АНАЛИЗ ПАРАМЕТРОВ РАДИОПУЛЬСАРОВ С ГИГАНТСКИМИ ИМПУЛЬСАМИ МЕТОДОМ ГЛАВНЫХ КОМПОНЕНТ

© 2023 г. И. Ф. Малов^{1,*}, О. И. Малов¹

¹ Физический институт им. П.Н. Лебедева РАН, Пущинская радиоастрономическая обсерватория АКЦ ФИАН, Пущино, Россия

**E-mail: malov@prao.ru* Поступила в редакцию 12.08.2021 г. После доработки 24.12.2021 г. Принята к публикации 24.01.2023 г.

Проведена кластеризация радиопульсаров с наблюдаемыми гигантскими импульсами (ГИ) методом главных компонент. Использовано пять параметров (период, его производная, наблюдаемая светимость, кинематический возраст и угол между осью вращения и магнитным моментом центральной нейтронной звезды). Показано, что совокупность всех известных пульсаров с ГИ разделяется в фазовом пространстве главных компонент на два кластера. Один из них содержит четыре пульсара с короткими периодами и большой светимостью, второй — девять долгопериодических и более слабых источников. Отдельным, не входящим в эти два кластера объектом, оказывается пульсар в Крабовидной туманности. Рассмотрены возможные модели, которые могли бы объяснить обнаруженное различие пульсаров с ГИ.

Ключевые слова: пульсары, гигантские импульсы, метод главных компонент **DOI:** 10.31857/S0004629923030052, **EDN:** PNYBNP

1. ВВЕДЕНИЕ

Одной из нерешенных проблем в исследованиях радиопульсаров остается природа их гигантских импульсов (ГИ). Они были впервые обнаружены в пульсаре B0531+21 в Крабовидной туманности как в главном импульсе (MP), так и в интеримпульсе (IP) [1-3].

В настоящее время из более чем 3000 объектов, включенных в пополняемый каталог радиопульсаров ATNF [4], ГИ обнаружены всего у 18 источников, включая и те из них, где отнесение мощных деталей к классу ГИ еще остается под вопросом. Неясно также, могут ли появляться ГИ у других радиопульсаров.

ГИ представляют собой вспышечные спорадические явления, для которых характерны перечисленные ниже свойства.

• Большие плотности энергии (до 10¹⁵ эрг/с) [5].

• Малые длительности, до нескольких наносекунд [6].

• Наличие круговой поляризации обоих знаков [7].

• Очень высокие яркостные температуры (до 10⁴¹) [6]. Интенсивности ГИ могут быть в тысячи раз выше, чем у средних импульсов.

• Степенное распределение по энергиям [8] в отличие от гауссова или экспоненциального распределения для нормальных импульсов [9, 10].

• ГИ появляются на долготах МР и/или IP.

В табл. 1 приведены значения параметров для известных радиопульсаров с ГИ. Последние четыре пульсара исключены из вторичного анализа, так как для них не известны каталожная светимость $R_{\text{lum}} = Sd^2 (S - плотность потока, d - расстояние до пульсара) или кинематический возраст <math>t_{\text{kin}}$ (независимые параметры, являющиеся важными для дальнейшего анализа). Значение t_{kin} вычисляется по времени удаления пульсара от диска Галактики (в предположении, что все пульсары образуются в плоскости Галактики):

$$t_{\rm kin} = \frac{Z}{V}.$$
 (1)

Здесь Z — высота над галактической плоскостью, определяемая из наблюдений, V — скорость пульсара. Следует отметить, что из 3319 радиопульсаров, входящих в каталог ATNF (версия 1.67), только 189 объектов (менее 6%) находятся в шаровых скоплениях. Более того, ни в одном из них не обнаружены ГИ, поэтому для использованной выборки можно считать, что все входящие в нее объекты образовались в диске Галактики. Если для данного пульсара измерена скорость

N⁰	PSR	P(c)	d <i>P</i> /dt	<i>R</i> _{lum} (мЯн кпк ²)	<i>t</i> _{kin} (годы)	$S_{\rm GP}/S$	β°
1	J0034-0721	0.9430	4.08E-16	55.17	17.8E+7	400	12
2	J0218+4232	0.0023	7.74E-20	466.36	13.5E+7		5
3	J0304+1932	1.3876	1.30E-15	14.79	4.3E+6	69	25
4	J0534+2200	0.0334	4.21E-13	2200.00	968*	5×10^{4}	85
5	J0653+8051	1.2144	3.80E-15	35.90	6.9E+6		41
6	J0659+1414	0.3849	5.49E-14	0.54	9.3E+5	630	19
7	J0814+7429	0.2922	1.68E-16	14.74	3.0E+6		19
8	J0953+0755	0.2531	2.30E-16	27.25	6.8E+6	490	19
9	J1115+5030	1.6564	2.49E-15	10.16	4.6E+6	80	90
10	J1136+1551	1.1879	3.73E-15	35.52	7.2E+5	86	40
11	J1239+2453	1.3824	9.69E-16	77.62	2.5E+6	65	31
12	J1823-3021A	0.0054	3.38E-18	2342.56	4.9E+6		5
13	J1939+2134	0.016	1.05E-19	2940.00	3.7E+6	600	79
14	J1959+2048	0.016	1.69E-20	59.86	7.9E+5		90
15	J0529-6652**	0.9757	1.55E-14				28
16	J0540-6919**	0.0506	4.79E-13			5000	3
17	J1752+2359	0.4091	6.43E-16	32.13		320	72
18	J1824-2452A	0.0031	1.62E-18	1210.00		1700	13

Таблица 1. Пульсары с гигантскими импульсами

* Реальный возраст пульсара.

** Пульсары в Большом Магеллановом Облаке.

S_{GP}/S – отношение плотностей потока типичного ГИ и среднего импульса.

в картинной плоскости (V_{trans}), то в предположении о том, что движение пульсара изотропно (т.е. компоненты его скорости одинаковы по всем координатам), можно получить оценку t_{kin} , вычисляя скорость пульсара как

$$V = \frac{V_{\text{trans}}}{\sqrt{2}}.$$
 (2)

В работе [11] проведен анализ применимости известных моделей, предложенных для объяснения ГИ путем сравнения параметров соответствующих пульсаров из табл. 1 с предсказаниями рассмотренных моделей. Там же были приведены значения углов β между осью вращения и магнитным моментом нейтронной звезды, вычисленные различными методами. Эти значения даны в последнем столбце табл. 1.

В настоящей работе мы предлагаем, используя формальный метод главных компонент, проанализировать однородность популяции радиопульсаров с ГИ. В [12] предложено разделить эту популяцию на два типа: I – с величиной магнитного поля на световом цилиндре $B_{\rm lc} > 100$ Гс и II – с меньшими значениями В_{іс}, не обсуждая другие характеристики этих объектов. Мы используем здесь независимые друг от друга параметры радиопульсаров, не вдаваясь в их физическую природу, и получим их распределение в фазовом пространстве главных компонент. Это позволит сделать вывод об однородности популяции радиопульсаров с ГИ.

2. ОПИСАНИЕ МЕТОДА

Метод главных компонент основан на последовательном использовании различных матриц, описывающих исследуемую выборку объектов [13, 14].

В исходной матрице строки соответствуют конкретным объектам, а столбцы – выбранным для классификации параметрам. Затем строится ковариационная матрица.

$$\sum X_1^2 \sum X_1 X_2 \dots \sum X_1 X_n$$

$$\sum X_2 X_1 \sum X_2^2 \dots \sum X_2 X_n$$
(3)
....
$$\sum X_n X_1 \sum X_n X_2 \dots \sum X_n^2.$$
Здесь
$$\sum X_i^2 = \sum_{j=1}^n [(X_i)_j - \langle X_i \rangle]^2, \quad \sum X_i X_k =$$

$$\sum_{j=1}^n [(X_i)_j - \langle X_i \rangle] [(X_k)_j - \langle X_k \rangle] - \text{ковариа-$$

ции элементов матрицы, $(X_i)_i - i$ -й параметр

Параметр	$\log P$	$\log(dP/dt)$	$\log t_{\rm kin}$	$\log R_{\rm lum}$	sinβ
logP	1	0.753	0.128	-0.649	-0.120
$\log(dP/dt)$	0.753	1	-0.450	-0.394	0.067
$\log t_{\rm kin}$	0.128	-0.450	1	-0.259	-0.517
$\log R_{\rm lum}$	-0.649	-0.394	-0.259	1	0.163
sinβ	-0.120	0.067	-0.517	0.163	1

Таблица 2. Корреляционная матрица для параметров из табл. 1

j-го пульсара, *n* — полное число пульсаров в выборке. Диагональные элементы матрицы пропорциональны дисперсиям. Если все элементы поделить на соответствующие дисперсии, получится корреляционная матрица, и следующий шаг анализа состоит в поиске собственных чисел λ и собственных векторов корреляционной матрицы:

$$|A - \lambda E| = 0, \tag{4}$$

где A — исследуемая матрица, E — единичная матрица. Число корней алгебраического уравнения для λ равно числу классифицирующих параметров (рангу корреляционной матрицы). Собственные векторы находятся из системы уравнений

$$(A - \lambda E)\alpha = 0, \tag{5}$$

где столбец α — собственный вектор матрицы *A* с собственным числом λ .

Для дальнейшего анализа использованы 5 независимых параметров: измеряемые из непосредственных наблюдений: период пульсара P и его производная dP/dt, вычисляемая по наблюдательным данным каталожная светимость R_{lum} , кинематический возраст t_{rin} и синус угла β между магнитным моментом и осью вращения пульсара.

3. АНАЛИЗ КОРРЕЛЯЦИОННОЙ МАТРИЦЫ

Использование данных табл. 1 привело к корреляционной матрице, содержащей коэффициенты корреляции Пирсона (см. табл. 2). Анализ этой матрицы обнаруживает целый ряд важных следствий. Прежде всего обратим внимание на корреляцию между dP/dt и *P*. Используя данные табл. 1, мы можем построить диаграмму, представленную на рис. 1. Прямая, формально проведенная по всему массиву на этом рисунке методом наименьших квадратов, описывается уравнением:

$$log(dP/dt) = (1.31 \pm 0.34) log P(cek) - 14.37 \pm 0.50$$
(6)

при коэффициенте корреляции K = 0.70 и вероятности случайного распределения p = 0.0013. Однако расположение точек на диаграмме скорее свидетельствует о бимодальности их распределе-

ния. В интервале периодов от 5.5 до 33.4 мс нет ни одного пульсара с ГИ, в то время как в основной массе пульсаров в этом интервале наблюдается заметное число объектов. Действительно, левая часть диаграммы (рис. 2) может быть описана уравнением

$$\log (dP/dt) =$$

= (3.80 ± 1.10) log P(cek) - 8.74 ± 2.87 (7)

при K = 0.89 и p = 0.041, а правая часть — совершенно противоположной зависимостью (рис. 3):

$$log (dP/dt) =$$

= (-1.45 ± 0.44) log P(cek) - 14.78 ± 0.26, (8)
K = 0.71, p = 0.007.

Зависимость типа (7) с точностью до 2 σ может объясняться потерей углового момента за счет пульсарного ветра [15] и процессов во внутренних слоях нейтронной звезды [16, 17]. Что касается уравнения (8), то оно вполне соответствует предсказаниям магнито-дипольного торможения, при котором ожидается зависимость d*P*/d*t* \propto 1/*P*.

Таким образом, уже рассмотрение только двух параметров P и dP/dt заставляет предполагать неоднородность пульсаров с ГИ. Мы говорим здесь и дальше о предположениях и тенденциях, поскольку число объектов в рассматриваемой выборке чрезвычайно скудно. Однако обнаруживающиеся в анализируемой матрице корреляции имеют разумное физическое объяснение. Так, отрицательная корреляция R_{lum} с периодом (рис. 4) означает, что по мере увеличения возраста пульсара и увеличения P заметно уменьшается энергетическая подпитка магнитосферы в связи с уменьшением потерь энергии вращения

$$dE/dt = \frac{4 \pi^2 I dP/dt}{P^3},$$
(9)

которая обеспечивает наблюдаемое излучение пульсара. Это естественно уменьшает полную светимость (R_{lum}) (10).

Отрицательная корреляция sin β (t_{kin}) (рис. 5) означает, что со временем β уменьшается, т.е., магнитный момент пульсара сближается с его

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 100 № 3 2023

Рис. 1. Зависимость производной периода от самого периода для 18 пульсаров с обнаруженными гигантскими импульсами (вверху) и для 3319 объектов из каталога ATNF (внизу).

осью вращения. Намечающаяся тенденция увеличения R_{lum} с ростом β также свидетельствует о том, что молодые пульсары более энергичны и имеют большие углы наклона осей.

$$\log R_{\rm lum} = (-0.60 \pm 0.16) \log P + 1:34 \pm 0.24, K = -0.71, p = 0.0019,$$
(10)

 $\sin \beta = (-0.16 \pm 0.07) \log t_{\rm kin} + 1.59 \pm 0.43,$ $K = 0.58, \quad p = 0.0285.$ (11)

4. АНАЛИЗ ГЛАВНЫХ КОМПОНЕНТ

Собственные числа исследуемой корреляционной матрицы оказались равными 2.222, 1.731,

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 100 № 3 2023

Рис. 2. Диаграмма dP/dt(P) для пульсаров с периодами меньше 10 мс.

Рис. 3. Диаграмма dP/dt(P) для пульсаров с P > 30 мс.

Рис. 4. Зависимость каталожной светимости от периода пульсара.

Рис. 5. Зависимость угла между магнитным моментом и осью вращения пульсара от его возраста.

0.653, 0.343 и 0.050. При построении собственных векторов следует учитывать, что собственные числа отражают вклад в дисперсию точек в соответствующем фазовом пространстве. Если полной дисперсии поставлено в соответствие 100% (это эквивалентно сумме всех приведенных пяти собственных чисел, равной 5), то на долю первого вектора будет приходиться 44.5% полной дисперсии, на второй вектор, ортогональный первому, 34.5%, на третий, ортогональный первым двум,

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 100 № 3 2023

Рис. 6. Кластеры пульсаров с ГИ на проекциях фазового пространства главных компонент.

13%, четвертый, ортогональный в фазовом пространстве первым трем, 7%, на пятый приблизительно 1%. С учетом неопределенностей в значениях некоторых из использованных параметров мы будем считать, что достаточно выбрать приблизительно 90% полной дисперсии, т.е., в нашем случае можно ограничиться тремя собственными векторами. Они имеют вид:

$$F_{1} = 0.634 \log P + 0.547 \log dP/dt +$$

$$+ 0.027 \log t_{kin} - 0.534 \log R_{lum} - 0.115 \sin \beta,$$

$$F_{2} = 0.015 \log P - 0.365 \log dP/dt +$$

$$+ 0.704 \log t_{kin} - 0.195 \log R_{lum} - 0.577 \sin \beta,$$

$$F_{3} = 0.029 \log P - 0.350 \log dP/dt +$$
(12)

+ $0.303 \log t_{kin} - 0.470 \log R_{lum} + 0.751 \sin \beta$. На рис. 6 приведены изображения фазового ространства векторов F_1 , F_2 и F_3 , выполненные

пространства векторов F_1 , F_2 и F_3 , выполненные под разными углами обзора для более наглядного представления о расположении различных точек в таком пространстве. Это позволяет выделить три кластера радиопульсаров с ГИ.

Кластер 1 (в который вошли пульсары J0218+4232, J1823–3021A, J1939+2134 и J1959+2048) характеризуется короткими периодами (у всех пульсаров данного кластера P < 5.5 мс), малыми производными периода ($\dot{P} < 10^{-17}$), средним кинематическим возрастом (менее 4 млн. лет) и высокой светимостью (среднее значение $R_{\rm lum}$ около 480 мЯн кпк²).

Второй кластер, состоящий из 9 пульсаров (J0034–0721, J0304+1932, J0653+8051, J0659+1414, J0814+7429, J0953+0755, J1115+5030, J1136+1551, J1239+2453), отличается длинными периодами (средний период 0.93 с), большими производными периода (порядка 10^{-15}), средним кинематическим возрастом около 3.5 млн. лет, значительно более низкой светимостью (18 мЯн кпк²), чем в первом кластере.

В отдельный кластер вошел пульсар в Крабовидной туманности (J0534+2200) с промежуточным периодом (33 мс), самой большой производной (4 × 10⁻¹³), второй по величине светимостью среди всех пульсаров нашей выборки ($R_{\text{lum}} =$ = 2200 мЯн кпк²) и максимальным отношением плотности потока в гигантском импульсе к средней плотности потока S_{GP}/S , равным 50000.

В табл. 3 мы приводим параметры пульсаров в различных кластерах с указанием их средних значений.

5. ОБСУЖДЕНИЕ. ВЫВОДЫ

Ранее нами был проведен кластерный анализ распределения известных в то время 558 радиопульсаров [18]. Было обнаружено существование

АНАЛИЗ ПАРАМЕТРОВ РАДИОПУЛЬСАРОВ

PSR	$\log P$	log P'	$\log t_{\rm kin}$	$\log R_{\rm lum}$	sinβ
J0534+2200	-1.48	-12.38	2.99	3.34	1.00
J0218+4232	-2.64	-19.11	7.13	2.67	0.09
J1823-3021A	-2.27	-17.47	6.69	3.00	0.09
J1939+2134	-2.80	-18.98	6.57	3.47	0.98
J1959+2048	-2.80	-19.77	5.90	1.59	1.00
Среднее	-2.63 ± 0.23	-18.83 ± 0.98	6.57 ± 0.51	2.68 ± 0.80	0.54 ± 0.45
J0034-0721	-0.03	-15.56	7.25	1.74	0.21
J0304+1932	0.14	-14.89	6.63	1.17	0.42
J0653+8051	0.08	-14.42	6.84	1.55	0.66
J0659+1414	-0.41	-13.26	5.97	-0.27	0.33
J0814+7429	0.11	-15.77	6.48	1.17	0.33
J0953+0755	-0.60	-15.64	6.83	1.44	0.33
J1115+5030	0.22	-14.60	6.66	1.01	1.00
J1136+1551	0.07	-14.43	5.86	1.55	0.64
J1239+2453	0.14	-15.01	6.40	1.89	0.52
Среднее	-0.03 ± 0.28	-14.84 ± 0.79	6.55 ± 0.43	1.25 ± 0.64	0.49 ± 0.24

Таблица 3. Параметры пульсаров в различных кластерах с указанием их средних значений

в фазовом пространстве их параметров трех кластеров. Один из них содержал объекты с периодами больше 0.1 сек. В два других попали источники с периодами меньше 0.1 сек, но отличающиеся как периодами и производными, так и зависящими от них параметрами. Во втором кластере сосредоточены пульсары, имевшие уже в момент рождения периоды меньше 0.1 сек (такие, как пульсар в Крабовидной туманности B0531+21 и пульсар в Парусах B0833-45). Третий кластер включал миллисекундные пульсары, раскрученные в течение своей эволюции в двойных системах.

1. Проведенный в настоящей работе анализ выявил два кластера радиопульсаров с ГИ и отдельный кластер с единственным объектом пульсаром В0521+31 в Крабовидной туманности. Эти кластеры отличаются периодами, их производными и светимостями. Хорошо известно, что миллисекундные пульсары представляют отдельную популяцию. Мы показали здесь, что пульсары с ГИ образуют два отдельных кластера в фазовом пространстве пяти параметров. Это выявляет дополнительное различие двух известных популяций. С другой стороны, представляется неожиданным, что в двух столь различных популяциях источников регистрируются ГИ. Это означает, что появление ГИ возможно в различных типах радиопульсаров. При этом у них нет заметных отличий в кинематических возрастах и углах между магнитным моментом и осью вращения центральной нейтронной звезды. Отметим также качественное совпадение двух основных кластеров,

выявленных в [18] и обнаруженных в настоящей работе.

2. Появление ГИ у пульсаров первого кластера может быть объяснено процессами индуцированного комптоновского рассеяния радиоизлучения вторичных частиц, движущихся с ультрарелятивистскими скоростями вдоль открытых силовых линий магнитного поля [19]. Эти процессы приводят к значительному уменьшению углового размера пучка заряженных частиц и заметному усилению его излучения. Действительно, такой механизм работает в пульсарах с короткими периодами и высокими светимостями. При этом большие магнитные поля (порядка 10⁵-10⁶ Гс) на световом цилиндре у пульсаров Ј1939+2134 и J1959+2048, представляющих собой ортогональные ротаторы, позволяют включить дополнительно механизм Истомина [20]. в котором происходит ускорение электронов и позитронов до лоренц-факторов, превышающих 10⁹, плазма оказывается неустойчивой, что приводит к увеличению амплитуды альвеновских волн и трансформации их энергии в мощное излучение.

3. В пульсарах второго кластера нет условий для реализации механизмов Петровой и Истомина. В них могут играть роль процессы в вакуумном зазоре вблизи поверхности нейтронной звезды [21]. Сам зазор служит резонатором для генерируемых в нем волн и излучений, а выход излучения осуществляется через "волноводы", формирующиеся вблизи магнитной оси и на границе между открытыми и замкнутыми силовыми линиями магнитного поля. Исходное излучение возникает при разрядах в зазоре, усиливается в нем и выходит через "волноводы".

4. Что касается пульсара в Крабе, то он представляет собой уникальный источник. Короткий период, высокая светимость, близкий к 90° угол между магнитным моментом и осью вращения, сильное поле на световом цилиндре допускают функционирование всех рассмотренных механизмов. Кроме того, существенную роль в формировании ГИ играют, по-видимому, и дрейфовые волны на периферии магнитосферы, которые накапливают большую энергию и трансформируют ее в мощное и узконаправленное излучение [22]. Не удивительно поэтому, что у этого пульсара наблюдаются самые интенсивные ГИ, в десятки тысяч раз превышающие интенсивность средних импульсов.

5. Полученные формальные результаты дают возможность физического объяснения различия типов пульсаров с ГИ. Необходима, однако, более детальная разработка упомянутых механизмов образования ГИ (излучение разрядов в зазоре над поверхностью нейтронной звезды, индуцированное комптоновское рассеяние в магнитосфере пульсара и мощное излучение релятивистских зарядов вблизи светового цилиндра). Выполнение этой задачи даст возможность объяснить, как наличие ГИ в пульсарах с разными наблюдаемыми характеристиками, так и их отсутствие в подавляющем большинстве известных радиопульсаров.

СПИСОК ЛИТЕРАТУРЫ

1. J. M. Cordes, N. D. R. Dhat, T. H. Hankins, et al., Astrophys. J. 612, 375 (2004).

- S. W. Ellingson, T. E. Clarke, J. Craig, et al., Astrophys. J. 768, 136 (2013).
- 3. *T. H. Hankins, G. Jones, and J. A. Eilek*, Astrophys. J. **802**, 130 (2015).
- 4. *R. N. Manchester, J. B. Hobbs, A. Teoh, and M. Hobbs,* Astron. J. **129**, 1993 (2005).
- 5. D. H. Staelin and J. M. Sutton, Nature 226, 69 (1970).
- 6. *T. H. Hankins and J. A. Eilek*, Astrophys. J. **670**, 693 (2007).
- 7. T. H. Hankins, J. S. Kern, J. C. Weatherall, and J. A. Eilek, Nature **422**, 141 (2003).
- 8. *M. V. Popov and B. Stappers*, Astron. and Astrophys. **470**, 1003 (2007).
- 9. S. C. Lundgren, J. N. Cordes, M. Ulmer, et al., Astrophys. J. 453, 433 (1995).
- 10. A. Kinkhabvala and S. E. Thorsett, Astrophys. J. 535, 365 (2000).
- 11. И. Ф. Малов, Астрон. журн. 99, 15 (2022).
- 12. W. Wang et al., ArXiv, 1805.00139.
- 13. Б. Дюран, П. Оделл, Кластерный анализ (М., "Статистика", 1977).
- 14. В. В. Налимов, Теория эксперимента (М., "Наука", 1971).
- A. K. Harding, L. Conotopoulos, and D. Kazanas, Astrophys. J. 525, L125 (1999).
- 16. *Q.-H. Peng, K.-L. Huang, and J.-H. Huang*, Astron. and Astrophys. **107**, 258 (1982).
- 17. J.-H. Huang, et al., Astron. and Astrophys. 113, 9 (1982).
- 18. И. Ф. Малов, О. И. Малов, Астрон. журн. 74, 63 (1997).
- 19. S. A. Petrova, Astron. and Astrophys. 424, 227 (2014).
- 20. Ya. N. Istomin, Proc. IAU Symp. 218, 369 (2004).
- 21. V. M. Kontorovich, Journal of Physical Science and Application. 5, 48 (2009).
- 22. G. Machabeli, N. Chkheidze, and I. Malov, Astrophys. Space Sci. 364, 40 (2019).