УДК 521.1:523.4

АСТРОМЕТРИЧЕСКИЕ РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ ВЗАИМНЫХ ПОКРЫТИЙ И ЗАТМЕНИЙ ГАЛИЛЕЕВЫХ СПУТНИКОВ ЮПИТЕРА, ВЫПОЛНЕННЫХ В 2009 И 2014–2015 ГОДАХ

© 2019 г. Н. В. Емельянов^{*a, b, **}, J.-E. Arlot^{*b*}, X. L. Zhang^{*c, d, e*}, J. Bradshaw^{*j*}, P. De Cat^{*g*}, X. L. Han^{*h*}, A. Иванцов^{*i*}, J. Jindra^{*j*}, H. Майгурова^{*k*}, J. Manek^{*l*}, T. Pauwels^{*g*}, A. Помазан^{*k*}, P. Vingerhoets^{*m*}

^а Московский государственный университет им. М.В. Ломоносова, Государственный астрономический

институт им. П.К. Штернберга, Москва, Россия

^bInstitut de mécanique céleste et de calcul des éphémérides – Observatoire de Paris, Paris, France

^cYunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming, China

^dKey Laboratory of the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming, China

^eCAS Key Laboratory of Planetary Sciences, Shanghai, China

^fSamford Valley, Samford, Australia

^gKoninklijke Sterrenwacht van België, Brussel, Belgium

^hButler University, Indianapolis, USA

ⁱSpace Sciences and Technologies Department, Science Faculty, Akdeniz University, Antalya, Turkey

^jCzech Astronomical Society, Ondřejov, Czech Republic

^kНаучно-исследовательский институт "Николаевская астрономическая обсерватория", Николаев, Украина

¹Czech Astronomical Society – Occultation Section, Praha, Czech Republic

^mWerkgroep Bedekkingen van de VVS, Leest, Belgium

*e-mail: emelia@sai.msu.ru

Поступила в редакцию 12.03.2019 г. После доработки 26.04.2019 г.

Принята к публикации 23.06.2019 г.

Фотометрические наблюдения спутников во время их взаимных покрытий и затмений являются ценным источником астрометрических данных для изучения динамики естественных спутниковпланет. Для того, чтобы наблюдать как можно больше явлений, организуются всемирные кампании фотометрических наблюдений. Все фотометрические результаты, полученные во время кампании наблюдений, помещаются в единую базу данных и через некоторое время подвергаются астрометрической обработке. После проведения кампании и публикации результатов некоторые наблюдатели обнаружили неиспользованные данные, которые представляются ценными. Мы собрали такие фотометрические наблюдения взаимных покрытий и затмений Галилеевых спутников Юпитера, которые поступили после проведения кампании, и обработали их, чтобы использовать эти ценные астрометрические данные. Для получения астрометрических данных из фотометрических наблюдений мы применяли наш оригинальный метод. Наблюдения проводились в восьми обсерваториях мира. В итоге, в данной работе представлены 32 новых относительных астрометрических положения Галилеевых спутников Юпитера, датированных 2009 годом, и 23 новых положения на даты 2014—2015 гг. Астрометрическая точность новых данных в сравнении с наиболее развитой теорией (О–С) составляет примерно 0.05". Внутренняя точность по оценкам случайных ошибок фотометрии оказалась равной 0.02".

Ключевые слова: спутники планет, наблюдения, фотометрия, астрометрия **DOI:** 10.1134/S0320930X1906001X

введение

Прогресс в моделировании динамики естественных спутников планет обеспечивается точными астрометрическими наблюдениями, выполненными в течение длительного промежутка времени, чтобы иметь возможность уточнить параметры движения и попытаться определить вековые эффекты, возникающие из-за приливной диссипации. Весьма эффективным источником астрометрических данных для главных естественных спутников Юпитера, Сатурна, Урана и Нептуна являются фотометрические наблюдения спутников во время их взаимных покрытий и за-

нечного лимба.

тмений. Наблюдения этих явлений предоставляют очень точные данные по относительной астрометрии спутников.

Взаимные явления могут наблюдаться с Земли дважды в течение одного орбитального периода планеты. Для Галилеевых спутников Юпитера это каждые шесть лет. В каждую такую эпоху 400-500 событий происходят в течение 11 месяцев, но только 180-200 взаимных покрытий и затмений Галилеевых спутников могут наблюдаться на одной обсерватории на Земле. Чтобы поймать как можно больше событий. необходимо иметь как можно больше участвующих обсерваторий, равномерно распределенных по долготе. В литературе явления видимых взаимных покрытий и затмений спутников называются еще событиями.

В течение каждого сезона взаимных явлений Институт небесной механики и вычисления эфемерид (Institut de Mecanique Celeste et de Calcul des Ephemerides – IMCCE, Париж, Франция) организует международную кампанию наблюдений. чтобы собрать наземные фотометрические наблюдения Галилеевых спутников во время их взаимных покрытий и затмений. Всемирные кампании проводились в 1985, 1991, 1997 годах. Затем кампании были проведены в 2003, 2009, 2015 гг. при сотрудничестве ІМССЕ и Государственного астрономического института им. П.К. Штернберга МГУ им. М.В. Ломоносова (ГАИШ МГУ), Москва, Россия.

С аргументацией о необходимости проведения кампаний фотометрических наблюдений спутников планет во время их взаимных покрытий и затмений можно ознакомиться в статье (Емельянов, 2018). Обзор достигнутых результатов за последние 30 лет и планы на будущие кампании наблюдений даны в работе (Arlot, Emelyanov, 2019).

Результаты фотометрических наблюдений собраны в специальной базе данных естественных спутников (NSDB) (Arlot, Емельянов, 2009). База данных NSDB доступна через интернет по адресу http://nsdb.imcce.fr/obspos/obsindhe.htm. После каждой кампании наблюдений собранные фотометрические данные проходят астрометрическую обработку. В последние кампании это делалось в ГАИШ МГУ при сотрудничестве с ІМССЕ. Способ обработки фотометрических данных наблюдений и получения астрометрических результатов был разработан Емельяновым (2003), его усовершенствования описаны в работе (Emelyanov, Gilbert, 2006). Следующие эффекты принимаются во внимание:

 различные законы рассеяния света на шероховатой поверхности,

- изменение отражающих свойств видимой поверхности спутника в зависимости от угла вращения,

тались бесполезными. Потом выяснялось, что они неоправданно отброшены. Наблюдатели отправляют такие данные организаторам кампании. Мы собираем эти новые фотометрические данные в нашей базе данных, они так же ценны, как и первые. Так были получены результаты некоторых фотометрических наблюдений Галилеевых спутников Юпитера, сделанных в 2009 и 2014-2015 гг. Это мотивировало нас провести обработку этих данных после некоторой задержки и вывести новые астрометрические результаты. Таким образом, были рассмотрены и обработаны 32 новые кривые блеска, полученные в 2009 г. и 23 кривые, полученные в 2014-2015 гг. В настоящей статье мы описываем эти фотометрические наблюдения и представляем полученные астрометрические результаты.

зависящее от длины волны затемнение сол-

Итоги кампаний 2003, 2009, 2015 гг. опублико-

ваны в работах (Emelyanov, 2009; Arlot и др., 2009;

2014; Saquet и др., 2018). Некоторые наблюдения

взаимных явлений были выполнены в 2009 г. и

описаны в работах (Zhang и др., 2011; Zhang, Liu,

2011). В наблюдательных кампаниях участвуют бо-

лее 70 обсерваторий мира. Все астрометрические

результаты также размещены в базе данных NSDB.

публикации астрометрических результатов неко-

торые наблюдатели "выкапывают" свои неис-

пользованные наблюдения, которые сначала счи-

После окончания кампании наблюдений и

ОПИСАНИЕ ФОТОМЕТРИЧЕСКИХ НАБЛЮДЕНИЙ

Ряд наблюдений Галилеевых спутников Юпитера во время их взаимных покрытий и затмений в 2009 г. был прислан в 2014 г. некоторыми наблюдателями вместе с наблюдениями 2015 г. Эти наблюдения были сделаны в шести обсерваториях в разных странах. Описание условий наблюдений в обсерваториях приведено в табл. 1. Всего было сделано 32 наблюдения.

В 2014-2015 гг. астроном X.L. Zhang из Юньнаньской обсерватории Китайской академии наук, Китай (Yunnan Observatories, Chinese Academy of Sciences, China) и его сотрудник Х.L. Нап из Университета Батлера, США (Butler University, USA) выполнили фотометрические наблюдения взаимных покрытий и затмений Галилеевых спутников Юпитера. Эти наблюдения проводились с использованием 0.9-м телескопа SARA, расположенного в Национальной обсерватории Китт-Пик в Аризоне (Kitt Peak National Observatory in Arizona, IAU код G82), и 0.6-м телескопа SARA в Серро-Тололо, Обсерватория в Ла Серене (Cerro Tololo Observatory in La Serena, код IAU 807) с 4 ноября 2014 г. по 9 апреля 2015 г. Все изоб-

Код	N	Город	Страна	Телескоп	Диаметр, см	Фото- приемник	Д	[олі ° ′	гота ″	ı	I	Ши °	рот , <i>,</i> ,	a	Высота, м
BAR	13	Barrandov	Czech Republic	Newton	20	CCTV	14	22	18	E	50	1	54	Ν	352
UKK	8	Ukkel	Belgium	Schmidt	85	CCD	4	21	29	E	50	47	55	Ν	105
YU6	6	Yunnan	China	Reflector	60	CCD	102	47	0	E	25	2	0	Ν	2014
089	3	Nikolaev	Ukraine	Refractor	12	CCTV	31	58	28	E	46	58	18	Ν	54
BRA	1	Samford	Valley, Australia	Reflector	50	CCD	152	52	23	Е	27	21	23	S	95
ZUB	1	Zubri	Czech Republic	Reflector	28	CCTV	16	7	32	Е	49	34	45	Ν	672

Таблица 1. Обсерватории, в которых выполнялись наблюдения 2009 г. Код – код обсерватории в таблицах результатов. *N* – число выполненных наблюдений

ражения были скорректированы с учетом инструментальных поправок, а световые потоки от участвующих в явлениях спутников были рассчитаны с помощью пакета IRAF. Некоторые другие Галилеевы спутники оказывались в том же поле изображения и были использованы в качестве опорных объектов. Описание этих наблюдений опубликовано в (Zhang и др., 2018). Тем не менее эта статья предоставляет только кривые блеска. В настоящей работе мы рассчитываем астрометрические положения спутников в дифференциальных координатах, как мы это делали с другими наблюдениями. В табл. 2, 3 представлены астрометрические результаты этих наблюдений. Национальная обсерватория Китт-Пик обозначена далее в таблицах кодом КРО, а обсерватория Серро-Тололо – кодом СТО.

АСТРОМЕТРИЧЕСКИЕ РЕЗУЛЬТАТЫ

Чтобы вывести астрометрические результаты из фотометрических наблюдений, мы следовали тому же подходу, который опубликован в статьях (Емельянов, 2003; Emelyanov, Gilbert, 2006), и сделали такую же астрометрическую обработку, как и в работах (Emelyanov, 2009; Arlot и др., 2009; 2014; Saquet и др., 2018). Были приняты во внимание эффекты, указанные во Введении. Мы приводим здесь основные особенности применяемого метода, чтобы обеспечить понимание представленных астрометрических результатов.

Световой поток во время явления зависит от видимого относительного положения спутников, которое задается относительными угловыми координатами X, Y. Эти угловые координаты являются топоцентрическими в случае взаимных покрытий и гелиоцентрическими в случае взаимных затмений. Ось Y направлена к небесному северному полюсу, а ось X направлена на восток.

В процессе фотометрии спутников получается измеренное значение светового потока E в некоторой шкале, которая своя для каждого отдельного события. Обозначим нормированный световой поток от спутников через S. Мы предполагаем,

что значение S равно единице до начала и после события. Во время взаимного покрытия или затмения значение светового потока уменьшается, т.е. S < 1. Тогда

$$E = KS, \tag{1}$$

где *К* – неопределенный коэффициент, который предполагается постоянным во время явления. Очевидно, что S зависит от относительных координат Х, У в системе, описанной выше. Мы описываем эту зависимость функцией S(X, Y). Координаты Х, У могут рассчитываться на любой момент времени с использованием эфемерид планеты и ее спутников. Обозначим эти эфемеридные значения через $X_{\text{th}}(t), Y_{\text{th}}(t)$. Невозможно получить фактическое измеренное значение светового потока E, подставив $X_{th}(t)$, $Y_{th}(t)$ в функцию S(X, Y) и затем эту функцию в отношение (1), так как эфемериды имеют некоторые ошибки. Допустим, что фактические координаты во время явления отличаются от эфемеридных на некоторые неопределенные пока постоянные D_x , D_y Предположим, что фотометрические наблюдения были выполнены, т.е. измеренные значения E_i были получены на моменты времени t_i (i = 1, 2, ..., 2) ..., *m*). Тогда можно записать следующую систему условных уравнений с неизвестными параметрами K, D_x, D_y :

$$E_{i} = K S (X_{th}(t_{i}) + D_{x}, Y_{th}(t_{i}) + D_{y}),$$

(*i* = 1, 2, ...,*m*). (2)

Мы линеаризуем функцию *S* относительно ее аргументов и оцениваем значения параметров *K*, D_x , D_y из системы линейных условных уравнений с использованием метода наименьших квадратов. После того, как оценки найдены, астрометрический результат выражается координатами $X(t^*) = X_{th}(t^*) + D_x$, $Y(t^*) = Y_{th}(t^*) + D_y$, где t^* является произвольным моментом времени в течение интервала времени явления. Для определенности мы выбираем именно тот момент времени, когда значение $X^2 + Y^2$ минимально (т.е. когда видимое расстояние между спутниками сведено к минимуму).

етрических результатов, полученных из наблюдений 2009 г. В столбце Код даны коды обсерваторий. Заголовки других	овые величины даны в секундах дуги, кроме позиционного угла A , заданного в градусах
гэнидтэмс	TITOBAIC BC.
. Первая секция астро	объяснены в тексте. У
Таблица 2	столбцов

Ш	День	Тип	Код	Hac	Мин	Секун- ды	$X(t^*)$	$Y(t^*)$	g	g	D_x	D_y	S	V	0	$S_{ m min}$
26	1	1e4	BAR	1	22	28.51	-0.248	0.721	0.040	0.026	-0.139	0.077	0.763	341.04	0	0.835
24		102	BAR	1	13	26.98	0.175	-0.456	0.014	0.012	-0.046	0.012	0.489	159.03	0	0.761
31		1e2	BAR	2	42	52.10	-0.165	0.450	0.014	0.010	-0.032	0.027	0.480	339.84	0	0.820
12		3e2	UKK	1	53	5.30	0.005	-0.012	0.093	0.234	0.022	-0.086	0.013	158.45	1	0.651
12		302	UKK	2	10	31.30	0.398	-1.013	0.017	0.009	-0.038	-0.020	1.089	158.54	0	0.919
41		1e3	BAR	23	53	28.78	0.222	-0.583	0.018	0.013	0.012	-0.047	0.624	159.18	0	0.849
5	~	102	UKK	21	4	10.44	0.046	-0.128	0.005	0.008	0.004	-0.039	0.136	160.10	0	0.609
Ţ		102	089	21	4	22.92	0.046	-0.126	0.021	0.039	0.039	-0.024	0.134	160.10	0	0.608
Ξ.		1e2	089	21	15	18.30	-0.144	0.390	0.020	0.020	-0.031	0.011	0.416	339.78	0	0.787
Т	5	1e2	UKK	21	15	26.55	-0.140	0.380	0.005	0.003	-0.010	0.008	0.405	339.77	0	0.781
7	4	1e3	UKK	1	29	10.82	0.322	-0.809	0.024	0.014	0.006	-0.053	0.871	158.32	0	0.929
0	4	1e3	BAR	1	29	36.44	0.295	-0.743	0.024	0.015	0.052	0.042	0.799	158.33	0	0.907
0	5	1e2	BAR	0	13	53.29	-0.157	0.431	0.007	0.005	-0.019	0.011	0.459	339.96	0	0.805
(1	4	102	BAR	23	30	52.81	-0.042	0.119	0.007	0.013	-0.03	0.043	0.126	340.53	0	0.591
(1	4	102	089	23	31	1.45	-0.104	0.294	0.028	0.033	-0.072	0.226	0.312	340.54	1	0.673
(1	8	102	YU6	12	49	58.27	-0.077	0.222	0.019	0.023	-0.038	0.050	0.235	340.82	0	0.629
(1	8	1e2	YU6	13	58	11.17	-0.225	0.630	0.018	0.009	-0.016	0.174	0.669	340.30	1	0.813
	-	1e2	UKK	21	3	52.07	-0.189	0.467	0.007	0.005	0.03	-0.009	0.504	337.94	0	0.823
	8	102	UKK	22	25	54.71	-0.202	0.530	0.009	0.007	-0.012	-0.011	0.567	339.13	0	0.792
	8	102	BAR	22	25	56.25	-0.204	0.535	0.01	0.007	-0.008	-0.004	0.572	339.14	0	0.795
	×	1e2	UKK	23	42	28.04	-0.119	0.292	0.004	0.004	0.007	-0.035	0.316	337.86	0	0.324
	×	1e2	BAR	23	42	28.19	-0.133	0.327	0.005	0.004	-0.007	0.000	0.354	337.86	0	0.308
(1	20	2e1	BAR	23	19	37.78	0.290	-0.728	0.069	0.036	0.089	-0.042	0.784	158.26	0	0.930
(1	90	1e2	ZUB	17	57	20.23	0.038	-0.092	0.004	0.008	-0.004	-0.008	0.100	157.62	0	0.067
	Э	102	BAR	18	30	1.90	-0.230	0.628	0.014	0.009	0.017	0.074	0.669	339.87	0	0.862
	3	1e2	BAR	20	22	6.88	0.107	-0.259	0.002	0.002	-0.001	-0.003	0.281	157.50	0	0.276
	7	1e2	BRA	6	30	31.71	0.900	-0.036	0.005	0.005	-0.038	-0.024	1.570	233.49	0	0.417
	6	302	BAR	17	52	55.79	0.318	-0.901	0.02	0.01	0.033	0.002	0.955	160.57	0	0.909
0	6	102	YU6	13	0	2.64	-0.067	0.177	0.013	0.017	-0.019	0.028	0.190	339.15	0	0.595
	×	203	YU6	11	33	14.90	0.191	-0.497	0.012	0.009	0.089	-0.117	0.532	158.92	0	0.847
-	-	2o1	YU6	11	17	23.85	0.100	-0.261	0.005	0.005	-0.018	0.010	0.279	159.04	0	0.722

АСТРОМЕТРИЧЕСКИЕ РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

431

ических результатов, полученных из наблюдений 2014—2015 гг. В столбце Код даны коды обсерваторий. Заголовки	${ m V}$ гловые величины даны в секундах дуги, кроме позиционного угла A , заданного в градусах
Таблица 3. Первая секция астрометри	других столбцов объяснены в тексте

432

других (столбцо	в объя-	снены в	Tekcre. y	TJOBEIC E	нинигэ	ы даны в	секундах	қ дуги, кр	оме пози	ционног	о угла A ,	заданноі	о в град	усах		
Год	Месяц	День	Тип	Код	Hac	Мин	Секунды	$X(t^*)$	$Y(t^*)$	g	σ_y	D_x	D_y	S	Ψ	õ	$S_{ m min}$
2014	11	4	203	CTO	6	6	25.69	-0.107	-0.278	0.007	0.009	-0.068	-0.105	0.298	201.08	0	0.758
2014	11	5	103	KPO	10	21	51.65	-0.239	-0.629	0.049	0.029	0.024	0.019	0.673	200.77	0	0.877
2014	11	8	301	KPO	11	0	36.15	-0.198	-0.522	0.012	0.008	0.008	0.021	0.559	200.80	0	0.758
2014	11	6	304	KPO	6	31	23.06	0.377	0.994	0.053	0.028	0.077	-0.010	1.063	20.79	0	0.971
2014	11	11	203	KPO	12	42	47.93	0.098	0.252	0.007	0.010	0.023	0.089	0.270	21.25	0	0.748
2014	12	29	3e4	KPO	S	59	10.76	-0.325	-0.948	0.016	0.010	-0.010	0.040	1.002	198.93	0	0.836
2014	12	29	301	KPO	5	29	2.11	0.197	0.505	0.019	0.019	-0.010	-0.080	0.542	21.32	0	0.707
2015	1	5	301	KPO	8	22	56.52	0.254	0.657	0.012	0.008	0.011	-0.066	0.704	21.12	0	0.781
2015	1	19	3e1	KPO	12	31	11.71	-0.337	-0.954	0.018	0.009	0.040	-0.036	1.012	199.46	0	0.909
2015	Τ	19	301	KPO	13	39	22.47	0.308	0.817	0.025	0.016	-0.017	0.008	0.873	20.66	0	0.849
2015	1	23	4e3	CTO	6	12	32.55	0.123	0.346	0.008	0.010	-0.033	0.067	0.367	19.53	0	0.504
2015	2	11	2e1	KPO	11	12	43.29	-0.078	-0.210	0.005	0.005	0.021	-0.055	0.224	200.40	0	0.671
2015	2	11	201	KPO	11	0	33.68	0.095	0.259	0.005	0.006	0.045	-0.016	0.276	20.21	0	0.663
2015	2	11	403	KPO	12	36	38.64	0.339	0.964	0.028	0.018	0.054	-0.088	1.022	19.36	0	0.852
2015	2	27	4e1	KPO	7	56	12.68	0.427	1.155	0.058	0.026	0.079	-0.014	1.232	20.31	0	0.987
2015	7	27	4e3	KPO	4	33	23.58	0.379	1.032	0.012	0.007	0.003	-0.028	1.099	20.19	0	0.900
2015	3	8	2e1	KPO	7	24	1.02	0.073	0.192	0.002	0.002	0.007	-0.002	0.205	20.89	0	0.404
2015	3	8	304	KPO	6	38	8.47	0.172	0.517	0.007	0.007	0.008	0.096	0.545	18.44	0	0.834
2015	3	13	le3	KPO	6	58	55.36	0.057	0.155	0.011	0.019	-0.006	0.026	0.165	20.37	0	0.516
2015	3	13	103	KPO	7	35	15.96	-0.122	-0.361	0.010	0.011	-0.047	-0.087	0.381	198.60	0	0.733
2015	4	6	2e1	KPO	5	40	20.38	0.295	0.749	0.028	0.014	0.042	0.006	0.805	21.48	0	0.967
2015	4	6	201	KPO	3	54	11.32	-0.172	-0.510	0.005	0.003	0.042	0.004	0.538	198.66	0	0.854

АСТРОНОМИЧЕСКИЙ ВЕСТНИК том 53 № 6 2019

ЕМЕЛЬЯНОВ и др.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1) , (· · · · ·						
Год	Месяц	День	Тип	Код	Час	Мин	Секунды	A	σ_{along}	0–C	Q
2009	11	9	201	YU6	12	58	26.28	340.05	0.009	0.012	0
2015	3	8	201	KPO	6	17	57.42	199.21	0.003	0.008	0

Таблица 4. Вторая секция астрометрических результатов наблюдений, выполненных в 2009 и в 2015 гг. В столбце Код даны коды обсерваторий. Заголовки других столбцов объяснены в тексте. Угловые величины даны в секундах дуги, кроме позиционного угла *A*, заданного в градусах

Из приведенного выше определения координат *X*, *Y* следуют соотношения

$$X = (\alpha_{\rm a} - \alpha_{\rm p})\cos\delta_{\rm p}, \quad Y = (\delta_{\rm a} - \delta_{\rm p}),$$

где α_a , δ_a — прямое восхождение и склонение активного (покрывающего или затмевающего) спутника, тогда как α_p , δ_p — такие же координаты пассивного (покрываемого или затмеваемого) спутника.

Метод вычисления функции S(X, Y) подробно описан в работах (Емельянов, 2003; Emelyanov, Gilbert, 2006). Для расчета эталонных эфемеридных значений $X_{th}(t)$, $Y_{th}(t)$ мы используем модель движения Галилеевых спутников (Lainey и др., 2009) и модель движения планет (Fienga и др., 2014). В случае, когда одно и то же событие наблюдалось на двух обсерваториях, время t^* может отличаться из-за ошибок наблюдений. Следовательно, различия между координатами $X(t^*)$, $Y(t^*)$, полученными на двух обсерваториях не могут рассматриваться как показатели неточности результатов.

Величины D_x , D_y характеризуют согласие между теорией и наблюдениями. Именно эти величины могут использоваться для сравнения результатов наблюдений, сделанных на разных обсерваториях. Ошибки σ_x и σ_x координат $X(t^*)$, $Y(t^*)$, найденные с помощью метода наименьших квадратов, характеризуют внутреннюю точность фотометрии.

После вычисления значений D_x , D_y мы определяем минимальное значение S_{\min} нормированного потока $S(X_{\text{th}}(t) + D_x, Y_{\text{th}}(t) + D_y)$ в процессе наблюдений. Максимальное падение потока во время события тогда равно $1-S_{\min}$.

Мы разделяем наши окончательные астрометрические результаты на две секции. Первая секция включает в себя результаты, полученные из наблюдений, когда можно успешно определить две координаты $X(t^*)$, $Y(t^*)$. Вторая секция содержит результаты, полученные в тех случаях, когда удалось определить только позиционный угол A.

В первой секции каждый конечный результат наблюдения одного взаимного явления на данной обсерватории размещен в таблицах в следующих полях: дата, тип явления (покрытие или затмение), включая номера спутников, код обсерватории, время t^* в шкале UTC, $X(t^*)$, $Y(t^*)$, σ_x , σ_x , D_x

и D_{y} . Тип явления кодируется как n_{a} о n_{p} или n_{a} е n_{p} для взаимного покрытия или затмения соответственно. Здесь *n*_a – номер покрывающего или затмевающего спутника, а n_p – номер покрываемого или затмеваемого спутника. Мы даем результаты также в виде углового разделения *s* (в секундах дуги) и позиционного угла А (в градусах), соответствующих $X(t^*)$, $Y(t^*)$. Мы также даем минимум S_{min} уровня нормализованного потока. Мы присваиваем признак О каждому наблюдению, чтобы отметить качество и надежность результата. Признак О может иметь одно из следующих значений: "0" для нормально определенных координат, "1" для случаев недостоверных фотометрических данных, "2" для результата, следующего из фотометрии низкого качества или для результата, сильно отличающегося от результата другой обсерватории. Прямые восхождения и склонения измеряются в системе ICRF. Все угловые величины даются в секундах дуги, кроме позиционного угла А, заданного в градусах. В случае взаимного покрытия t* является моментом топоцентрического наблюдения спутников. В случае взаимного затмения t* - время топоцентрического наблюдения затмеваемого спутника.

Величины σ_x , σ_x можно интерпретировать как внутренние ошибки величин $X(t^*)$, $Y(t^*)$, соответственно, а D_x , D_y являются остаточными отклонениями по отношению к теории (Lainey и др., 2009).

Табл. 2 представляет первый раздел полученных результатов астрометрии из наблюдений, сделанных в 2009 г. В табл. 3 дан первый раздел астрометрических результатов, полученных из наблюдений, сделанных в 2014—2015 гг.

Данные во второй секции состоят из следующего набора полей: дата, тип явления (покрытие или затмение), включая номера спутников, код обсерватории, время t^* в шкале UTC, позиционный угол *A*, точность σ_{along} положения вдоль траектории видимого движения спутника, полученная с помощью метода наименьших квадратов. Угол положения *A* задается в градусах, а σ_{along} – в угловых секундах. Значения О–С для этого типа результатов показывают отклонение выведенного относительного положения от эфемериды вдоль видимой относительной траектории спутника. Также присваивается признак *Q*, показывающий причину, почему была определена только

Таблица 5. Оценки точности астрометрических результатов, полученных из наблюдений 2009 г. Для оценок использованы только 28 лучших наблюдений

Тип оценки ошибок	Ошибки в X (пямое восх.), мс дуги	Ошибки в <i>Y</i> (склонение), мс дуги
Случайные ошибки фотометрии	20	15
Ср. кв. величина О-С	43	40

Таблица 6. Оценки точности астрометрических результатов, полученных из наблюдений, выполненных в 2014—2015 гг. Оценки точности астрометрических результатов, полученных из наблюдений в 2014—2015 гг., выполненных X.L. Zhang и X.L. Han

Тип оценки	Ошибки в Х	Ошибки в Ү
ошибок	(пямое восх.),	(склонение),
	мс дуги	мс дуги
Случайные ошибки фотометрии	24	15
Ср. кв. величина О–С	38	56

одна координата: 0 для наблюдения полного взаимного покрытия или затмения, 1 для результатов, следующих из низкокачественной фотометрии. В этих случаях относительное положение спутника, измеренное поперек видимой траектории, не может быть найдено однозначно, позиционный угол может быть определен только с точностью $\pm 180^{\circ}$.

Астрометрические результаты второй секции, полученные из наблюдений, сделанных в 2009 и 2014—2015 гг., представлены в табл. 4.

Табл. 2–4 доступны в электронном виде в Центре данных естественных спутников (NSDB) по адресам http://nsdb.imcce.fr/obspos/ и http:// www.sai.msu.ru/neb/nss/html/obspos/.

ОЦЕНКИ ТОЧНОСТИ ПОЛУЧЕННЫХ АСТРОМЕТРИЧЕСКИХ РЕЗУЛЬТАТОВ

Были сделаны следующие оценки точности выведенных астрометрических результатов. Метод наименьших квадратов дает нам стандартные ошибки σ_x , σ_x результирующих координат $X(t^*)$, $Y(t^*)$, выведенных из наблюдаемых кривых блеска. Эти ошибки происходят из-за случайных ошибок фотометрии и характеризуют внутреннюю точность астрометрических результатов. Значения D_x и D_y характеризуют согласие теории Lainey и др. (2009) с полученными астрометрическими результатами. Значения D_x дают согласование в прямом восхождении, а D_y — в склонении. Мы рассчитали среднеквадратическую величину всех D_x и D_y , найденных из наблюдений. Были вычислены также среднеквадратические величины всех σ_x , σ_y . Мы вычислили значения этих оценок отдельно для двух групп наблюдений: в 2009 г. и в 2014—2015 гг. Для расчета оценок мы учли только первые секции наблюдений в каждой группе и исключили данные с Q = 1. Для наблюдений, сделанных в 2009 г., оценки точности полученных астрометрических результатов приведены в табл. 5. Для наблюдений, сделанных X.L. Zhang и X.L. Нап в 2014—2015 гг. оценки даны в табл. 6.

ЗАКЛЮЧЕНИЕ

В результате выполненной работы были выведены новые астрометрические относительные межспутниковые положения лля Галилеевых спутников Юпитера из фотометрических наблюдений, сделанных во время взаимных покрытий и затмений спутников. В 2009 г. наблюдения были выполнены в шести обсерваториях разных стран и были получены 32 межспутниковых положения спутников. В 2014-2015 гг. наблюдения проводились астрономами X.L. Zhang и X.L. Нап с использованием 0.9-м телескопа SARA расположенном в Национальной обсерватории Китт-Пик в Аризоне и телескоп SARA 0.6-м – в обсерватории Серро-Тололо в Ла Серена. Из этих фотометрических наблюдений были выведены 23 межспутниковых положения для Галилеевых спутников Юпитера.

Были сделаны оценки точности астрометрических результатов. Для лучших 28 наблюдений, сделанных в 2009 г., внутренняя точность составила 20 и 15 мс в прямом восхождении и склонении, соответственно. Среднеквадратические величины О–С для этих наблюдений получились равными 43 мс в прямом восхождении и 40 мс в склонении. По 22 наблюдениям, сделанным в 2014–2015 гг. внутренняя точность составляет 24 и 15 мс в прямом восхождении и склонении, соответственно. Среднеквадратические величины значений О–С для этих наблюдений дают 38 мс в прямом восхождении и 56 мс в склонении.

Мы заключаем, что полученные новые астрометрические результаты будут полезны для уточнения модели движения Галилеевых спутников Юпитера.

Работа выполнялась при поддержке программы "André Mazon" посольства Франции в России и при поддержке Национального научного фонда Китая (NSFC, grants U1731122, 11203070 and U1431227).

СПИСОК ЛИТЕРАТУРЫ

Емельянов Н.В. Метод обработки фотометрических наблюдений взаимных покрытий и затмений спутников планет // Астрон. вестн. 2003. V. 37. № 4. C. 344–355. (*Emelianov N.V.* A Method for reducing photometric observations of mutual occultations and eclipses of planetary satellites // Sol. Syst. Res. 2003. V. 37. № 4. P. 314–325.)

- *Емельянов Н.В.* Динамика естественных спутников планет на основе наблюдений // Астрон. журн. 2018. Т. 95. № 12. С. 873–882.
- Arlot J.-E., Emelyanov N.V. The NSDB natural satellites astrometric database // Astron. and Astrophys. 2009. V. 503. P. 631–638.
- *Arlot J.E., Thuillot W., Ruatti C. and 116 coauthors.* The PHEMU03 catalogue of observations of the mutual phenomena of the Galilean satellites of Jupiter // Astron. and Astrophys. 2009. V. 493. P. 1171–1182.
- Arlot J.-E., Emelyanov N., Varfolomeev M.I., Amosse A., Arena C., Assafin M., Barbieri L., Bolzoni S. & 86 coauthors. The PHEMU09 catalogue and astrometric results of the observations of the mutual occultations and eclipses of the Galilean satellites of Jupiter made in 2009 // Astron. and Astrophys. 2014. V. 572. Id. A120. 9 p.
- Arlot J.-E., Emelyanov N. Natural satellites mutual phenomena obbbbservations: Achievements and future // Planet. and Space Sci. 2019. V. 169. P. 70–77.
- *Emelyanov N.V., Gilbert R.* Astrometric results of observations of mutual occultations and eclipses of the Galilean satellites of Jupiter in 2003 // Astron. and Astrophys. 2006. V. 453. P. 1141–1149.

- *Emelyanov N.V.* Mutual occultations and eclipses of the Galilean satellites of Jupiter in 2002–2003: Final astrometric results // Mon. Notic. Roy. Astron. Soc. 2009. V. 394. Iss. 2. P. 1037–1044.
- Fienga A., Manche H., Laskar J., Gastineau M., Verna A. INPOP new release: INPOP13c. IMCCE. Observatoire de Paris. 2014. Paris. arXiv:1405.0484 [astroph.EP]. P. 1–29.
- Lainey V., Arlot J.-E., Karatekin O., van Hoolst T. Strong tidal dissipation in Io and Jupiter from astrometric observations // Nature. 2009. V. 459. Iss. 7249. P. 957–959.
- Saquet E., Emelyanov N., Robert V., Arlot J.-E., Anbazhagan P., Baillie K., Bardecker J., Berezhnoy A.A., and 111 coauthors. The PHEMU15 catalogue and astrometric results of the Jupiter's Galilean satellite mutual occultation and eclipse observations made in 2014–2015 // Mon. Notic. Roy. Astron. Soc. 2018. V. 474. Iss. 4. P. 4730–4739.
- Zhang X.L., Arlot J.-E., Liu Z. Mutual occultations between Galilean satellites observed at Yunnan Observatory in 2009 // Astron. and Astrophys. 2011. V. 532. Id. A36. 5 p.
- Zhang X.-L., Liu Z. Mutual eclipses of J2 Europa by J1 Io observed at Yunnan Observatory in 2009 // Res. Astron. and Astrophys. 2011. V. 11. Iss. 10. P. 1243–1248.
- Zhang X.L., Han X.L., Arlot J.E. Mutual events between Galilean satellites observed with SARA 0.9 m and 0.6 m telescopes during 2014–2015 // Mon. Notic. Roy. Astron. Soc. 2018. V. 483. Iss. 4. P. 4518–4524.