме того, для отождествления ряда спектральных деталей мы дополнительно применили сведения из базы данных VALD (см. [27] и ссылки в этой публикации).

Рис. 1. Фрагмент спектра Р Суд.

3. РЕЗУЛЬТАТЫ

3.1. Основные особенности спектра

Рисунки 1, 2 и 3 с фрагментами спектра Р Суд, полученного в 2021 г., характеризуют оптический спектр Р Суд как совокупность разнообразных эмиссий. Прежде всего – это линии нейтрального водорода и гелия с интенсивными профилями классического типа Р Суд. Все рисунки в тексте созданы на основе спектров Р Суд, полученных со спектрографом НЭС. На рис. 4 относительная интенсивность эмиссии Нα составляет I/I_{cont} ≈ 14 в 2021 г. и достигает значения *I*/*I*_{cont} ≥ 18 в спектре 2022 г. Профили линий Н I и Не I в спектрах в различающиеся даты, приведенные на рис. 4 и 5, указывают на переменность интенсивности пиковых значений эмиссионной и абсорбционных компонентов. Как следует из табл. 1, положение эмиссионных компонентов линий Н I и Не I отличается и заметно изменяется со временем. Многократно выше различие положений абсорбционных компонентов: среднеквадратичное уклонение превышает 10 км/с для имеющихся дат. Очевидно, что доминирующий вклад в высокую дисперсию скоростей для ветровых абсорбций вносят не ошибки измерений, а реальная переменность этой скорости и наличие структуры у этих компонентов.

Количественное исследование этой переменности будет выполнено в дальнейшем, по мере накопления необходимой коллекции спектров звезды. Из данных предпоследней строки табл. 1 следует постоянство положений эмиссий профилей типа Р Суд у других элементов (около трех десятков эмиссий ионов N II, С II, Si II, Al III, [Fe II]). Как следует из рис. 2, 3 и 6, пиковые эмиссии этого ряда линий также значительно превышают уровень континуума. Именно давление излучения, вызванного массой этих эмиссий в Бальмеровском и Лаймановском континууме, является причиной эффективного звездного ветра [18].

В самых ранних работах по спектроскопии Р Суд было отмечено наличие отдельных ветровых компонентов у абсорбций Н I и Не I, обусловленных рекуррентными сбросами вещества. Эти так называемые DACs (Diffuse Absorbtional Components) в ранних статьях Марковой именовалсь "splitting" [28]. Маркова отмечала наличие этого эффекта у линий Н I и Не I и ожидала расщепления даже у эмиссий Fe III. Интересно, что в атласе [13] отмечено полное отсутствие этого эффекта, по-видимому, из-за низкого спектрального разрешения. Наши наблюдательные данные позволяют надежно фиксировать до трех отдельных ветровых компонентов в интервале лучевых скоростей $V_r = -(140-250)$ км/с лишь на профи-

Рис. 2. Фрагмент спектра Р Суд с набором интенсивных линий N II, имеющих профили типа Р Суд.

Relative intensity

Рис. 3. Фрагмент спектра Р Суg, содержащий, помимо эмиссий, несколько межзвездных полос DIBs. АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 100 № 12 2023

Рис. 4. Переменность профиля H α (левая панель) и H β (правая панель) в спектрах P Cyg 26.10.2021 (черная линия) и 09.09.2022 (красная и синяя линии соответственно). На этом и последующих рисунках с профилями линий положение штриховой вертикальной прямой соответствует принятому значению системной скорости $V_{sys} = -34 \pm 1.4$ км/с. Здесь и на последующих рисунках с профилями линий по оси абсцисс указана гелиоцентрическая лучевая скорость V_r в км/с.

лях Н α и Н β , представленных на рис. 4. Эффект расщепления особенно отчетливо виден на профилях Н β , где перепад интенсивности между пиковыми значениями эмиссии и ветровых абсорбций многократно меньше, чем у профилей Н α .

Подчеркнем отсутствие расщепления профилей у линий других элементов в спектрах P Cvg. что иллюстрирует, в частности, рис. 2, где представлен фрагмент спектра Р Суд, содержащий набор интенсивных и неблендированных линий N II с профилями типа Р Суд, а также рис. 6 с переменным профилем одной из этих линий, N II 5666 Å, в спектрах разных дат наших наблюдений. В спектре Р Суд также отсутствуют типичные для туманностей запрещенные эмиссии [O I] 5577, 6300, 6363 Å, [O III] 4959 и 5007 Å. Нет и эмиссии Не II 4686 Å, чье отсутствие в спектре Р Суд подчеркнул еще О. Струве [29], отождествивший в оптическом диапазоне множество линий N II, О II, Si III, S II, Fe II. В наших спектрах мы не нашли и запрещенные эмиссии [Ca II] 7291 и 7324 Å, которые в спектрах избранных звезд высокой светимости свидетельствуют о наличии околозвездного диска. Отличными примерами являются спектры звезд предельно высокой светимости MWC 314 [30] или гипергиганта V1302 Aql [24].

Мощные эмиссии Н І и Не І в спектре Р Суд сочетаются с множеством слабых эмиссий N II, CII, Si II, Si III, Fe II, Fe III и т. д., имеющих ветровой абсорбционный компонент. Эти разрешенные эмиссии на 30% совпадают с линиями из списка в работе [31]. Рисунок 2 хорошо представляет особенности этой выборки линий: интенсивность этих оболочечных эмиссий редко превышает 15-20% над уровнем локального континуума. В табл. 1 приведены средние скорости по положениям эмиссионных V_r (P Cyg other em) и абсорбционных V_r (P Cyg other abs) компонентов этих линий. Абсорбционный компонент этих линий сдвинут на расстояние менее –100 км/с. Особенности этого типа хорошо иллюстрирует рис. 6, где приведен профиль типичной для этой выборки и достаточно интенсивной линии N II 5666 Å.

Еще ниже интенсивность запрещенных эмиссий, среди которых наиболее заметна линия запрешенного азота [N II] 5755 Å (см. рис. 7). Эта эмиссия является важнейшим маркером, присутствие которой в спектре позволяет априори относить звезду высокой светимости к малочисленному семейству LBV-звезд. Запрещенная эмиссия [N II] 6583 Å, близкая по своей природе к эмиссии [N II] 5755 Å, отсутствует в спектре Р Суд или блендирована эмиссией С II 6582.9 Å.

Рис. 5. Профиль двух линий Не I спектрах Р Суд, полученных в 2021 (черная линия) и в 2022 г. (красная и синяя линии соответственно). Слева линия Не I 4713 Å, справа – Не I 7065 Å.

3.2. Картина лучевых скоростей

Высокое отношение S/N > 300 в наших спектрах Р Суд позволило отождествить дополнительные детали по сравнению с фотографическим спектром в атласе [32]. Осложняющим фактором в детальном отождествлении эмиссионного спектра является низкая интенсивность разрешенных эмиссий ионов металлов, за исключением линий N II. Туманность в системе Р Суд относится к редко наблюдаемому пекулярному типу: Нота и др. [33] указали, что эта слабая сферическая [15] туманность состоит из отдельных сгустков (клампов) вещества с размером 2-3", распределенных вдоль оболочки диаметром около 20". Эта туманность отличается и крайне малой массой ионизованного газа, 0.00092 M_☉ [34]. Малый объем газовой оболочки проявляется в совокупности слабых разрешенных и запрещенных эмиссий различной природы. Профили эмиссий, представленных на рис. 4, 5 и 8, демонстрируют большое различие значений интенсивности эмиссионных пиков и абсорбционных компонентов при совпадении интервала значений их лучевых скоростей.

Запрещенные эмиссии. Рисунок 7 иллюстрирует постоянство положения запрещенной эмиссии [N II] 5755 Å, что позволяет принять значение лучевой скорости V_r (5755) в качестве системной скорости $V_{sys} = -34 \pm 1.4$ км/с. Смит и Хартиган [35] определили $V_{sys} = -38 \pm 5$ км/с (LSR = -20 ± 1000

 \pm 5 км/с), базируясь на выборке запрещенных эмиссий в ИК-спектре Р Суg. Значение системной скорости, LSR $\simeq -20$ км/с, соответствует расположению Р Суg в рукаве Персея [36] и согласуется с малой удаленностью звезды согласно современному значению ее параллакса.

Близкое положение ($V_r \approx -38$ км/с) в спектрах Р Суд занимает широкая, $\Delta \lambda \approx 8.5$ Å, эмиссия на длине волны 7155 Å с плоской вершиной и с низкой интенсивностью, около 3% от уровня континуума. Профиль этой запрещенной эмиссии также приведен на рис. 7. В атласе [12] эта деталь отождествлена как запрещенная эмиссия [Fe II] 7155 Å, в атласе спектров МWC 314 и V1302 Aql [37] дана уточненная длина волны эмиссии [Fe II] 7155.14 Å. Отметим, что в спектрах этих двух пекулярных гипергигантов, MWC 314 и V1302 Aql, относительная интенсивность эмиссии [Fe II] 7155 Å существенно выше, чем в спектре Р Суд: $I/I_{cont} \ge 1.2$.

Для всех дат наших наблюдений мы зарегистрировали в спектре Р Суд еще две дополнительные широкие эмиссии с плоскими вершинами. Одна из них на длине волны $\lambda \approx 7377$ Å, ее положение соответствует скорости $V_r = -36.5$ км/с. В атласе [37] на этой длине волны также содержится неотождествленная деталь, $I/I_{cont} \ge 1.1$. Ранее эта деталь в спектре Р Суд была отождествлена Шталем и др. [12] как запрещенная линия [Ni II] 7380 Å. Вершина профиля эмиссии на

Рис. 6. Переменность профиля одной из наиболее интенсивных линий N II 5666 Å в спектрах P Cyg, полученных 26.10.2021 (черная линия) и 09.09.2022 (синяя линия).

 λ 7377 Å не вполне плоская, в целом профиль подобен профилям запрещенных линий [Fe II] в ИК области спектра Р Суд, приведенным в работе [38]. За счет высокого отношения S/N мы выявили также и слабую, $I/I_{cont} \approx 1.05$, эмиссию [Fe II] 5261.62 Å, ее положение $V_r = -31.2$ км/с, ширина $\Delta\lambda = 8$ Å.

Подчеркнем, что форма профиля эмиссий [Fe II] 7155 и [Ni II] 7377 Å существенно отличается от профиля [N II] 5755 Å и напоминает нам многочисленные "прямоугольные" профили эмиссий линий в спектре CI Cam (см., напр., статью [39]). Выделенное положение 4 перечисленных запрещенных эмиссий позволяют нам говорить о стратификации околозвездной среды, обусловленной наличием структуры низкой плотности, выделенной и кинематически, и по физическим условиям.

Мы отождествили в спектрах P Суд всего 8 запрещенных эмиссий, среднее значение скорости (и ошибка среднего), соответствующее их положению в спектрах для наших ночей, указано в 3-й строке табл. 1. Из этих данных следует, что запрещенные эмиссии в среднем формируются выше уровня V_{sys} . Механизмы возбуждения запрещенных эмиссий (флуоресцентное возбуждение за счет УФ излучения самой звезды и ударные столкновения) в туманностях, в том числе и в

Рис. 7. Профиль запрещенной линии [N II] 5755 Å в спектрах Р Суg, полученных в 2021 г. (черная линия) и в 2022 г. (красная и синяя линии). Рисунок содержит также переменную запрешенную эмисссию [Fe II] 5746.96 Å. Оранжевой линией нанесен профиль слабой и широкой эмиссии [Fe II] 7155 Å.

околозвездной среде Р Суд, рассмотрены в работах [35, 40].

Фотосферные абсорбции. Важной задачей в исследовании подобных спектров звезд высокой светимости, заполненных оболочечными эмиссиями, являются поиск и отождествление абсорбций, формирующихся в атмосфере (или в псевдофотосфере) звезды. В спектре Р Суд мы отождествили лишь небольшой набор неблендированных абсорбций нескольких ионов: рис. 1 содержит две абсорбции Si III 4819.71 и 4828.95 Å из этой выборки. Все найденные абсорбции, перечисленные в табл. 2, очень слабы, их глубины менее 4–5% от уровня локального континуума. Кроме того, некоторые линии (они отмечены в списке двоеточием) могут быть блендами. От бленд свободна линия О II 6721.388 Å, ее глубина ≈ 0.025 , при этом соответствующая ее положению скорость близка к значениям по другим абсорбциям в списке. В целом данные табл. 1 и 2 указывают на постоянное значение скорости по выявленным фотосферным абсорбциям. Среднее значение скорости, $V_r(abs) = -73.8$ км/с, сдвинутое относительно V_{sys} на ≈ -40 км/с, указывает на то, что эти абсорбции формируются в области псевдофотосферы. Стабильность $V_r(abs)$ позволяет сделать предварительный вывод об отсутствии звездного компаньона в системе P Суg.

Рис. 8. Профили избранных линий в спектрах P Cyg, полученных 26.10.2021 г. (левая панель) и 09.09.2022 (правая панель): нижняя часть линии Hα – тонкая черная линия, He I 7065 Å – красная линия, [N II] 5755 Å – жирная черная линия, Si II 5640 Å – синяя линия.

Межзвездные детали. Спектр Р Суд содержит множество абсорбций, формирующихся в межзвездной среде: это компоненты D-линий Na I и

Таблица 2. Список фотосферных абсорбций, отождествленных в спектрах Р Суд и использованных в расчете среднего значения скорости для каждой даты табл. 1

<i>V_r</i> , км/с		
26.10.2021	08.09.2022	09.09.2022
-75.66		-68.38
-73.27	-82.46	-73.27
-73.31	-66.68	-72.80
-73.42	-70.04	-67.65
-85.20	-82.90	-77.78
-67.02	-61.24	-61.50
-84.85	-82.83	-81.95
-77.21	-79.81	-80.05
-75.42	-76.20	-75.01
-72.61	-68.25	-76.72
-77.85	-77.75	-77.32
-70.23	-64.76	-65.51
-75.29	-74.93	-70.96
	$\begin{array}{r} 26.10.2021 \\ -75.66 \\ -73.27 \\ -73.31 \\ -73.42 \\ -85.20 \\ -67.02 \\ -84.85 \\ -77.21 \\ -75.42 \\ -72.61 \\ -77.85 \\ -70.23 \\ -75.29 \end{array}$	$V_r, \ \mbox{км/c}$ 26.10.202108.09.2022-75.66-73.27-82.46-73.31-66.68-73.42-70.04-85.20-82.90-67.02-61.24-84.85-82.83-77.21-79.81-75.42-76.20-72.61-68.25-77.85-77.75-70.23-64.76-75.29-74.93

Примечание. Двоеточием помечены линии, которые могут быть блендами (см. текст).

межзвездная абсорбция К I 7697 Å, а также диффузные межзвездные полосы (DIBs). Для иллюстрации на рис. 9 представлен профиль линии Na I 5890 Å. Этот многокомпонентный профиль включает: межзвездную линию "1", смещенные коротковолновые абсорбции "2" и "3", а также широкую эмиссию "4". Положение межзвездной абсорбции "1" согласуется с лучевой скоростью по положениям межзвездных полос DIBs (см. нижнюю строку табл. 1). Значение лучевой скорости $V_r(KI) = -11.5$ км/с по измерениям положения межзвездной линии K I 7697 Å, нанесенное на рис. 9 короткой вертикалью, также согласуется со скоростью по межзвездному компоненту V_r (Na I). Слабая абсорбция "2", почти несмещенная относительно V_{sys} , очевидно, формируется в протяженной газовой оболочке P Cyg.

Наиболее интересные компоненты профиля – это смещенная в длинноволновую область эмиссия "4" и широкая абсорбция "3", диапазон скоростей которой от –85 до –230 км/с позволяет рассматривать в целом пару деталей "3–4" как комплексный профиль типа Р Суд линии Na I 5890 Å. Наличие профиля типа Р Суд у D-линий Na I в спектре этой звезды было выявлено ранее [28]. Однако, имея более качественные спектры, мы идентифицировали области формирования всех компонентов "1–4".

Подобная аномалия профилей D-линий Na I была зафиксирована ранее [41] в спектрах

Рис. 9. Многокомпонентный профиль D-линии Na I 5890 Å в спектрах P Cyg в 2021 и 2022 г. (красная и синяя линии соответственно).

F-сверхгиганта V2324 Cyg/IRAS 20572+4919 с неясным эволюционным статусом. Линия Нα в спектре этой звезды имеет переменный во времени профиль типа Р Суд. Обе D-линии Na I имеют профили типа Р Суд и содержат глубокую межзвездную абсорбцию (см. [41], рис. 2). Причем в спектрах V2324 Суд, галактические координаты которой близки к таковым у Р Суд, положение межзвездных абсорбций Na I и полос DIBs, $V_r = -(12-13)$ км/с, согласуется с положением этих межзвездных деталей в спектрах Р Суд. Отметим также, что в спектре V2324 Cyg обе D-линии Na I имеют далеко сдвинутую (на $\Delta V_r = -(140 - 225)$ км/с для разных моментов наблюдений этой звезды) ветровую абсорбцию. Очевидно, что столь быстрый ветер несовместим с принадлежностью V2324 Суд к маломассивным post-AGB сверхгигантам.

Измерив эквивалентные ширины DIBs, перечисленных в табл. 3, и применив калибровочные зависимости W_{λ} от E(B - V) из статьи [42], мы получили по 10 межзвездным полосам средний избыток цвета $E(B - V) = 0.34 \pm 0.03^m$. Используя стандартное отношение R = 3.2, приходим к оценке межзвездного поглощения $A_v = 1.09^m$.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Р Суд является уникальной LBV-звездой, поскольку ее гигантская вспышка 1600 г., создавшая раздутую (inflated) оболочку, является редким историческим событием. Кроме того, будучи близкой к Солнцу, звезда дает возможность проведения детальных высококачественных наблюдений в различных диапазонах длин волн, что является

Таблица 3. Эквивалентные ширины DIBs и соответствующий избыток цвета с использованием калибровок [42]

λ, Å	W_{λ}, m Å	E(B-V)
4963.850	6	0.25
5780.632	179	0.42
5797.274	58	0.3
5849.869	10	0.2
6196.063	22	0.3
6203.192	60	0.5
6269.884	24	0.3
6284.198	364	0.4
6613.766	44	0.25
6660815	19	0.4

важным для понимания физики и эволюции массивных звезд.

Наряду с уже перечисленными в тексте особенностями оптического спектра Р Суд, следует подчеркнуть его насышенность деталями азота: это множество линий иона N II с профилями типа Р Суд, несколько фотосферных абсорбций N II, а также запрещенная эмиссия [N II] (см. рис. 6 и 7). Эта особенность спектра массивной далеко проэволюционировавшей звезды естественно объясняется наработкой азота на предшествующих фазах эволюции массивной звезды и последующим выносом свеженаработанных химических элементов в околозвездную среду. Избыточное содержание азота обнаружено, в частности, в атмосфере далеко проэволюционировавшей массивной звезды V1302 Aql/IRC + 10420. Как показали Клочкова и др. [43], эквивалентные ширины W_{λ} абсорбций N II в спектре V1302 Aql многократно выше W_{λ} этих же линий в спектре сверхгиганта HD 13476 с близкими параметрами. Подобная насыщенность оптического спектра линиями N II наблюдается и в случае LBV-кандидата Schulte 12 в ассоциации Суд OB2 [26].

Ряд выявленных особенностей спектра Р Суд позволяет сравнивать ее со звездой МWC 314, которая за счет предельно высокой светимости считалась кандидатом в LBV [30]. Однако последующее изучение ее спектров высокого разрешения выявило переменность лучевой скорости и профилей эмиссий [44], что позволило Фраске и др классифицировать MWC 314 как двойную систему, включающую сверхгигант с В[е] феноменом. Результаты этой работы подтверждают особую значимость спектроскопии высокого разрешения в решении задачи эволюционного статуса далеко проэволюционировавших массивных звезд. Тем более, что решение этой задачи усложняется спектральной мимикрией сверхгигантов. Этот феномен подробно рассмотрен Клочковой и Ченцовым [45].

Набор спектральных деталей различной природы в спектре Р Суд обеспечивает значительное разнообразие наблюдаемых профилей. Это разнообразие иллюстрируют уже представленные в тексте рисунки, в частности рис. 6 и 7, а также рис. 8, где сопоставлены профили избранных линий в спектрах Р Суд, полученных 26.10.2021 г. (левая панель) и 09.09.2022 (правая панель): нижняя часть линии Н α — тонкая черная линия, Не I 7065 Å — красная линия, [N II] 5755 Å — жирная черная, Si II 5640 Å — синяя линия.

Очевидно, что высокая светимость вблизи предела Хэмфрис-Дэвидсона (см. данные в обзоре [15]), специфическое поведение фотометрических параметров Р Суд на временном промежутке наблюдений свыше 400 лет (см. [18], рис. 4) в сочетании с богатством эмиссий различной природы в ее оптическом спектре, включая запрещенные и разрешенные линии, служат бесспорным основанием для классификации Р Суд в качестве LBV-звезды, пребывающей в нашу эпоху в спящем состоянии.

5. ВЫВОДЫ

Как следует из публикаций, перечисленных во Введении, трудно ожидать выявления спектральной переменности спектра Р Суg, имея лишь наблюдательные данные 3 ночей. Однако нам удалось получить ряд новых выводов. К основным результатам нашей работы относим следующие:

1. За счет высокого спектрального разрешения в спектрах Р Суд отождествлено подавляющее большинство спектральных деталей различного типа: фотосферные абсорбции ионов СNO-триады, чистые эмиссии металлов, запрещенные эмиссии (в частности, [N II], [S II], [Ni II]); линии с профилями типа Р Суд с положением ветровых абсорбций в широком интервале лучевых скоростей, $\Delta V_r = -(140-250)$ км/с.

2. Фиксация системной скорости, $V_{sys} = -34 \pm 1.4$ км/с, на основе постоянного положения в спектрах звезды 4 запрещенных эмиссий, включая и [N II] 5755 Å.

3. Вывод об отсутствии запрещенных эмиссий: [O I] 5577, 6300, 6363 Å, [O III] 4959 и 5007 Å, а также эмиссии высокого возбуждения Не II 4686 Å.

4. Стабильность положения фотосферных абсорбций: среднее значение скорости, $V_r(abs) =$ = -73.8 км/с, ниже V_{sys} на -40 км/с, указывает на то, что эти абсорбции формируются в области псевдофотосферы. Этот результат, указывающий на отсутствие компаньона в системе Р Суg, требует продолжения наблюдений для подтверждения.

5. DACs зафиксированы только на профилях линий Н I и He I.

6. Переменность интенсивности пиковых значений эмиссий, отношений B/R и их положений у всех деталей с профилями типа P Cyg.

7. Отождествление областей формирования всех 4 компонентов профилей D-линий Na I.

8. Определение межзвездного поглощения,

 $A_v = 1.09^m$, по интенсивностям набора DIBs.

Результаты, полученные нами на первом этапе спектрального мониторинга Р Суд, позволяют утверждать эффективность нашего подхода в решении поставленной задачи поиска и исследования переменности комплексного спектра звезды. Крайне редкая повторяемость гигантских вспышек указывает на необходимость длительного продолжения спектрального мониторинга с высоким спектральным разрешением в обширном интервале длин волн.

ФИНАНСИРОВАНИЕ

Мы благодарим за финансовую поддержку Россий-

ский научный фонд (грант по. 22-22-00043¹). Наблюдения на 6-метровом телескопе САО РАН поддержаны Министерством науки и высшего образования РФ.

БЛАГОДАРНОСТИ

В работе использованы сведения из астрономических баз данных SIMBAD, VALD, SAO/NASA ADS и Gaia DR3.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *M. de Groot*, Bull. Astron. Inst. Netherland **20**, 225 (1969).
- P. S. Conti, in Observational Tests of the Stellar Evolution Theory, IAU Symp. № 105, held in Geneva, Switzerland, September 12–16, 1983, edited by A. Maeder and A. Renzini (Dordrecht, The Netherlands: D. Reidel Publishing Co., 1984), p. 233 (1984).
- 3. R. M. Humphreys and K. Davidson, Publ. Astron. Soc. Pacific 106, 1025 (1994).
- G. Israelian and M. de Groot, Space Sci. Rev. 90 (3/4), 493 (1999).
- 5. W. W. Campbell, Astrophys. J. 2, 177 (1895).
- 6. A. A. Belopolsky, Astrophys. J. 10 (12), 319 (1899).
- 7. P. W. Merrill, Lick Observ. Bull. 8, 24 (1913).
- 8. W. S. Adams and P. W. Merrill, Astrophys. J. 125, 102 (1957).
- 9. *C. de Jager and G. Israelian*, New Astronomy **8** (5), 475 (2003).
- F. Najarro, D. J. Hillier, and O. Stahl, Astron. and Astrophys. 326, 1117 (1997).
- 11. N. Markova and I. Kolka, An atlas of spectral line profiles of P Cygni in 1981–83 (Tallinn: Valgus, 1989).
- O. Stahl, H. Mandel, B. Wolf, Th. Gaeng, A. Kaufer, R. Kneer, Th. Szeifert, and F. Zhao, Astron. and Astrophys. Suppl. Ser. 99, 167 (1993).
- 13. O. Stahl, B. Wolf, Th. Gaeng, A. Kaufer, H. Mandel, Th. Szeifert, and F. Zhao, Astron. and Astrophys. Suppl. Ser. **107**, 1 (1994).
- 14. *N. Markova and I. Kolka*, Astrophys. Space Sci. **141**, 45 (1988).
- 15. K. Weis and D. Bomans, Galaxies 8, 20 (2020).
- 16. D. G. Turner, A. Horsford, M. Heysmour, and W. Feibelman, J. AAVSO **29**(2), 73 (2001).
- 17. L. Mahy, C. Lanthermann, D. Hutsemekers, J. Kluska, et al., Astron. and Astrophys. 657, id. A4 (2022).
- H. G. L. M. Lamers, in Luminous stars and associations in galaxies (Dordrecht: D. Reidel Publishing Co., 1986), Proc. of IAU Symp. 116, 157 (1986).

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 100 № 12 2023

- R. H. de Gent and H. G. L. M. Lamers, Astron. and Astrophys. 158, 335 (1986).
- 20. В. Е. Панчук, В. Г. Клочкова, М. В. Юшкин, Астрон. журн. **94**, 808 (2017).
- 21. *М. В. Юшкин, В. Г. Клочкова*, Препринт Спец. Астрофиз. Обсерв. No. 206 (2005).
- 22. G. A. Galazutdinov, Astrophys. Bull. 77 (4), 519 (2022).
- 23. E. L. Chentsov, V. G. Klochkova, and A. S. Miroshnichenko, Astrophys. Bull. 65 (2), 150 (2010).
- 24. V. G. Klochkova and E. L. Chentsov, Astrophys. Bull. 71 (1), 33 (2016).
- A. S. Miroshnichenko, V. G. Klochkova, E. L. Chentsov, V. E. Panchuk, M. V. Yushkin, and N. Manset, Monthly Not. Roy. Astron. Soc. 507, 879 (2022).
- 26. V. G. Klochkova, E. S. Islentieva, and V. E. Panchuk, Astron. Rep. 66 (11), 998 (2022).
- 27. F. Kupka, N. Piskunov, and T. Ryabchikova, Astron. and Astrophys. Suppl. Ser. 138, 119 (1999).
- 28. *N. Markova*, Astron. and Astrophys. Suppl. Ser. **144**, 391 (2000).
- 29. O. Struve, Astrophys. J. 81, 66 (1935).
- A. S. Miroshnichenko, Y. Fremat, L. Houziaux, Y. Andrillat, E. L. Chentsov, and V. G. Klochkova, Astron. and Astrophys. Suppl. Ser. 131, 469 (1998).
- 31. *N. Markova and M. de Groot*, Astron. and Astrophys. **326**, 1111 (1997).
- 32. *N. Markova and R. Zamanov*, Astron. and Astrophys. Suppl. Ser. **111**, 499 (1995).
- A. Nota, M. Livio, M. Clampin, and R. Schulte-Ladbeck, Astrophys. J. 448, 788 (1995).
- 34. *M. J. Barlow, J. E. Drew, J. Meaburn, and R. M. Massey,* Monthly Not. Roy. Astron. Soc. **268**, L29 (1994).
- 35. N. Smith and P. Hartigan, Astrophys. J. 638, 1045 (2006).
- 36. J. P. Vallo, Astron. J. 135, 1301 (2005).
- 37. E. L. Chentsov, V. G. Klochkova, and N. S. Tavolganskaya, Astrophys. Bull. 48(1), 25 (1999).
- 38. M. Mizumoto, N. Kobayashi, S. Hamano, Y. Ikeda, et al., Monthly Not. Roy. Astron. Soc. 481, 793 (2018).
- 39. A. S. Miroshnichenko, V. G. Klochkova, K. S. Bjorkman, and V. E. Panchuk, Astron. and Astrophys. **390**, 627 (2002).
- 40. L. B. Lucy, Astron. and Astrophys. 294, 555 (1995).
- 41. V. G. Klochkova, E. L. Chentsov, and V. E. Panchuk, Astrophys. Bull. 63 (2), 112 (2008).
- 42. J. Kos and T. Zwitter, Astrophys. J. 774, id. 72 (2013).
- 43. V. G. Klochkova, E. L. Chentsov, and V. E. Panchuk, Monthly Not. Roy. Astron. Soc. 292, 19 (1997).
- 44. A. Frasca, A. S. Miroshnichenko, C. Rossi, M. Friedjung, E. Marilli, G. Muratorio, and I. Busá, Astron. and Astrophys. 585, id. A60 (2016).
- 45. V. G. Klochkova and E. L. Chentsov, Astron. Rep. 62 (1), 19 (2018).

¹ https://rscf.ru/project/22-22-00043/

HIGH RESOLUTION OPTICAL SPECTRA OF THE DORMANT LBV STAR P Cyg

V. G. Klochkova^a, V. E. Panchuk^a, and N. S. Tavolzhanskaya^a

^aSpecial Astrophysical Observatory RAS, Nizhnij Arkhyz, Russia

High resolution optical spectra (R = 60 000) of the dormant LBV star P Cyg were obtained on the BTA telescope in the wavelength range $\Delta\lambda G7 = 780$ nm. After performing a detailed identification of different types lines (photospheric absorptions, permitted and forbidden emissions, components of lines with profiles of type P Cyg), we studied the variability of their profiles and patterns of radial velocities. The average radial velocity from positions of forbidden emissions ([N II] 5754.64, [Fe II] 5261.62, [Fe II] 7155.14 and [Ni II] 7377.83 Å) is accepted as the system $V_{sys} = -34 \pm 1.4$ km/s. About a dozen photospheric absorptions of CNO-triad ions and Si III are found, their stable position, V_r (abs) = -73.8 km/s, shifted relative to V_{sys} at -40 km/s, indicates that these absorbtions are formed in the pseudophotosphere region. The high-excitation emissions ([O I] 5577, 6300, 6363 Å, [O III] 4959 and 5007 Å, as well as He II 4686 Å) are absent in the spectra. The radial velocity V_r (DIBs) = -11.8 km/s according to the position of numerous DIBs is consistent with the position of the interstellar components of the D-lines Na I and K I forming in the galactic Perseus arm. An excess of color $E(B - V) = 0.34 \pm 0.03^m$ and interstellar absorption $A_v = 1.09^m$ were determined by measurements of equivalent widths of nine DIBs.

Keywords: massive stars, LBVs, circumstellar medium, optical spectra, variability