УЛК 550.42

НАНОАЛМАЗ МЕТЕОРИТОВ: АЛЬТЕРНАТИВНЫЙ СОСТАВ КОМПОНЕНТОВ КСЕНОНА

© 2020 г. А. В. Фисенко^{а, *}, Л. Ф. Семенова^а

^аИнститут геохимии и аналитической химии им. В.И. Вернадского (ГЕОХИ) РАН, Москва, Россия *e-mail: anat@chgnet.ru

Поступила в редакцию 12.11.2019 г. После доработки 13.12.2019 г. Принята к публикации 16.12.2019 г.

Содержания основных компонентов ксенона — Xe-P3, Xe-P3 (fr), Xe-P6 и компонента Xe-pr вместо Xe-HL — впервые вычислены для наноалмаза метеоритов Orgueil (CI), Tieschitz (H3.6) и Indarch (EH3-4). Компонент Xe-pr — избыточная доля изотопов ксенона в компоненте Xe-HL относительно Xe-P3(fr) и в основном состоит из изотопов $^{124, 126, 134, 136}$ Xe, образующихся в p- и r-процессах нуклеосинтеза при взрыве сверхновой II типа. Анализ полученных данных показал следующее. (1) Основной компонент Xe в наноалмазе – Xe-P3(fr), и максимум его выделения при пиролизе, так же как Xe-pr и Xe-P6, — высокотемпературный (>1000°С), независимо от петрологического типа метеоритов. (2) Относительное содержание компонента Xe-pr в наноалмазе Indarch, наиболее обогащенном аномальным компонентом ксенона, равно около 15% от общего содержания ксенона в алмазе этого метеорита, что существенно меньше содержания компонента Xe-HL – около 87%. (3) Компоненты ксенона содержатся в индивидуальных популяциях зерен алмаза с разной термо-окислительной стабильностью. Полученные нами и в статье (Huss, Lewis, 1994b) данные о содержаниях и кинетике выделения компонентов ксенона в наноалмазе метеоритов на основании изотопных составов Хе-рг и Хе-НL, соответственно, наиболее вероятно показывают предельные их значения. Предполагается, что реальные свойства компонентов ксенона подобны полученным при использовании для вычислений компонента Хе-рг, принимая во внимание данные о изотопном составе углерода во фракциях зерен наноалмаза метеорита Allende (Lewis и др., 2019).

Ключевые слова: наноалмаз метеоритов, состав компонентов ксенона, изотопный состав ксенона в наноалмазе

DOI: 10.31857/S0320930X20030044

ВВЕДЕНИЕ

В настоящее время основными компонентами благородных газов в наноалмазе метеоритов являются компоненты P3, P6 и HL, различающиеся по изотопным составам газов, температурой выделения и содержаниями (Huss, Lewis, 1994a; 1994b). Изотопные составы ксенона этих компонентов (Xe-P3, Xe-P6 и Xe-HL, соответственно) были определены на основании корреляционных зависимостей между измеренными изотопными отношениями Хе в наноалмазе метеоритов различных химических классов и петрологических типов (Huss, Lewis, 1994a). При этих определениях отношение ¹³⁶Хе/¹³²Хе было принято равным 0.31 для компонентов Хе-Р3 и Хе-Р6 и 0.70 для Хе-HL. В результате этого было получено, что Xe-P3 и Хе-Р6 имеют почти "нормальные" изотопные составы, т.е. они подобны солнечному составу ксенона, но несколько различны между собой, тогда как компонент Xe-HL – изотопно-аномальный из-за резкого обогащения легкими и тяжелыми изотопами. Одновременное обогащение компонента Xe-HL изотопами ^{124, 126}Xe и ^{134, 136}Xe обусловлено некоторой долей этих изотопов, образованных, наиболее вероятно, при взрыве сверхновой II типа. Источником изотопов ^{124, 126}Хе предполагается р-процесс (фоторасщепление) во внутренних оболочках сверхновой (Rayet и др., 1995), тогда как изотопы ^{134, 136}Хе образуются при быстром процессе захвата нейтронов (г-процесс) при "мини г-процессе" в С- и Не-оболочках сверхновой (например, (Heymann, Dziczkaniec, 1979; Clayton, 1989; Howard и др., 1992). Избытки всех тяжелых изотопов (Xe-H) компонента Xe-HL могли быть образованы также при классическом г-процессе при взрыве сверхновой, но с ограниченным временем образования изотопов Хе от их радиоактивных предшественников (Ott, 1969). Возможны и другие астрофизические источники изотопов Хе-Н . Предполагается, например, что образова-

ние почти всех обогащенных нейтронами изотопов могло произойти в г-процессе при слиянии (поглощении) нейтронных звезд (Thielemann и др., 2017). Тем не менее сверхновая II типа как единый источник избыточных изотопов компонента Xe-HL и содержащих их зерна наноалмаза все же предпочтительна. Тем более, до настоящего времени не удается разделить легкие и тяжелые избытки изотопов Хе между собой. Изотопы компонента Xe-HL с массой 128—132, кроме ¹³⁰Xe, могли быть образованы как в г-процессе при взрыве сверхновой, так и при медленном (s-процесс) захвате нейтронов (например, в звездах асимптотической ветви гигантов). Изотоп 130 Хе был образован только в s-процессе нуклеосинтеза, так как его образование в г-процессе блокируется стабильным изотопом 130 Те. Таким образом, Xe-HL — это смесь изотопов Хе, образованных в разных процессах нуклеосинтеза и астрофизических источниках. Общепринято, что Xe-HL – это смесь "нормального" по изотопному составу ксенона с дополнительной долей изотопов ксенона, образованных в основном в р- и г-процессах нуклеосинтеза при взрыве сверхновой II типа (далее эта доля изотопов обозначена как компонент Хе-рг). Поэтому изотопный состав компонента Хе-рг можно определить, вычитая из состава Xe-HL его изотопно-"нормальную" составляющую, нормируя ее к содержанию всего ¹³⁰Хе. Изотопный состав "нормального" ксенона принимается равным, например, составу солнечного Xe (Ott, 1996) или Xe-P3 (Huss и др., 2008). Очевидно, что Хе-рг, как один из субкомпонентов Xe-HL, по изотопному составу является предельно возможным. Может ли и при каких условиях после взрыва сверхновой образоваться индивидуальная популяция зерен наноалмаза с Хе-рг — открытые вопросы. Возможно, например, что предшественником этих зерен была углеродная фаза с сорбированными изотопами компонента Хе-рг. Тем не менее использование компонента Хе-рг при вычислениях содержаний компонентов ксенона в наноалмазе метеоритов позволит определить также предельно возможные их содержания и кинетику выделения при ступенчатом пиролизе.

В настоящее время анализ вычисленных содержаний компонентов Xe-P3, Xe-P6 и Xe-HL и кинетики их выделения при ступенчатом пиролизе наноалмаза различных метеоритов показал следующие основные их особенности (Huss, Lewis, 1994b). Выделение Xe-P3 является бимодальным с максимумами выделения около 500°С и 1100—1300°С. Компоненты Xe-HL и Xe-P6 — высокотемпературные с максимумами выделения в интервале 1100—1300°С, причем Xe-P6 несколько более высоко температурный, чем Xe-HL. С уве-

личением степени термального метаморфизма родительских тел метеоритов содержание компонента Хе-Р3, особенно его низкотемпературной доли, резко уменьшается. Так, например, в наноалмазе метеоритов Allende (CV3.2) и Indarch (ЕН3-4) компонента Хе-Р3 практически нет. Вместе с тем, реальны ли эти особенности компонентов ксенона - остается открытым вопросом из-за неопределенности изотопного состава компонентов Xe, например, Xe-HL. Его состав, как отмечалось выше, был идентифицирован при значении отношения 136 Xe/ 132 Xe = 0.70, ограничивающим измеренные ланные на трех изотопных графиках для Хе в наноалмазе различных метеоритов. Очевидно, что при другом значении этого отношения изотопный состав Xe-HL и. тем самым, содержания всех компонентов Хе, изменятся.

В данной работе приведены содержания компонентов ксенона, вычисленные при использовании изотопного состава Хе-рг в наноалмазе метеоритов таких разных химических классов и петрологических типов как Orgueil (CI), Tieschitz (H3.6) и Indarch (ЕН3-4). Цель этих вычислений: сопоставление полученных содержаний компонентов ксенона и кинетики их выделения с таковыми при использовании компонента Xe-HL.

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЙ КОМПОНЕНТОВ КСЕНОНА В НАНОАЛМАЗЕ МЕТЕОРИТОВ

Вычисление содержаний компонентов Хе мы проводили, принимая во внимание, что в обогащенных наноалмазом фракциях различных метеоритов имеется некоторая доля благородных газов, фазой носителем которых являются, наиболее вероятно, зерна SiC (Huss, Lewis, 1994b). Поэтому в использованную ниже систему уравнений были введены параметры, учитывающие вклад ксенона (обозначен как Xe-S) от зерен SiC. Для вычислений использована следующая система уравнений:

$$\begin{split} X + Z + Y + V &= \left[^{132} \text{Xe}\right]_m \left(^{130} \text{Xe}\right)^{132} \text{Xe}\right)_{\text{P3}} X \\ &+ \left(^{130} \text{Xe}\right)^{132} \text{Xe}\right)_{\text{P6}} Z \\ &+ \left(^{130} \text{Xe}\right)^{132} \text{Xe}\right)_{\text{p6}} Z \\ &= \left(^{130} \text{Xe}\right)^{132} \text{Xe}\right)_m \left[^{132} \text{Xe}\right]_m \left(^{134} \text{Xe}\right)^{132} \text{Xe}\right)_{\text{P3}} X \\ &+ \left(^{134} \text{Xe}\right)^{132} \text{Xe}\right)_{\text{P6}} Z \\ &+ \left(^{134} \text{Xe}\right)^{132} \text{Xe}\right)_{\text{P6}} Z \\ &+ \left(^{134} \text{Xe}\right)^{132} \text{Xe}\right)_{\text{P3}} X \\ &+ \left(^{136} \text{Xe}\right)^{132} \text{Xe}\right)_{\text{P3}} X \\ &+ \left(^{136} \text{Xe}\right)^{132} \text{Xe}\right)_{\text{p7}} Y \\ &+ \left(^{136} \text{Xe}\right)^{132} \text{Xe}\right)_{\text{p7}} Y \\ &+ \left(^{136} \text{Xe}\right)^{132} \text{Xe}\right)_{\text{p7}} Y \\ &+ \left(^{136} \text{Xe}\right)^{132} \text{Xe}\right)_{\text{m}} \left[^{132} \text{Xe}\right]_{\text{m}}, \end{split}$$

Компо-	$\frac{^{124}Xe}{^{132}Xe}$	$\frac{^{126}Xe}{^{132}Xe}$	$\frac{^{128}\mathrm{Xe}}{^{132}\mathrm{Xe}}$	$\frac{^{129}Xe}{^{132}Xe}$	$\frac{^{130}\mathrm{Xe}}{^{132}\mathrm{Xe}}$	$\frac{^{131}Xe}{^{132}Xe}$	$\frac{^{134}Xe}{^{132}Xe}$	$\frac{^{136}\mathrm{Xe}}{^{132}\mathrm{Xe}}$
Xe-HL ¹	0.842 ± 9^3	0.569 ± 8	9.05 ± 6	105.6 ± 2	15.44 ± 3	84.42 ± 13	63.61 ± 13	≡ 70
Xe-P3 ¹	0.451 ± 6	0.404 ± 4	5.06 ± 2	104.2 ± 4	15.91 ± 2	82.32 ± 10	37.70	≡31.00
Xe-P6 ¹	0.438 ± 25	0.444 ± 28	8.90 ± 20	111.4 ± 8	16.60 ± 11	82.14 ± 47	32.91 ± 50	≡31.00
$Xe-S^2$	0	0.033 ± 19	21.59 ± 14	11.8 ± 1.1	48.26 ± 42	18.6 ± 1.2	2.22 ± 53	≡0.34
Xe-P3(fr)	0.415	0.380	7.74	101.1	15.59	81.51	38.45	32.23
Xe-pr	43.35	19.29	139.5	553.4	≡0	374.80	2570	3833

Таблица 1. Изотопный состав компонентов ксенона (132 Xe $\equiv 100$)

где переменные X, Z, Y, V — содержания 132 Xe-P3 или 132 Xe-P3(fr), 132 Xe-P6, 132 Xe-pr и 132 Xe-S, соответственно. Подстрочные индексы P3, P6, S и рг относятся к изотопным составам компонентов ксенона, тогда как m — к содержаниям 132 Xe и изотопным отношениям ксенона, использованным нами на основании измеренных в (Huss, Lewis, 1994а) при ступенчатом пиролизе наноалмаза метеоритов Orgueil, Tieschitz и Indarch.

Использованные изотопные составы компонентов ксенона для вычислений приведены в табл. 1.

Отметим, что при имплантации благородных газов в наноалмаз детонационного синтеза было выявлено масс-фракционирование изотопов Хе в направлении обогащения тяжелых изотопов относительно легких (Huss и др., 2008). Величина фракционирования составила 0.99%/ат. ед. при 1400°С относительно изотопного состава Хе при 500°C. Поэтому при вычислениях содержаний компонентов Хе в наноалмазе термально метаморфизованных метеоритов Tieschitz и Indarch мы использовали масс-фракционированный Хе-P3 (0.99%/ат. ед., обозначен как Xe-P3(fr)), тогда как для алмаза Orgueil (CI) –Xe-P3 до 1000°C, и Xe-P3(fr) выше 1000°С (см. ниже). Изотопный состав компонента Хе-рг – результат вычитания из состава Xe-HL состав Xe-P3(fr), полагая, что содержание 130 Хе в Xe-HL обусловлено только компонентом Xe-P3(fr).

Почти все использованные для вычислений значения отношений 130 Xe/ 132 Xe, 134 Xe/ 132 Xe и 136 Xe/ 132 Xe равны измеренным в пределах $\pm \sigma$, что можно видеть, например, для наноалмазов Orgueil и Indarch (табл. 2). В табл. 2 приведены также содержания 132 Xe компонентов ксенона, вычисленные нами и Huss, Lewis (1994b).

Для наноалмаза Orgueil (CI), наиболее обогащенного низкотемпературным компонентом Xe-P3, как отмечалось выше, вычисления проведены с изотопными составами Xe-P3 до 1050°C и с Xe-P3(fr) выше этой температуры. Заметим, что максимум выделения низкотемпературного Xe-P3 при пиролизе алмаза Orgueil наблюдается при 480°C (Huss, Lewis, 1994b) и поэтому его возможное масс-фракционирование мы не учитывали.

Все вычисления были проведены при нормировании уравнений к измеренным отношениям ^{130, 134, 136}Хе/¹³²Хе без учета погрешностей их измерений. Поэтому полученные содержания компонентов Хе в наноалмазе приведенных выше метеоритов представляют собой один из вариантов возможных их значений. Тем не менее единый способ определения этих содержаний позволил выявить особенности компонентов ксенона при использовании в расчетах компонента Хе-рг вместо Xe-HL.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На основании полученных нами содержаний 132 Хе компонентов ксенона (табл. 2) и их изотопных составов (табл. 1) были вычислены изотопные отношения $^{124, 129, 131}$ Хе/ 132 Хе (табл. 3).

Подчеркнем, что вычисление отношений $^{124,\ 129,\ 131}$ Хе/ 132 Хе проведено на основании содержаний компонентов ксенона, вычисленных при нормировании уравнений к измеренным отношениям $^{124,\ 130,\ 134,\ 136}$ Хе/ 132 Хе. Поэтому наличие равенства между вычисленными и измеренными отношениями $^{124,\ 129,\ 131}$ Хе/ 132 Хе зависит от степени смешения избытков легких и тяжелых изотопов ксенона в наноалмазе (см. ниже).

Общий ксенон в наноалмазе метеоритов: содержания компонентов и изотопный состав

Из данных табл. 2 следует, что использование при расчетах компонента Хе-рг вместо Хе-HL привело к резкому изменению содержаний компонентов Хе в наноалмазе метеоритов Orgueil и Indarch. Аналогичная картина наблюдается также

¹ Huss, Lewis, 1994a; ² Lewis и др., 1994; ³ ошибки относятся к последним значащимся цифрам.

Таблица 2. Изотопные отношения ксенона (132 Xe = 100) и содержания 132 Xe (в 10^{-8} см 3 /г). Курсив — данные Huss, Lewis (1994a; 1994b). Обычный шрифт — вычисления данной работы

$(T, {}^{\mathrm{o}}\mathrm{C}),$	130 Xe	134 Xe	136 Xe	Содержания ¹³² Хе компонентов				
¹³² Xe	$\frac{132}{132}$ Xe	$\frac{132}{132}$ Xe	$\frac{132}{132}$ Xe	Xe-P3(fr)	Xe-HL, pr	Xe-P6	Xe-S	
Orgueil (CI)				1	•		•	
(300)	16.12(6)	38.15(16)	31.65(13)	0.97(35)	0.023(2)	н. д.1	0.005(2)	
1.00	16.12	38.03	31.65	0.993	0.0002	≤0.001	0.007	
(490)	15.98(5)	37.89(9)	31.53(8)	14.30(51)	0.189(30)	н.д.	0.029(29)	
14.52	15.98	37.89	31.53	14.070	0.0022	0.420	0.024	
(680)	15.89(5)	38.21(10)	31.91(16)	11.44(40)	0.257(16)	н. д.	0.00(23)	
11.70	15.91	38.11	31.94	11.140	0.0028	0.562	≤0.001	
(865)	15.87(5)	39.35(10)	33.50(10)	3.40(12)	0.232(11)	н. д.	0.00(7)	
3.63	15.89	39.35	33.62	3.549	0.00248	0.081	≤0.001	
(1050)	15.85(5)	45.32(14)	42.31(20)	1.13(4)	0.455(18)	0.00(3)	0.005(3)	
1.59	15.85	45.32	42.43	1.586	0.00478	≤0.001	≤0.001	
(1235)	15.54(5)	57.70(18)	60.89(16)	0.58(2)	1.794(64)	0.00(5)	0.007(5)	
2.38	15.54	57.59	61.01	2.358	0.0181	≤0.001	0.005	
(1420)	15.56(5)	58.24(15)	62.26(16)	1.73(8)	8.19(29)	0.307(52)	0.002(2)	
10.22	15.56	58.24	62.26	9.709	0.081	0.415	0.015	
(1600)	15.77(5)	52.50(13)	54.76(14)	0.79(5)	2.59(9)	0.871(52)	0.00(1)	
4.25	15.77	52.50	54.76	3.383	0.0256	0.833	0.009	
(1780)	16.13(12)	48.90(36)	50.38(46)	0.051(3)	0.15(5)	0.095(5)	0.002(1)	
0.30	16.13	48.90	50.38	0.200	0.00149	0.096	0.003	
(1950)	15.88(24)	51.45(82)	53.59(1.08)	0.030(1)	0.050(2)	0.012(10)	0.0012(2)	
0.09	15.88	51.45	53.59	0.067	0.00052	0.022	≤0.001	
(2060)	16.09(18)	53.49(55)	56.52(90)	0.015(1)	0.081(3)	0.025(1)	0.0013(2)	
0.12	16.09	53.49	56.52	0.093	0.00079	0.024	0.001	
Indarch (EH3	-4)	1	1	I	1	1	1	
(325)	16.21(22)	54.18(77)	55.91(1.07)	0.047(1)	0.091(1)	н. д.	0.0020(3)	
0.14	16.21	54.02	56.10	0.136	0.0009	≤0.001	0.003	
(525)	16.03(16)	56.95(51)	59.76(76)	0.088(2)	0.279(3)	н. д.	0.0050(7)	
0.37	16.03	56.84	60.21	0.361	0.0028	≤0.001	0.006	
(720)	15.53(16)	59.20(52)	63.00(48)	0.094(2)	0.411(5)	0.0001(1)	0.003(1)	
0.51	15.53	59.06	63.22	0.505	0.0042	≤0.001	0.001	
(910)	15.69(11)	60.28(49)	65.88(51)	0.012(1)	0.434(5)	0.044(1)	0.002(1)	
0.49	15.69	60.43	65.40	0.481	0.0043	≤0.001	0.003	
(1100)	15.67(6)	60.80(28)	67.14(16)	0.000(2)	0.668(8)	0.063(2)	0.004(1)	
0.74	15.67	60.80	67.14	0.593	0.0068	0.140	0.001	
(1285)	15.71(5)	61.86(19)	68.23(20)	0.000(8)	2.672(30)	0.139(3)	0.020(6)	
2.83	15.71	61.86	68.23	2.490	0.0270	0.299	0.014	
(1465)	15.58(3)	61.17(15)	67.30(17)	0.000(32)	9.77(11)	0.747(33)	0.011(21)	
10.52	15.58	61.17	67.30	8.987	0.0975	1.438	≤0.001	
(1645)	15.73(5)	57.00(14)	62.25(16)	0.000(37)	9.74(12)	2.410(66)	0.024(24)	
12.17	15.73	57.00	62.25	8.297	0.0972	3.796	≤0.001	
(1820)	16.28(8)	53.93(13)	58.30(26)	0.000(18)	1.279(16)	0.500(19)	0.027(4)	
1.81	16.28	53.93	58.30	1.126	0.0128	0.646	0.024	

Таблица 2. Окончание

(<i>T</i> , °C),	¹³⁰ Xe	$\frac{^{134}\text{Xe}}{^{132}\text{Xe}}$	$\frac{^{136}Xe}{^{132}Xe}$	Содержания ¹³² Хе компонентов			
¹³² Xe	132 Xe	¹³² Xe	¹³² Xe	Xe-P3(fr)	Xe-HL, pr	Xe-P6	Xe-S
(1990)	17.99(8)	51.37(28)	55.88(42)	0.000(7)	0.472(8)	0.181(7)	0.051(1)
0.70	17.99	51.37	55.88	0.373	0.0048	0.277	0.045
(2150)	17.24(8)	53.42(35)	57.85(39)	0.007(6)	0.443(7)	0.147(6)	0.030(1)
0.63	17.24	53.42	57.85	0.407	0.0045	0.191	0.028

¹ н. д. – нет данных.

для наноалмаза Tieschitz. По относительным содержаниям компонентов ксенона в алмазе каждого метеорита (табл. 4) видно, что доля Xe-pr не превышает 15% даже в наноалмазе Indarch — наиболее обогащенном аномальным по изотопному составу ксеноном по данным в (Huss, Lewis, 1994b).

Основную долю ксенона в алмазе этого метеорита, как и в остальных, составляют Xe-P3, Xe-P3(fr) и Xe-P6. Вероятно, при равных концентрациях всех компонентов Xe в зернах наноалмаза основной массой зерен, по крайней мере, содержащих благородные газы, являются популяции зерен, содержащие почти нормальные по изотопному составу компоненты Xe-P3, Xe-P3(fr) и Xe-P6.

Отклонения вычисленных по данным в табл. 2 и 3 изотопных отношений Xe от измеренных для общего Xe в наноалмазе метеоритов показаны на рис. 1.

По оси ординат отложена величина отклонений δ (в ‰), равная ((${}^{i}Xe/{}^{132}Xe)_{c}/({}^{i}Xe/{}^{132}Xe)_{m}-1$) × 1000, где подстрочные индексы c и m показывают вычисленные и измеренные отношения, соответственно. Из данных на рис. 1 видно следующее.

- 1. Наибольшие положительные отклонения наблюдаются для легких изотопов Хе в наноалмазе Indarch. Они обусловлены, вероятно, дефицитом легких изотопов Хе в результате диффузионных потерь из алмаза при термальном метаморфизме этого метеорита. Минимальные отклонения для наноалмаза метеорита Orgueil (CI), т.е. для наименее измененного наноалмаза в результате процессов термального метаморфизма, показывают, что полученные содержания компонентов Хе при использовании Хе-рг могут быть реальными в наноалмазе метеоритов.
- 2. Совпадение вычисленных отношений $^{124,\ 126}$ Хе/ 132 Хе с измеренными в пределах $\pm (1-3)\sigma$ при нормировании уравнений к измеренным значениям $^{134,\ 136}$ Хе/ 132 Хе в первом приближении свидетельствует о единой смеси избытков $^{124,\ 126}$ Хе и $^{134,\ 136}$ Хе изотопов. Вероятно, эти изотопы Хе, образующиеся соответственно в р- и r-процессах

нуклеосинтеза при взрыве сверхновой II типа, были имплантированы в зерна наноалмаза одной популяции. Это предположение согласуется с вы-

Рис. 1. Отклонения вычисленных изотопных отношений Xe от измеренных для общего ксенона в наноалмазе метеоритов. Погрешности ($\pm \sigma$) обусловлены погрешностями измеренных отношений.

Таблица 3. Изотопные отношения ксенона (132 Xe = 100). Курсив — измерены Huss, Lewis (1994a). Обычный шрифт — результаты вычислений с компонентом Xe-pr

(<i>T</i> , °C), ¹³² Xe	124 Xe	126 Xe	$\frac{^{128}\text{Xe}}{}$	129 Xe	131 X e
(1, 0), 10	132 Xe	$\frac{132}{132}$ Xe	$\frac{\lambda e}{132}$ Xe	$\frac{132}{132}$ Xe	$\frac{132}{132}$ Xe
Orgueil (CI)		<u> </u>			•
(300)	0.479(11)	0.420(8)	8.16(6)	110.6(3)	81.72(43)
1.00	0.458	0.406	8.18	103.7	81.97
(490)	0.460(2)	0.407(2)	8.10(2)	107.9(3)	82.36(25)
14.52	0.456	0.407	8.13	104.3	82.26
(680)	0.460(2)	0.407(3)	8.05(2)	104.6(3)	82.49(25)
11.70	0.461	0.411	8.12	104.7	82.44
(865)	0.481(6)	0.413(3)	8.15(2)	104.0(3)	82.42(25)
3.63	0.480	0.418	8.16	104.7	82.56
(1050)	0.546(8)	0.447(6)	8.31(5)	103.4(3)	82.57(25)
1.59	0.580	0.461	8.45	105.6	83.22
(1235)	0.726(9)	0.512(5)	8.67(3)	102.8543)	83.22(25)
2.38	0.740	0.524	8.77	104.4	83.61
(1420)	0.762(6)	0.537(3)	8.82(3)	105.0(3)	83.78(25)
10.22	0.756	0.533	8.85	105.0	83.76
(1600)	0.679(5)	0.531(4)	8.80(3)	106.4(3)	83.75(25)
4.25	0.677	0.506	8.79	105.6	83.25
(1780)	0.647(30)	0.471(24)	8.93(9)	105.5(6)	82.85(37)
0.30	0.632	0.492	8.89	105.8	82.60
(1950)	0.593(51)	0.407(38)	8.89(20)	103.7(1.0)	81.95(86)
0.09	0.665	0.504	8.84	105.9	51.45
(2060)	0.726(48)	0.445(37)	9.12(16)	106.5(1.1)	83.01(76)
0.12	0.696	0.514	9.01	105.1	82.80
ndarch (EH3-4)	ı	1		ı	1
(325)	0.623(53)	0.494(43)	8.80(15)	108.2(1.3)	83.22(79)
0.14	0.684	0.495	8.90	102.1	82.02
(525)	0.729(30)	0.478(27)	9.25(15)	110.5(7)	82.75(77)
0.37	0.731	0.517	8.96	103.0	82.64
(720)	0.715(27)	0.506(20)	9.27(10)	111.8(6)	83.23(56)
0.51	0.765	0.535	8.84	104.3	83.78
(910)	0.716(17)	0.497(17)	9.05(10)	110.9(8)	83.40(31)
0.49	0.790	0.545	9.00	104.5	83.64
(1100)	0.775(23)	0.533(17)	8.99(6)	107.7(3)	83.58(43)
0.74	0.817	0.568	9.19	104.2	84.28
(1285)	0.785(10)	0.560(7)	9.03(4)	105.3(3)	84.12(25)
2.83	0.826	0.567	9.19	106.1	84.1
(1465)	0.805(9)	0.559(3)	9.05(3)	106.5(3)	84.15(25)
10.52	0.817	0.565	9.12	106.7	84.33
(1645)	0.760(4)	0.551(3)	9.09(3)	107.3(3)	83.96(25)
12.17	0.766	0.552	9.13	108.1	84.15
(1820)	0.728(14)	0.508(10)	9.22(3)	105.9(3)	82.43(25)
1.81	0.722	0.533	9.27	106.8	82.97
1.01	···	3.222	, . <u></u> ,	99.9(7)	~,,

(<i>T</i> , °C), ¹³² Xe	$\frac{^{124}\text{Xe}}{^{132}\text{Xe}}$	$\frac{^{126}\text{Xe}}{^{132}\text{Xe}}$	$\frac{^{128}\mathrm{Xe}}{^{132}\mathrm{Xe}}$	$\frac{^{129}\text{Xe}}{^{132}\text{Xe}}$	$\frac{^{131}Xe}{^{132}Xe}$
0.70	0.693	0.514	10.00	102.5	79.72
(2150)	0.675(24)	0.422(19)	9.52(9)	101.8(6)	79.59(39)
0.63	0.713	0.521	9.66	103.5	81.01

Таблица 3. Окончание

водом о единой смеси избытков легких и тяжелых изотопов в Xe-HL (Huss, Lewis, 1994b).

3. Вычисленное отношение ¹²⁹Хе/¹³²Хе значительно ниже измеренного в наноалмазе Tieschitz. Это занижение обусловлено наиболее вероятно тем, что мы не учитывали ¹²⁹Хе, образованный в результате радиоактивного распада ¹²⁹І в зернах наноалмаза и сохранность йода в зависимости от степени метаморфизма родительских тел метеоритов (см., например, Fisenko, Semjonova, 2008; Gilmour и др., 2016).

Содержания компонентов и изотопные отношения ксенона, выделенные при ступенчатом пиролизе наноалмаза метеоритов

Гистограммы дифференциальных выделений ¹³²Хе основных компонентов в зависимости от температуры пиролиза, полученных по данным в табл. 2 и результатам вычислений для наноалмаза Tieschitz, приведены на рис. 2.

Из данных на рис. 2 видно следующее:

(А) При вычислениях с компонентом Хе-рг выделение значительного количества низкотемпературного Xe-P3 (<1000°C) из наноалмаза наименее термально метаморфизованного метеорита Orgueil (CI) сохраняется. Но при этом наблюдается также высокотемпературное выделение Xe-P3(fr) для наноалмаза всех трех метеоритов, независимо от петрологического типа. Кроме этого, для наноалмаза Orgueil видно существенное выделение низкотемпературного (<1000°C) Хе-Рб. "Следы" такого Хе-Р6 можно видеть для наноалмаза Тіeschitz, но он отсутствует в наноалмазе Indarch. Подобие кинетики выделения низкотемпературных Хе-Р3 и Хе-Р6 обусловлено, вероятно, одинаковыми положениями атомов Хе этих компонент в кристаллической структуре зерен алмаза.

(Б) Температуры максимумов выделения Xe-P3(fr) подобны таковым для Xe-pr при пиролизе наноалмаза всех метеоритов. Из этого подобия может следовать, что имеется одна (или две, но с равной термостабильностью) популяция зерен наноалмаза, содержащая благородные газы P3 и компонентов pr. В этом случае при смешении этих компонентов изотопный состав ксенона должен быть

одинаковым для наноалмаза всех метеоритов при температуре пиролиза выше 1000°С. Этого, однако, не наблюдается, что видно, например, по изменяющейся величине отношения ¹³⁶Хе/¹³²Хе (рис. 3).

Как видно, средневзвешенное отношение 136 Хе $^{/132}$ Хе vвеличивается от 0.626 до 0.735 при переходе от слабо термально метаморфизованного метеорита Orgueil (CI) к сильно метаморфизованному Indarch (ЕН3-4). Следовательно, разрушение популяции зерен наноалмаза с благородными газами Р3 компонента при термальном метаморфизме родительских тел метеоритов происходило в большей степени, чем с компонентом рг. Это различие показывает, что благородные газы этих компонентов содержатся в индивидуальных популяциях зерен алмаза с разной термо-окислительной стабильностью. Отметим, что более высокая величина отношения ¹³⁶Хе/¹³²Хе, особенно для алмаза Tieschitz, в начале высокотемпературной области пиролиза наноалмазов (рис. 3) также свидетельствует о разной термостабильности зерен наноалмаза с ксеноном компонентов Р3 и рг. Сравнение вычисленных изотопных отношений ксенона с измеренными при ступенчатом пиролизе наноалмаза метеоритов Orgueil, Tieschitz и Indarch проведено только для $^{124-129, 131}$ Xe/ 132 Xe отношений. Остальные отношения Хе были ис-

Таблица 4. Содержания компонентов Xe (в %) от общего Xe в наноалмазе метеоритов 1

<i>Xe-P3</i> , Xe-P3(fr)	<i>Xe-HL</i> Xe-pr	Xe-P6	Xe-S					
Orgueil (CI)								
65.6	31.8	2.5	0.1					
89.8	5.4	4.8	0.1					
Tieschitz (H3.6)								
4.2	85.9	9.7	0.1					
73.4	14.5	11.9	0.1					
Indarch (EH3-4)								
0.7	87.1	12.0	0.3					
65.9	14.8	19.1	0.2					

¹ Обычный шрифт – с компонентом Хе-рг. Курсив – по данным (Huss, Lewis, 1994b).

Рис. 2. Гистограммы дифференциальных выделений 132 Xe (в 10^{-10} см 3 /г/ $^{\circ}$ C) компонент ксенона по данным этой работы (жирные линии) и Huss, Lewis (1994b) (тонкие линии с символами).

пользованы в уравнениях (см. выше) и они в большинстве случаях равны измеренным значениям в пределах $\pm \sigma$, как это можно видеть по данным в табл. 2 для наноалмазов Orgueil и Indarch. Гистограммы отклонений (в ‰) вычисленных отношений $^{124-129,\ 131}$ Xe/ 132 Xe от измеренных в зависимости от интегрального выхода 132 Xe для наноалмаза метеоритов показаны на рис. 4. На рисунке показаны также гистограммы, полученные нами по данным в (Huss, Lewis, 1994a).

Заметим, что в некоторых гистограммах не приведены начальные и/или конечные ступени выделения Хе из-за значительных относительных погрешностей измеренных изотопных отношений ксенона. Из приведенных гистограмм следует, что:

(В) Для наноалмаза Orgueil вычисленные изотопные отношения Xe, особенно при использовании компонента Xe-pr, существенно выше изме-

ренных в интервале 63-70% выделения ¹³²Хе. Температура выделения Хе в этом интервале равна 925-1230°С и она соответствует температуре начала интенсивной графитизации зерен наноалмаза. Для наноалмазов Tieschitz и Indarch также наблюдаются повышенные вычисленные значения некоторых изотопных отношений Хе на начальных стадиях выделения основного количества ксенона, начинающегося с температуры пиролиза около 950°С. Возможно, что графитизирующиеся при этих температурах зерна алмаза, например, наиболее мелкие и/или с дефектной кристаллической структурой, обеднены легкими изотопами Хе относительно тяжелых. Связано ли это обеднение, например, с диффузионными потерями легких изотопов Хе и/или с масс-фракционированием при имплантации компонента Хе-рг – открытый вопрос.

(Г) Гистограммы отклонений вычисленных изотопных отношений Хе по данным этой работы

Рис. 3. Изменения отношений 136 Хе/ 132 Хе для смеси компонентов Xe-pr и Xe-P3(fr). Обозначения: I — Orgueil (CI), 2 — Tieschitz (H3.6), 3 — Indarch (EH3-4). Пунктирные линии — средневзвешенные значения отношений 136 Хе/ 132 Хе.

и (Huss, Lewis, 1994a) от измеренных подобны между собой для наноалмаза таких разных по химическому классу и петрологическому типу метеоритов как Orgueil (CI), Tieschitz (H3.6) и Indarch (ЕН3-4). Это подобие показывает, что вычисленные содержания компонентов Хе при использовании Хе-рг или Хе-НL могут быть реальными содержаниями в алмазах этих метеоритов в равной степени. Подчеркнем, однако, что эти компонентные составы Хе, как показано выше (см. табл. 4), существенно различаются относительными содержаниями компонентов Хе.

(Д) Вычисленные отношения ¹²⁹Хе/¹³²Хе значительно ниже измеренных в наноалмазе всех метеоритов, причем на начальных стадиях выделения ксенона. Вероятно, радиоактивный ¹²⁹І, предшественник избыточного ¹²⁹Хе, содержался, в основном, в поверхностной области зерен наноалмаза.

ЗАКЛЮЧЕНИЕ

Впервые определены содержания основных компонентов ксенона — Xe-P3, Xe-P3(fr), Xe-P6 и компонента Xe-pr вместо Xe-HL, используя данные Huss, Lewis (1994а) для ксенона в наноалмазе таких метеоритов как Orgueil (CI), Tieschitz (H3.6) и Indarch (EH3-4). Компонент Xe-pr — это избыточная доля изотопов Xe в Xe-HL относительно Xe-P3(fr) и в основном состоит из изотопов ^{124, 126, 134, 136}Xe, образующихся в p- и r-процессах нуклеосинтеза при взрыве сверхновой II типа. Анализ вычисленных содержаний компонентов и

изотопных отношений ксенона показал следую-шее.

- 1. Основным компонентом Хе в наноалмазе метеоритов является Xe-P3(fr) и температура максимума его выделения, как и компонентов Xe-pr, Xe-P6, выше 1100°С, независимо от петрологического типа метеоритов. Вычисления для наноалмаза Orgueil показали наличие относительно низкотемпературного Xe-P6 (<1000°С). Отсутствие такого Xe-P6 в алмазе термально метаморфизованного метеорита Indarch (EH3-4) является основанием для предположения о подобии процесса(ов) захвата благородных газов компонентов P6 и P3 зернами наноалмаза.
- 2. Относительные содержания Хе-рг в наноалмазе метеоритов находятся в интервале 5—15% от общего содержания ксенона в алмазе каждого из метеоритов. Этот интервал существенно меньше такового для Хе-HL (32—87%) по данным в (Huss, Lewis, 1994b). Следовательно, при использовании компонента Хе-рг масса зерен наноалмаза с благородными газами компонентов РЗ(fr) и Р6 также будет существенно больше массы зерен с компонентом рг, если концентрации атомов ксенона в зернах наноалмаза одинаковы для всех его компонентов.
- 3. Для смеси Xe-pr с Xe-P3(fr) средневзвешенные значения отношения ¹³⁶Xe/¹³²Xe в высокотемпературной области пиролиза наноалмазов Orgueil (CI), Tieschitz (H3.6) и Indarch (EH3-4) находятся в ряду 0.626, 0.690 и 0.735, соответственно. Увеличение отношения ¹³⁶Xe/¹³²Xe с увеличением температуры метаморфизма этих метеоритов (в °C: 100, 460 и 630, соответственно (Huss, Lewis, 1994b)) указывает на то, что ксенон компонентов, по крайней мере, рг и Р3, содержится в индивидуальных популяциях зерен алмаза с разной термо-окислительной стабильностью.
- 4. Изотопные отношения $^{124-128, 131}$ Xe/ 132 Xe и $^{130-136}$ Xe/ 132 Xe для всего Xe в наноалмазе, вычисленные на основании полученных содержаний компонентов ксенона с Xe-pr, равны измеренным в пределах ± 18 и $\pm 4\%$, соответственно.
- 5. Отклонения изотопных отношений Хе, полученных при использовании в расчетах Хе-рг и Хе-НL, от измеренных в основном сопоставимы между собой. Следовательно, содержания компонентов Хе в наноалмазе метеоритов, вычисленные с компонентами Хе-рг или Хе-НL, могут быть реальными в равной степени, При этом, однако, относительные содержания компонентов ксенона существенно различны между собой, что необходимо иметь в виду при разработках моделей образования популяций зерен наноалмаза с разными компонентами благородных газов.

Рис. 4. Отклонения вычисленных изотопных отношений ксенона от измеренных при выделении ¹³²Хе из наноалмазов Orgueil, Tieschitz и Indarch (левая, средняя и правая колонки, соответственно) по данным этой работы (жирные линии) и Huss, Lewis (1994a) (тонкие линии). Погрешности (±σ) обусловлены ошибками измерений.

Полученные нами и в статье (Huss, Lewis, 1994b) данные о содержаниях и кинетике выделения компонентов ксенона в наноалмазе метеоритов при использовании изотопных составов Хе-рг и Хе-HL, соответственно, наиболее вероятно показывают предельные их значения. Косвенным критерием выбора реальных свойств компонентов ксенона в настоящее время могут быть результаты анализов изотопного состава углерода во фракциях зерен наноалмаза метеорита Allende (Lewis и др., 2019). Согласно этим результатам доля зерен наноалмаза, обогащенных изотопом ¹³С и

образованных, вероятно, при взрыве сверхновой II типа, от всего наноалмаза в этом метеорите должна быть менее 1%. Поэтому реальные свойства компонентов Хе в наноалмазе метеоритов наиболее вероятно подобны полученным при использовании в расчетах Хе-рг из-за существенно меньшего его относительного содержания по сравнению с компонентом Хе-HL.

СПИСОК ЛИТЕРАТУРЫ

Clayton D.D. Of origin of heavy xenon in meteoritic diamonds // Astrophys. J. 1989. V. 340. P. 613–619.

- *Fisenko A.V., Semjonova L.F.* About ¹²⁹Xe* in meteoritic nanodiamonds // Geochim. et Cosmochim. Acta. 2008. V. 72. P. 4177–4183.
- Gilmour J.D., Holland G., Verchovsky A.B., Fisenko A.V., Crowther S.A., Turner G. Xenon and iodine reveal multiple distinct exotic xenon components in Efremovka "nanodiamonds" // Geochim. et Cosmochim. Acta. 2016. V. 177. P. 78–93.
- Heymann D., Dziczkaniec M. Xenon from intermediate zones of supernovae // Proc. 10th Lunar and Planet. Sci. Conf. Houston. 1979. P. 1943–1959.
- Howard W.M., Meyer B.S., Clayton D.D. Heavy-element abundances from a neutron burst that produces Xe-H // Meteoritics. 1992. V. 27. P. 404–412.
- Huss G.R., Lewis R.S. Noble gases in presolar diamonds I: Three distinct component and their implication for diamond origins // Meteoritics. 1994a. V. 29. P. 791–810.
- Huss G.R., Lewis R.S. Noble gases in presolar diamonds II: Component abundances reflect thermal processing // Meteoritics. 1994b. V. 29. P. 811–829.

- Huss G.R., Ott U., Koscheev A.P. Noble gases in presolar diamonds III: implantation experiments with synthetic nanodiamonds // Meteorit. and Planet. Sci. 2008. V. 43. P. 1811–1826.
- Lewis R.S., Amari S.A., Anders E. Interstellar grains in meteorites. II. SiC and its noble gases // Geochim. et Cosmochim. Acta. 1994. V. 58. P. 471–494.
- Lewis J.B., Floss C., Isheim D., Daulton T.L., Seidman D.N., Ogliore R. Origins of meteoritic nanodiamonds investigated by coordinated atom-prob tomography and transmission electron microscopy studies // Meteorit. and Planet. Sci. 2019. P. 1–22.
- Ott U. Interstellar diamond xenon and time scales of supernova ejecta // Astrophys. J. 1996. V. 463. P. 344–348.
- Rayet M., Arnold M., Hashimoto M., Prantzos N., Nomoto K. The p-process in type II supernovae // Astron. and Astrophys. 1995. V. 298. P. 517–527.
- Thielemann F.K., Eichler M., Panov I.V., Wehmeyer B. Neutron star mergers and nucleosynthesis of heavy elements // Science. 2017. V. 67. P. 253–274.