© 2020 г. А.В. БОРИСОВ, д-р физ.-мат. наук (ABorisov@frccsc.ru) (Институт проблем информатики ФИЦ ИУ РАН, Москва; Московский авиационный институт; Центр фундаментальной и прикладной математики МГУ)

Вторая часть статьи посвящена определению порядка точности различных численных схем реализации алгоритма фильтрации состояний марковских скачкообразных процессов по косвенным наблюдениям в присутствии винеровских шумов. Отдельно исследованы случаи аддитивных и мультипликативных шумов в наблюдениях: показано, что одни и те же схемы в этих случаях обеспечивают разную точность. Для наблюдений с аддитивными шумами предложены схемы реализации порядка $\frac{1}{2}$, 1 и 2, а для наблюдений с мультипликативными шумами — порядка 1 и 2. Представленные теоретические результаты проиллюстрированы численными примерами.

Ключевые слова: марковский скачкообразный процесс, устойчивая оценка, оценка максимума апостериорной вероятности, схема численного интегрирования.

DOI: 10.31857/S0005231020120028

1. Введение

Данная статья является продолжением [1]. В первой части поставлена и решена задача \mathcal{L}_1 -оптимальной фильтрации состояний марковских скачкообразных процессов (МСП) по непрерывным косвенным наблюдениям в присутствии винеровских шумов. Представлены точное решение этой задачи, а также класс алгоритмов его численной реализации. Точность вычисляемых оценок зависит от порядка выбранной аналитической аппроксимации и численной схемы ее реализации. В [1] представлены показатели точности численных реализаций оценок и доказаны утверждения, их описывающие.

Целью второй части статьи является вычисление показателей точности для аналитических аппроксимаций различного порядка и численных схем их реализации. Показатели точности анализируются отдельно для случаев наблюдений с аддитивными и мультипликативными шумами: в этих двух случаях они различны.

Статья организована следующим образом. В разделе 2 сформулирована задача \mathcal{L}_1 -оптимальной фильтрации, ее теоретическое решение, представлены аналитические аппроксимации и их численные реализации. Для точного

 $^{^1}$ Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований, проект № 19-07-00187 А.

и приближенного решения предложены показатели близости и сформулированы утверждения, их характеризующие.

В разделе 3 для случая наблюдений с аддитивными шумами рассмотрены различные схемы численной реализации. В качестве численных реализаций использовалась прямая дискретизация системы наблюдения, схемы «левых» и «средних» прямоугольников, а также квадратуры Гаусса. Использование *простых* (несоставных) схем численного интегрирования позволило получить аппроксимации оценок фильтрации порядка точности $\frac{1}{2}$, 1 и 2.

Раздел 4 посвящен исследованию точности приближенных схем при фильтрации состояний МСП по наблюдениям с мультипликативными шумами. В качестве численных реализаций вновь выступали схема «средних» прямоугольников и схема средних 2-го порядка. Показано, что простые схемы не могут быть использованы для построения аппроксимаций и следует использовать соответствующие составные схемы с дополнительным дроблением области интегрирования. В итоге получены численные алгоритмы фильтрации общего порядка точности 1 и 2.

Раздел 5 содержит иллюстративные примеры применения различных численных схем для фильтрации состояний МСП по наблюдениям с аддитивными и мультипликативными шумами. В разделе 6 представлены заключительные выводы и направления дальнейших исследований.

2. Необходимые сведения об аналитическом и приближенном решении задачи фильтрации

На полном вероятностном пространстве с фильтрацией ($\Omega^X \times \Omega^W, \mathfrak{F}^X \times \mathfrak{F}^W, \mathbb{P}^X \times \mathbb{P}^W, \{\mathfrak{F}^X_t \times \mathfrak{F}^W_t\}_{t \ge 0}$) рассматривается стохастическая динамическая система

(2.1)
$$X_t = X_0 + \int_0^t \Lambda^\top X_s ds + \mu_s,$$

(2.2)
$$\mathcal{Y}_{r} = \int_{t_{r-1}}^{t_{r}} fX_{s}ds + \int_{t_{r-1}}^{t_{r}} \sum_{n=1}^{N} X_{s}^{n}g_{n}^{1/2}dW_{s}, \quad r \in \mathbb{N},$$

где

— $X_t \triangleq \operatorname{col} (X_t^1, \ldots, X_t^N) \in \mathbb{S}^N$ — ненаблюдаемое состояние системы, являющееся однородным МСП с конечным множеством состояний $\mathbb{S}^N \triangleq \{e_1, \ldots, e_N\}$ (\mathbb{S}^N — множество единичных векторов евклидова пространства \mathbb{R}^N), матрицей интенсивностей переходов Λ и начальным распределением π ;

 $-\mu_t \triangleq \operatorname{col}(\mu_t^1, \dots, \mu_t^N) \in \mathbb{R}^N - \mathcal{F}_t^X$ -согласованный мартингал;

— $\mathcal{Y}_r \triangleq \operatorname{col}(\mathcal{Y}_r^1, \ldots, \mathcal{Y}_r^M) \in \mathbb{R}^M$ – косвенные наблюдения, зашумленные \mathcal{F}_t -согласованным стандартным винеровским процессом $W_t \triangleq \operatorname{col}(W_t^1, \ldots, W_t^M) \in \mathbb{R}^M$; f – матрица плана наблюдений, а набор невырожденных симметричных матриц $\{g_n\}_{n=\overline{1,N}}$ характеризует интенсивности шумов в зависимости от

текущего состояния X_t ; наблюдения $\{\mathcal{Y}_r\}_r$ получены путем дискретизации по времени с постоянным шагом h соответствующих непрерывных наблюдений.

Неубывающее семейство σ -алгебр, порожденное последовательностью $\{\mathcal{Y}_r\}_{r\in\mathbb{N}}$, обозначено как $\mathcal{O}_r \triangleq \sigma\{\mathcal{Y}_\ell : 0 \leq \ell \leq r\}, \mathcal{O}_0 \triangleq \{\varnothing, \Omega\}.$

Задача \mathcal{L}_1 -оптимальной фильтрации состояния X по дискретным наблюдениям у заключается в нахождении такой оценки $\widehat{X}_r, r \in \mathbb{N}$ состояния МСП X_{rh} , что

(2.3)
$$\widehat{X}_r \in \operatorname{Argmin}_{\widetilde{X}_r \in \mathfrak{X}_r} \mathsf{E}\left\{ \| \widetilde{X}_r - X_{rh} \|_1 \right\},$$

где \mathfrak{X}_r – множество всех таких \mathfrak{O}_r -согласованных последовательностей $\{\widetilde{X}_r\}$ с конечным первым моментом, что

$$\sum_{n=1}^{N} \hat{X}_{r}^{n} \equiv 1 \quad \text{с вероятностью 1.}$$

Ниже в изложении будем использовать следующие обозначения:

$$-\mathcal{D} \triangleq \left\{ u = \operatorname{col}\left(u^{1}, \dots, u^{N}\right) : u_{n} \ge 0, \sum_{n=1}^{N} u^{n} = h \right\} - (N-1)$$
-мерный сим-

плекс в пространстве \mathbb{R}^M ;

 $-\Pi \triangleq \left\{ \pi = \operatorname{col}(\pi^1, \dots, \pi^N) : \pi_n \ge 0, \sum_{n=1}^N \pi^n = 1 \right\} -$ «вероятностный симплекс», множество возможных начальных распределений МСП π ;

 $-N_r^X$ – случайное число скачков состояния $X_t,$ произошедшее на отрезке времени $[t_{r-1},t_r],$

 $-\rho_r^{k,\ell,q}(du)$ – распределение вектора $X_{t_r}^\ell \mathbf{I}_{\{q\}}(N_r^X)\tau_r$ при условии $X_{t_{r-1}}=e_k$, т.е. для любого $\mathcal{G}\in\mathcal{B}(\mathbb{R}^M)$ верно равенство

$$\mathsf{E}\left\{\mathbf{I}_{\mathfrak{G}}(\tau_{r})\mathbf{I}_{\{q\}}(N_{r}^{X})X_{t_{r}}^{\ell}|X_{t_{r-1}}=e_{k}\right\}=\int_{\mathfrak{G}}\rho_{r}^{k,\ell,q}(du);$$

 $-\mathcal{N}(y,m,K) \triangleq (2\pi)^{-M/2} \det^{-1/2} K \exp\left\{-\frac{1}{2} \|y-m\|_{K^{-1}}^2\right\} - M$ -мерная плотность гауссовского распределения с математическим ожиданием m и невырожденной ковариационной матрицей K;

 $- \|\alpha\|_{K}^{2} \triangleq \alpha^{\top} K \alpha, \, \langle \alpha, \beta \rangle_{K} \triangleq \alpha^{\top} K \beta.$

Решение задачи фильтрации выражается через условное распределение состояния МСП относительно доступных наблюдений $\hat{x}_r \triangleq \mathsf{E} \{X_{t_r} | \mathcal{O}_r\}$ и совпадает с оценкой максимума апостериорной вероятности: $\hat{X}_r = e_{n^*}$, где $n^* \in \operatorname{Argmax}_{n=\overline{1,N}} \hat{x}_r^n$.

Условное распределение определяется рекуррентной процедурой

$$(2.4) \quad \widehat{x}_{r}^{j} = \frac{\sum_{k=1}^{N} \widehat{x}_{r-1}^{k} \sum_{q=0}^{\infty} \int \mathcal{N}\left(\mathcal{Y}_{r}, fu, \sum_{p=1}^{N} u^{p}g_{p}\right) \rho^{k,j,q}(du)}{\sum_{i,\ell=1}^{N} \widehat{x}_{r-1}^{i} \sum_{c=0}^{\infty} \int \mathcal{N}\left(\mathcal{Y}_{r}, fv, \sum_{n=1}^{N} v^{n}g_{n}\right) \rho^{i,\ell,c}(dv)}, \quad j = \overline{1, N}, \quad \widehat{x}_{0} = \pi.$$

Дробь в (2.4) содержит в числителе и знаменателе бесконечные суммы интегралов, не вычисляемые аналитически. Для компьютерной реализации данная рекурсия должна быть преобразована. На первом шаге преобразования оценка \hat{x}_r заменяется *аналитической аппроксимацией порядка s*: бесконечные суммы в числителе и знаменателе заменяются конечными, содержащими только s + 1 слагаемых:

$$(2.5) \ \overline{x}_{r}^{j}(s) = \frac{\sum\limits_{k=1}^{N} \overline{x}_{r-1}^{k}(s) \sum\limits_{q=0}^{s} \int \mathcal{N}\left(\mathcal{Y}_{r}, fu, \sum\limits_{p=1}^{N} u^{p}g_{p}\right) \rho^{k,j,q}(du)}{\sum\limits_{i,\ell=1}^{N} \overline{x}_{r-1}^{i}(s) \sum\limits_{c=0}^{s} \int \mathcal{N}\left(\mathcal{Y}_{r}, fv, \sum\limits_{n=1}^{N} v^{n}g_{n}\right) \rho^{i,\ell,c}(dv)}, \ j = \overline{1, N}, \ \widehat{x}_{0} = \pi.$$

Ограничение числа слагаемых означает, что в аппроксимации учитывается возможность не более чем *s* скачков оцениваемого состояния *X* на интервале дискретизации $[t_{r-1}, t_r]$. Рекурсия (2.5) представима в матричной форме

(2.6)
$$\overline{x}_r(s) = \left(\mathbf{1}\xi_r^\top \overline{x}_{r-1}(s)\right)^{-1} \xi_r^\top \overline{x}_{r-1}(s),$$

где

(2.7)
$$\xi_q^{kj} \triangleq \sum_{m=0}^s \int_{\mathcal{D}} \mathcal{N}\left(\mathcal{Y}_q, fu, \sum_{p=1}^N u^p g_p\right) \rho^{k,j,m}(du), \quad \xi_q \triangleq \|\xi_q^{kj}\|_{k,j=\overline{1,N}}.$$

На втором шаге преобразования интегралы ξ^{ij} (2.7) заменяются суммами

(2.8)
$$\xi^{ij}(y) \approx \psi^{ij}(y) \triangleq \sum_{\ell=1}^{L} \mathcal{N}\left(y, fw_{\ell}, \sum_{p=1}^{N} w_{\ell}^{p} g_{p}\right) \varrho_{\ell}^{ij}, \qquad \psi(y) \triangleq \|\psi^{ij}(y)\|_{i,j=\overline{1,N}},$$

определяемыми множеством пар $\left\{ (w_{\ell}, \varrho_{\ell}^{ij}) \right\}_{\ell=\overline{1,L}}$. Здесь $\varrho_{\ell}^{ij} \ge 0$ $(\ell = \overline{1,L})$ – веса:

(2.9)
$$\mathfrak{W} \triangleq \sum_{j=1}^{N} \sum_{\ell=1}^{L} \varrho_{\ell}^{ij} \leqslant 1,$$

а $w_{\ell} \triangleq \operatorname{col}(w_{\ell}^{1}, \ldots, w_{\ell}^{N}) \in \mathcal{D}$ – точки. Аналогично матрицам ξ_{q} строятся их аппроксимации $\psi_{q} \triangleq \|\psi^{ij}(\mathcal{Y}_{q})\|_{i,j=\overline{1,N}}$. В результате условное распределение \widehat{x}_{r} приближенно вычисляется с помощью рекуррентной процедуры

(2.10)
$$\widetilde{x}_r \triangleq \left(\mathbf{1}\psi_r^\top \widetilde{x}_{r-1}\right)^{-1} \psi_r^\top \widetilde{x}_{r-1}, \quad r \ge 1, \quad \widetilde{x}_0 = \pi.$$

Оценка \tilde{x}_r называется численной реализацией аналитической аппроксимации \overline{x}_r , соответствующей той или иной схеме численного интегрирования.

Оценки $\hat{x}_r, \overline{x}_r$ и \tilde{x}_r обладают свойством *устойчивости* [1]: их компоненты почти наверное неотрицательны и нормированы.

Если $\overline{\lambda} \triangleq \max_{n=\overline{1,N}} |\lambda_{nn}|$ и для схемы численного интегрирования верно неравенство

(2.11)
$$\max_{i=\overline{1,N}} \sum_{j=1}^{N} \int_{\mathbb{R}^M} |\psi^{ij}(y) - \xi^{ij}(y)| dy \leq \delta,$$

то расхождение \hat{x}_r и \tilde{x}_r характеризуется неравенством

(2.12)
$$\sup_{\pi \in \Pi} \mathsf{E}\Big\{\|\widehat{x}_r - \widetilde{x}_r\|_1\Big\} \leqslant 4\left[1 - \left(1 - \frac{(\overline{\lambda}h)^{s+1}}{(s+1)!}\right)^r\right] + 2r\mathfrak{W}^{r-1}\delta.$$

При фиксированном горизонте Tи уменьшении шага дискретизации $h\to 0$ это же неравенство приобретает асимптотический вид

(2.13)
$$\sup_{\pi \in \Pi} \mathsf{E}\Big\{\|\widehat{x}_{T/h} - \widetilde{x}_{T/h}\|_1\Big\} \leq 2T\left(2\overline{\lambda}\frac{(\overline{\lambda}h)^s}{(s+1)!} + \frac{\delta}{h}\right).$$

Ниже исследуются аппроксимации порядка s = 1 и s = 2. Для них с помощью обобщенной формулы полной вероятности легко получить вид интегралов (2.7), используемых в дальнейшем изложении:

(2.14)
$$\int_{\mathcal{D}} \mathcal{N}\left(\mathcal{Y}_{r}, fu, \sum_{p=1}^{N} u^{p} g_{p}\right) \rho^{k, j, 0}(du) = \delta_{kj} e^{\lambda_{kk} h} \mathcal{N}\left(\mathcal{Y}_{r}, h f^{k}, h g_{k}\right),$$

(2.15)
$$\int_{\mathcal{D}} \mathcal{N}\left(\mathcal{Y}_r, fu, \sum_{p=1}^N u^p g_p\right) \rho^{k,j,1}(du) =$$

$$= (1 - \delta_{kj})\lambda_{kj}e^{\lambda_{jj}h}\int_{0}^{h}e^{(\lambda_{kk} - \lambda_{jj})u}\mathcal{N}\Big(\mathcal{Y}_{r}, uf^{k} + (h - u)f^{j}, ug_{k} + (h - u)g_{j}\Big)du,$$

(2.16)

$$\int_{\mathcal{D}} \mathcal{N}\left(\mathcal{Y}_{r}, fu, \sum_{p=1}^{N} u^{p}g_{p}\right) \rho^{k,j,2}(du) = \sum_{\substack{i:i \neq k, \\ i \neq j}} \lambda_{ki}\lambda_{ij}e^{\lambda_{jj}h} \int_{0}^{h} \int_{0}^{h-u^{k}} e^{(\lambda_{kk}-\lambda_{ii})u+(\lambda_{ii}-\lambda_{jj})v} \times \\
\times \mathcal{N}\left(\mathcal{Y}_{r}, uf^{k}+vf^{i}+(h-u-v)f^{j}, ug_{k}+vg_{i}+(h-u-v)g_{j}\right) dvdu,$$

где $f^j - j$ -й столбец матрицы f.

В следующих разделах представлено исследование влияния точности различных схем вычисления интегралов в (2.15) и (2.16) на точность аппроксимации решений задач фильтрации состояний МСП с аддитивными и мультипликативными шумами в наблюдениях. Доказательства всех утверждений, сформулированных ниже, характеризующих это влияние, базируются на использовании неравенств (2.11), (2.13) и построены по единой схеме. На первом шаге доказательства величина $|\psi^{ij}(y) - \xi^{ij}(y)|$ оценивается сверху с использованием известных границ ошибок численного интегрирования [2]. Обычно эта оценка выражается через производные интеграндов. На втором шаге строится оценка сверху для интеграла в левой части (2.11). Эта операция является нетривиальной, так как выполняется в предположении малости шага h. Дело в том, что с уменьшением h как масштаба области интегрирования синхронно изменяется масштаб интеграндов, которые становятся близки к δ -функции Дирака. Данный факт соответствующим образом влияет и на производные интеграндов. В итоге порядок малости интеграла в правой части (2.11) оказывается ниже, чем порядок численной схемы [2] без условия асимптотической малости h. Основная проблема доказательств утверждений ниже заключается в определении, насколько изменится этот порядок малости.

3. Численные схемы фильтрации по наблюдениям с аддитивными шумами

3.1. Случай s = 1: дискретизация стохастической дифференциальной системы наблюдения и схема «левых прямоугольников»

В данном подразделе демонстрируется связь алгоритма (2.10) приближенной фильтрации состояния МСП по дискретизованным наблюдениям для случая s = 1 и алгоритма фильтрации состояний марковских цепей – процессов с дискретным временем – по дискретным наблюдениям.

На $(\Omega^x \times \Omega^w, \mathcal{F}^x \times \mathcal{F}^w, \mathsf{P}^x \times \mathsf{P}^w, \{\mathcal{F}^x_r \times \mathcal{F}^w_r\}_{r \in \mathbb{Z}_+})$ рассмотрим стохастическую систему наблюдения с дискретным временем

(3.1)
$$\begin{cases} x_r = P^{\top} x_{r-1} + m_r, \quad r \in \mathbb{N}, \quad x_0 \sim \pi, \\ y_r = F x_r + \sum_{n=1}^N x_r^n G_n^{1/2} w_n. \end{cases}$$

Здесь

 $-x_r \triangleq \operatorname{col}(x_r^1, \ldots, x_r^N)$ – ненаблюдаемая однородная марковская цепь со значениями в \mathbb{S}^N , с матрицей P переходных вероятностей на одном шаге и начальным распределением π ; $\{m_r\}_{r\in\mathbb{N}} - \mathcal{F}_r^x$ -согласованная мартингал-разность;

 $-y_r \triangleq \operatorname{col}(y_r^1, \ldots, y_r^M)$ – наблюдаемая последовательность, F – матрица плана наблюдения, а $\{G_n\}_{n=\overline{1,N}}$ являются условными матрицами ковариаций шумов в наблюдениях относительно текущего значения марковской цепи;

 $-w_r \triangleq \operatorname{col}(w_r^1, \ldots, w_r^M) - \mathcal{F}_r^w$ -согласованный стандартный гауссовский дискретный белый шум, не зависимый от $\{x_r\}$, представляющий ошибки наблюдений.

Задача фильтрации цепи x по наблюдениям y заключается в вычислении условного распределения $\hat{x}_r \triangleq \mathsf{E} \{x_r | y_1, \dots, y_r\}$. Решение ее известно [3]: оно

определяется следующей рекуррентной схемой вида «прогноз-коррекция»:

$$(3.2)$$
 $\widehat{x}_0 = \pi$ – начальное условие,

$$(3.3) \qquad \qquad \breve{x}_r = P^\top \widehat{x}_{r-1} - \operatorname{прогноз},$$

(3.4)
$$\widehat{x}_r = \frac{1}{\mathbf{1}\kappa_r \breve{x}_r} \kappa_r \breve{x}_r - \text{коррекция},$$

где

$$\kappa_r \triangleq \operatorname{diag} \left(\mathcal{N}(y_1, Fe_1, G_1), \dots, \mathcal{N}(y_N, Fe_N, G_N) \right).$$

Вернемся к системе наблюдения (2.1), (2.2) на сетке с шагом $h < \overline{\lambda}^{-1}$ и покажем, что на ней система может быть приближена некоторой системой с дискретным временем (3.1). Уравнение динамики (2.1) может быть дискретизовано точно: согласно разложению Ито–Тейлора [4]

(3.5)
$$X_{t_r} = \exp(h\Lambda^{\top})X_{t_{r-1}} + (\mu_{t_r} - \mu_{t_{r-1}}),$$

где

$$\exp(h\Lambda^{\top}) = I + h\Lambda^{\top} + O(h^2).$$

Из (2.2) также следует, что

(3.6)
$$Y_{t_r} = hfX_{t_r} + \sum_{n=1}^N X_{t_r}^n g_n^{1/2} (W_{t_r} - W_{t_{r-1}}) + \vartheta_r,$$

где стохастическая последовательность $\{\vartheta_r\}$ такова, что $\mathsf{E}\{\|\vartheta_r\|_2\} \leq Ch^{3/2}$ для любого $r \in \mathbb{N}$ и некоторой константы C > 0. Формулы (3.5) и (3.6) представляют схему временной дискретизации системы (2.1), (2.2), и к ней может быть применим алгоритм фильтрации (3.2)–(3.4) со следующими значениями параметров:

$$P = I + h\Lambda$$
, $F = hf$, $G_n = hg_n$, $j = \overline{1, N}$.

При этом рекурсия (3.3), (3.4) для данной системы записывается в форме

(3.7)
$$\widetilde{x}_r = \frac{1}{\mathbf{1}\kappa_r (I + h\Lambda^\top) \widetilde{x}_{r-1}} \kappa_r (I + h\Lambda^\top) \widetilde{x}_{r-1},$$

и ее можно рассматривать как один из видов численной схемы реализации аппроксимации порядка s = 1: элементы матрицы ξ имеют вид

(3.8)
$$\xi^{kj}(y) = \delta_{kj} e^{\lambda_{jj}h} \mathcal{N}\left(y, hf^j, hg_j\right) + (1 - \delta_{kj})\lambda_{kj} e^{\lambda_{jj}h} \int_0^h Q^{kj}(y, u) du,$$

где

(3.9)
$$Q^{kj}(y,u) \triangleq e^{(\lambda_{kk} - \lambda_{jj})u} \mathcal{N}\left(y, uf^k + (h-u)f^j, ug_k + (h-u)g_j\right).$$

В рекуррентной процедуре (3.7) элементы ξ^{kj} аппроксимированы функциями

(3.10)
$$\psi^{kj}(y) = (\delta_{kj} + h\lambda_{kj}) \mathcal{N}\left(y, hf^j, hg_j\right).$$

Следующее утверждение определяет показатель точности численной схемы (3.7).

 Π емма 1. В случае фильтрации состояний МСП по наблюдениям с аддитивными шумами схема (3.7) обеспечивает глобальный порядок точности $\frac{1}{2}$, т.е. для любого T > 0 при достаточно малом шаге h > 0

(3.11)
$$\sup_{\pi \in \Pi} \mathsf{E}\Big\{ \|\widetilde{x}_{T/h} - \widehat{x}_{T/h}\|_1 \Big\} \leqslant CTh^{\frac{1}{2}}$$

для некоторой константы C > 0.

Доказательство леммы 1 дано в Приложении. Предложенная реализация алгоритма фильтрации при выбранном порядке аналитической аппроксимации s = 1 имеет результирующий порядок точности $\frac{1}{2}$ из-за неэффективного выбора схемы численного интегрирования. Лемма 1 также позволяет получить следствие, согласно которому использование схемы «левых» прямоугольников для численного интегрирования сохранит результирующий порядок точности на уровне $\frac{1}{2}$.

Аппроксимируем интеграл (2.15) по отрезку [0, h] одноточечной схемой (2.8), используя значение интегранда $\mathcal{N}(\cdot)$ в левой точке, беря его с весом ρ^{kj} $(k \neq j)$:

(3.12)
$$\varrho^{kj} \triangleq \begin{cases} \lambda_{kj} \frac{e^{\lambda_{jj}h} - e^{\lambda_{kk}h}}{\lambda_{jj} - \lambda_{kk}}, & \text{если } \lambda_{jj} \neq \lambda_{kk}, \\ h\lambda_{kj} e^{\lambda_{jj}h}, & \text{если } \lambda_{jj} = \lambda_{kk}. \end{cases}$$

При этом схема «левых» прямоугольников вычисления интегралов в рекурсии (2.10) примет вид

(3.13)
$$\psi^{kj}(y) = \delta_{kj} e^{\lambda_{jj}h} \mathcal{N}\left(y, hf^j, hg_j\right) + (1 - \delta_{kj}) \varrho^{kj} \mathcal{N}\left(y, hf^j, hg_j\right).$$

Следствие 1. В случае фильтрации состояний МСП по наблюдениям с аддитивными шумами схема «левых» прямоугольников в рекурсии (2.10) обеспечивает глобальный порядок точности $\frac{1}{2}$.

Доказательство следствия 1 приведено в Приложении.

3.2. Случай s = 1: простая схема «средних» прямоугольников

Вычислим $\psi^{kj}(y)$ по формуле «средних» прямоугольников:

(3.14)

$$\psi^{kj}(y) = \delta_{kj} e^{\lambda_{jj}h} \mathcal{N}\left(y, hf^{j}, hg_{j}\right) + \left(1 - \delta_{kj}\right) \lambda_{kj} h e^{\frac{(\lambda_{kk} + \lambda_{jj})h}{2}} \mathcal{N}\left(y, \frac{h}{2}\left(f^{k} + f^{j}\right), \frac{h}{2}(g_{k} + g_{j})\right).$$

Лемма 2. В случае фильтрации состояний МСП по наблюдениям с аддитивными шумами схема (3.14) в рекурсии (2.10) обеспечивает глобальный порядок точности 1, т.е. для любого T > 0 при достаточно малом шаге h > 0

(3.15)
$$\sup_{\pi \in \Pi} \mathsf{E}\Big\{ \|\widetilde{x}_{T/h} - \widehat{x}_{T/h}\|_1 \Big\} \leqslant CTh^1$$

для некоторой константы C > 0.

Доказательство леммы 2 дано в Приложении.

Таким образом, заменой схемы численного интегрирования без увеличения вычислительных затрат возможно повысить общий порядок точности до первого. Дальнейшая фиксация порядка s = 1 и использование более точных методов численного интегрирования не приведет к значительному уточнению оценок, так как в суммарной погрешности основную роль будет играть ошибка аналитической аппроксимации, а не численного интегрирования. Для увеличения общей точности следует увеличить порядок аналитической аппроксимации до второго.

3.3. Случай s = 2: квадратуры Гаусса

Формулы (2.14)–(2.16) для s = 2 позволяют получить вид функций ξ^{kj} :

$$\xi^{kj}(y) = \delta_{kj} e^{\lambda_{jj}h} \mathcal{N}\left(y, hf^j, hg_j\right) + (1 - \delta_{kj})\lambda_{kj} e^{\lambda_{jj}h} \int_0^h Q^{kj}(y, u) du +$$

(3.16)

$$+\sum_{i:i\neq k,\;i\neq j}\lambda_{ki}\lambda_{ij}e^{\lambda_{jj}h}\int\limits_{0}^{h}\int\limits_{0}^{h-u}R^{kij}(y,u,v)dvdu,$$

где функция $Q^{kj}(y,u)$ определена формулой (3.9) и

(3.17)
$$R^{kij}(y,u,v) \triangleq e^{(\lambda_{kk}-\lambda_{ii})u+(\lambda_{ii}-\lambda_{jj})v} \times \\ \times \mathcal{N}\Big(y,uf^k+vf^i+(h-u-v)f^j,ug_k+vg_i+(h-u-v)g_j\Big).$$

Для вычисления одномерного интеграла в (3.16) будем использовать двухточечную квадратуру Гаусса

$$\int_{0}^{h} e^{(\lambda_{kk} - \lambda_{jj})u} \mathcal{N}\left(y, uf^{k} + (h - u)f^{j}, y, ug_{k} + (h - u)g_{j}\right) du =$$

$$= \frac{h}{2} \left[e^{(\lambda_{kk} - \lambda_{jj})\frac{(\sqrt{3} - 1)h}{2\sqrt{3}}} \mathcal{N}\left(y, \frac{(\sqrt{3} - 1)h}{2\sqrt{3}}f^{k} + \frac{(\sqrt{3} + 1)h}{2\sqrt{3}}f^{j}, \frac{(\sqrt{3} - 1)h}{2\sqrt{3}}g_{k} + \frac{(\sqrt{3} + 1)h}{2\sqrt{3}}g_{j}\right) + e^{(\lambda_{kk} - \lambda_{jj})\frac{(\sqrt{3} + 1)h}{2\sqrt{3}}} \mathcal{N}\left(y, \frac{(\sqrt{3} + 1)h}{2\sqrt{3}}f^{k} + \frac{(\sqrt{3} - 1)h}{2\sqrt{3}}f^{j}, \frac{(\sqrt{3} + 1)h}{2\sqrt{3}}g_{k} + \frac{(\sqrt{3} - 1)h}{2\sqrt{3}}g_{j}\right) \right] + \epsilon_{1}(y),$$

для повторного интеграла – трехточечную:

$$\int_{0}^{h} \int_{0}^{h-u} e^{(\lambda_{kk}-\lambda_{ii})u+(\lambda_{ii}-\lambda_{jj})v} \mathcal{N}\left(y, uf^{k}+vf^{i}+(h-u-v)f^{j}, ug_{k}+vg_{i}+(h-u-v)g_{j}\right) dvdu = \\ = \frac{h^{2}}{6} \left[e^{(\lambda_{kk}-\lambda_{ii})\frac{h}{6}+(\lambda_{ii}-\lambda_{jj})\frac{h}{6}} \mathcal{N}\left(y, \frac{h}{6}f^{k}+\frac{h}{6}f^{i}+\frac{2h}{3}f^{j}, \frac{h}{6}g_{k}+\frac{h}{6}g_{i}+\frac{2h}{3}g_{j}\right) + \\ + e^{(\lambda_{kk}-\lambda_{ii})\frac{2h}{3}+(\lambda_{ii}-\lambda_{jj})\frac{h}{6}} \mathcal{N}\left(y, \frac{h}{6}f^{k}+\frac{2h}{3}f^{i}+\frac{h}{6}f^{j}, \frac{h}{6}g_{k}+\frac{2h}{3}g_{i}+\frac{h}{6}g_{j}\right) + \\ + e^{(\lambda_{kk}-\lambda_{ii})\frac{h}{6}+(\lambda_{ii}-\lambda_{jj})\frac{2h}{3}} \mathcal{N}\left(y, \frac{2h}{3}f^{k}+\frac{h}{6}f^{i}+\frac{h}{6}f^{j}, \frac{2h}{3}g_{k}+\frac{h}{6}g_{i}+\frac{h}{6}g_{j}\right) \right] + \epsilon_{2}(y),$$

где
 $\epsilon_1(y)$ и $\epsilon_2(y)$ – ошибки интегрирования. Таким образом, интегр
алы в рекурсии (2.10)) вычисляются с помощью следующей схемы:

(3.18)
$$\psi^{kj}(y) = \delta_{kj} e^{\lambda_{jj}h} \mathcal{N}\left(y, hf^j, hg_j\right) + (1 - \delta_{kj}) \frac{\lambda_{kj} h e^{\lambda_{jj}h}}{2} \times$$

$$\times \left[e^{(\lambda_{kk} - \lambda_{jj})\frac{(\sqrt{3} - 1)h}{2\sqrt{3}}} \mathcal{N}\left(y, \frac{(\sqrt{3} - 1)h}{2\sqrt{3}}f^{k} + \frac{(\sqrt{3} + 1)h}{2\sqrt{3}}f^{j}, \frac{(\sqrt{3} - 1)h}{2\sqrt{3}}g_{k} + \frac{(\sqrt{3} + 1)h}{2\sqrt{3}}g_{j}\right) + \right. \\ \left. + e^{(\lambda_{kk} - \lambda_{jj})\frac{(\sqrt{3} + 1)h}{2\sqrt{3}}} \mathcal{N}\left(y, \frac{(\sqrt{3} + 1)h}{2\sqrt{3}}f^{k} + \frac{(\sqrt{3} - 1)h}{2\sqrt{3}}f^{j}, \frac{(\sqrt{3} + 1)h}{2\sqrt{3}}g_{k} + \frac{(\sqrt{3} - 1)h}{2\sqrt{3}}g_{j}\right) \right] + \\ \left. + \sum_{i:i \neq k, i \neq j} \frac{\lambda_{ki}\lambda_{ij}h^{2}e^{\lambda_{jj}h}}{6} \left[e^{(\lambda_{kk} - \lambda_{ii})\frac{h}{6} + (\lambda_{ii} - \lambda_{jj})\frac{h}{6}} \mathcal{N}\left(y, \frac{h}{6}f^{k} + \frac{h}{6}f^{i} + \frac{2h}{3}f^{j}, \frac{h}{6}g_{k} + \frac{h}{6}g_{i} + \frac{2h}{3}g_{j}\right) + \\ \left. + e^{(\lambda_{kk} - \lambda_{ii})\frac{2h}{3} + (\lambda_{ii} - \lambda_{jj})\frac{h}{6}} \mathcal{N}\left(y, \frac{h}{6}f^{k} + \frac{2h}{3}f^{i} + \frac{h}{6}f^{j}, \frac{h}{6}g_{k} + \frac{2h}{3}g_{i} + \frac{h}{6}g_{j}\right) + \\ \left. + e^{(\lambda_{kk} - \lambda_{ii})\frac{h}{6} + (\lambda_{ii} - \lambda_{jj})\frac{2h}{3}} \mathcal{N}\left(y, \frac{2h}{3}f^{k} + \frac{h}{6}f^{i} + \frac{h}{6}f^{j}, \frac{2h}{3}g_{k} + \frac{h}{6}g_{i} + \frac{h}{6}g_{j}\right) \right].$$

 Π емма 3. В случае фильтрации состояний МСП по наблюдениям с аддитивными шумами схема (3.18) в рекурсии (2.10) обеспечивает глобальный порядок точности 2, т.е. для любого T>0 при достаточно малом шаге h>0

(3.19)
$$\sup_{\pi \in \Pi} \mathsf{E}\left\{\|\widetilde{x}_{T/h} - \widehat{x}_{T/h}\|_1\right\} \leqslant CTh^2$$

для некоторой константы C > 0.

Доказательство леммы 3 дано в Приложении. Сравнивая схемы (3.14) и (3.18) можно сделать вывод, что увеличивая число операций в схеме примерно в N(N-1) раз удается повысить общий порядок точности аппроксимации до второго.

4. Численные схемы фильтрации по наблюдениям с мультипликативными шумами

Для простоты сравнения точности различных численных схем будем считать, что в (2.1), (2.2) f = 0, т.е. аддитивный полезный сигнал полностью отсутствует, и все матрицы $\{g_n\}_{n=\overline{1,N}}$ различны. Будет исследована точность тех же численных реализаций алгоритма фильтрации, которые исследовались в предыдущем разделе. Поэтому выполнение условия (2.9) ниже в данном разделе уже не проверяется.

Если все матрицы интенсивности шумов в наблюдениях различны, то оценка оптимальной фильтрации почти наверное совпадает с оцениваемым состоянием [6]. Несмотря на это многообещающее свойство, в разделе будет показано, что системы наблюдения с мультипликативными шумами обладают худшими свойствами для численной реализации, нежели системы с аддитивными шумами. Это означает, что одна и та же численная схема, примененная для фильтрации состояний по наблюдениям с мультипликативными шумами, позволяет получить менее точные оценки, чем при фильтрации состояний по наблюдениям с аддитивными шумами.

4.1. Случай s = 1: составная схема «средних» прямоугольников

Рассмотрим аналитическую аппроксимацию $\overline{x}_r(1)$, определенную (3.8), и ее аппроксимацию составной схемой «средних» прямоугольников с шагом дискретизации $h^{1+\alpha}$, $\alpha \ge 0$:

(4.1)

$$\psi^{kj}(y) = \delta_{kj} e^{\lambda_{jj}h} \mathcal{N}\left(y, hf^{j}, hg_{j}\right) + \left(1 - \delta_{kj}\right) \lambda_{kj} h^{1+\alpha} \sum_{i=1}^{\left[h^{-\alpha}\right]} Q^{kj}\left(y, h^{1+\alpha}\left(i - \frac{1}{2}\right)\right).$$

Легко проверить, что при $\alpha = 1$ последняя формула представляет простую схему «средних» прямоугольников.

Лемма 4. В случае фильтрации состояний МСП по наблюдениям с мультипликативными шумами схема (4.1) в рекурсии (2.10) обеспечивает глобальный порядок точности $p = \min(1, 2\alpha)$, т.е. для любого T > 0 при достаточно малом шаге h > 0

(4.2)
$$\sup_{\pi \in \Pi} \mathsf{E}\left\{ \|\widetilde{x}_{T/h} - \widehat{x}_{T/h}\|_1 \right\} \leqslant CTh^p$$

для некоторой константы C > 0.

Доказательство леммы 4 дано в Приложении. Из него следует, что точности *простого* метода «средних» прямоугольников недостаточно для построения численного алгоритма фильтрации любого положительного порядка точности. Какая-либо замена этой схемы на другую несоставную (например, на схему Симпсона, квадратуры Гаусса и пр.) к улучшению не приведут. Причиной этому является алгебраическая связь между порядком производной и степенью *h* в оценке ошибки интеграла по остатку ряда Тейлора. Из леммы также можно заключить, что при s = 1 рациональным выбором порядка шага дробления является $\alpha = \frac{1}{2}$.

4.2. Случай s = 2: составная схема средних

Результаты леммы 4 позволяют построить аппроксимацию элементов ξ^{kj} (3.16) порядка s = 2, вычисляя как одномерные, так и двумерные интегралы с помощью составной схемы средних с шагом h^2 :

(4.3)

$$\psi^{kj}(y) = \delta_{kj} e^{\lambda_{jj}h} \mathcal{N}\left(y, hf^{j}, hg_{j}\right) + \left(1 - \delta_{kj}\right) \lambda_{kj}h^{2} \sum_{i=1}^{[h^{-1}]} Q^{kj}\left(y, h^{2}(i - \frac{1}{2})\right) + \frac{h^{4}}{2} \sum_{\substack{i:i \neq k, \\ i \neq j}} \lambda_{ki} \lambda_{ij} e^{\lambda_{jj}h} \sum_{n=1}^{[h^{-1}]} \sum_{m=1}^{[h^{-1}]-n} R^{kij}\left(y, h^{2}\left(n - \frac{2}{3}\right), h^{2}\left(m - \frac{2}{3}\right)\right).$$

Следствие 2. В случае фильтрации состояний МСП по наблюдениям с мультипликативными шумами схема (4.3) в рекурсии (2.10) обеспечивает глобальный порядок точности 2, т.е. для любого T > 0 при достаточно малом шаге h > 0

(4.4)
$$\sup_{\pi \in \Pi} \mathsf{E}\left\{ \|\widetilde{x}_{T/h} - \widehat{x}_{T/h}\|_1 \right\} \leqslant CTh^2$$

для некоторой константы C > 0.

Доказательство следствия 2 приведено в Приложении.

5. Численные примеры

Численное сравнение точности представленных выше методов является нетривиальной задачей из-за сложности подбора подходящего примера. Во-первых, разница в точности, обеспечиваемой различными схемами, будет мала в случае, когда столбцы f^n или матрицы g_n для разных значений nблизки по значению между собой. Во-вторых, доказанные в [1] утверждения о порядке точности носят асимптотический характер при $h \rightarrow 0$: выбор слишком малого шага дискретизации может привести к тому, что вероятность превышения числом скачков состояния на отрезке дискретизации единицы окажется столь незначительной, что численные реализации высокого порядка будут практически не отличимы по точности от численных реализаций первого порядка. Наконец, в-третьих, характеристики точности того или иного метода приходится вычислять методом Монте-Карло, что приводит к необходимости моделирования пучков траекторий и оценок очень большого объема для визуального «разделения» этих характеристик.

5.1. Сравнительный анализ схем фильтрации по наблюдениям с аддитивными шумами

Для сравнительного анализа различных численных реализаций алгоритма фильтрации использовалась система наблюдения (2.1), (2.2) со следующими характеристиками: $t \in [0, 1]$, N = 3, h = 0.01,

$$\Lambda = \begin{bmatrix} -10,0 & 2,0 & 8,0\\ 8,0 & -10,0 & 2,0\\ 2,0 & 8,0 & -10,0 \end{bmatrix}, \quad \pi = \begin{bmatrix} 0,333\\ 0,333\\ 0,334 \end{bmatrix},$$
$$f = \begin{bmatrix} 0,0\\ -50,0\\ 50,0 \end{bmatrix}, \quad g_1 = g_2 = g_3 = 1,$$

объем пучка траекторий для метода Монте-Карло S = 100000.

На рис. 1 и 2 представлены графики $Q^{1,2}(y,u)$ и $Q^{1,3}(y,u)$ интеграндов в (2.15) как функций аргумента u для некоторых фиксированных значений y.

Рис. 1. Графики функци
и $Q^{1,2}(y,u)$ при некоторых фиксированных $y{:}$ ад
дитивные шумы в наблюдениях.

Рис. 2. Графики функци
и $Q^{1,3}(y,u)$ при некоторых фиксированных $y{:}$ ад
дитивные шумы в наблюдениях.

Рис. 3. Критерий точности при использовании различных схем численной реализации: аддитивные шумы в наблюдениях.

С помощью метода имитационного моделирования по пучку траекторий были вычислены выборочные значения критерия качества

$$\mathbf{I}(t) \triangleq \mathsf{E}\Big\{ \|\widehat{X}_t - X_t\|_1 \Big\}$$

для различных численных реализаций аналитических аппроксимаций:

$$I_k(t) \triangleq \frac{1}{S} \sum_{s=1}^{S} \| \widetilde{X}_t^{s,k} - X_t^s \|_1,$$

где X_t^s – значение *s*-й траектории состояния в момент времени $t, \tilde{X}_t^{s,k}$ – значение *s*-й траектории аппроксимации оценки, полученной применением *k*-й схемы реализации, в момент времени *t*. В данном эксперименте были вычислены характеристики точности следующих схем:

 $-I_1(t)$ – простая схема дискретизации стохастической дифференциальной системы наблюдения (порядок точности $\frac{1}{2}$),

— $I_2(t)$ – простая схема «левых» прямоугольников (порядок точности $\frac{1}{2}$),

— I₃(t) – простая схема «средних» прямоугольников (порядок точности 1),

 $-I_4(t)$ – простая схема квадратур Гаусса (порядок точности 2).

Их графики представлены на рис. 3. Полученные результаты вполне соответствуют теоретическим выкладкам. Характеристики $I_1(t)$ и $I_2(t)$ сопоставимы между собой, так как соответствуют численным реализациям одного порядка точности. Характеристика $I_3(t)$ меньше $I_1(t)$ и $I_2(t)$, так как порядок ее точности выше на $\frac{1}{2}$. Характеристика $I_4(t)$ значительно меньше $I_3(t)$, так как порядок ее точности выше на 1.

Примечательно, что для порядка s = 1 был проведен дополнительный расчет с использованием схемы адаптивного вычисления интеграла (2.15). Результат ее использования оказался визуально не отличимым от результата метода «средних» прямоугольников. При этом время вычисления оценок с использованием схемы адаптивного интегрирования значительно возросло.

5.2. Сравнительный анализ схем фильтрации по наблюдениям с мультипликативными шумами

Для сравнительного анализа различных численных реализаций алгоритма фильтрации использовалась система наблюдения (2.1), (2.2) со следующими характеристиками:

$$t \in [0,1], \quad N = 3, \quad h = 0,05, \quad \Lambda = \begin{bmatrix} -10,0 & 2,0 & 8,0\\ 8,0 & -10,0 & 2,0\\ 2,0 & 8,0 & -10,0 \end{bmatrix},$$
$$\pi = \begin{bmatrix} 0,333\\ 0,333\\ 0,334 \end{bmatrix}, \quad f = \begin{bmatrix} 0,0\\ 0,0\\ 0,0 \end{bmatrix}, \quad \begin{array}{c} g_1 = 1,0,\\ g_2 = 2,0,\\ g_3 = 3,0, \end{array}$$

объем пучка траекторий для метода Монте-Карло 100000.

На рис. 4 и 5 представлены графики $Q^{1,2}(y, u)$ и $Q^{1,3}(y, u)$ интеграндов в (2.15) как функций аргумента u для некоторых фиксированных значений y.

Рис. 4. Графики функци
и $Q^{1,2}(y,u)$ при некоторых фиксированных $y{:}$ мультипликативные шумы в наблюдениях.

Рис. 5. Графики функци
и $Q^{1,3}(y,u)$ при некоторых фиксированных yмультипликативные шумы в наблюдениях.

Рис. 6. Критерий точности при использовании различных схем численной реализации: мультипликативные шумы в наблюдениях.

Методом Монте-Карло были вычислены выборочные значения критерия качества I(t) для следующих численных схем:

— $I_5(t)$ – составная схема «средних» прямоугольников (порядок точности 1),

 $-I_6(t)$ – составная схема средних (порядок точности 2).

Их графики приведены на рис. 6. Полученные результаты соответствуют теоретическим выкладкам. Величина $I_6(t)$ меньше $I_5(t)$, так как порядок ее точности выше.

6. Заключение

Таблица содержит сводную информацию о порядке точности различных схем численных реализаций оценок фильтрации в зависимости от вида шума в наблюдениях: аддитивного или мультипликативного. Первое значение в ячейке означает порядок аналитической аппроксимации, второе – итоговый порядок точности, обеспечиваемый выбранной схемой численной реализации. Значение, взятое в скобки, означает, что детальный вывод итогового порядка в данной работе не приведен.

Анализируя данные в таблице, можно прийти к следующим заключениям.

В случае фильтрации с наблюдениями общего вида (снос в наблюдениях – ненулевой, матрицы интенсивности шумов – неодинаковы для разных состояний МСП) следует применять составные схемы вычисления интегралов. При этом схема должна быть наиболее экономичной с вычислительной

Вид шума	Диск-ция сист.		«Лев.» пр-ки		«Сред.» пр-ки		Кв. Гаусса	
Аддитив. шум	Прост.		Прост.		Прост.		Прост.	
	$1 \mid \frac{1}{2}$		$1 \mid \frac{1}{2}$		1 1		2 2	
Мультиплик. шум	Прост.	Сост.	Прост.	Coct.	Прост.	Сост.	Прост.	Coct.
	1 0	1 (1)	1 (0)	1 (1)	1 0	1 1	1 (0)	1 (2)
	_	_	_	_	1 (0)	2 2	_	_

Порядок точности различных схем реализации

точки зрения, а требуемая точность должна достигаться путем выбора подходящего дробного шага интегрирования, меньшего, чем шаг дискретизации по времени. В качестве такой схемы предлагается выбрать метод «средних» прямоугольников.

Судя по результатам численных экспериментов, при малых шагах дискретизации по времени, когда полученные асимптотические оценки порядка точности имеют место, разница в применении аналитической аппроксимации того или иного порядка незначительна. Поэтому выбор пары «порядок аналитической аппроксимации–численная схема» должен проводиться индивидуально для каждой конкретной задачи. В итоге должен быть достигнут компромисс между требованиями к точности получаемых оценок и к ограничениям на имеющиеся вычислительные ресурсы.

Построение алгоритмов численного решения задачи фильтрации марковских процессов по непрерывным наблюдениям с аддитивными/мультипликативными шумами нельзя считать законченным. Во-первых, при выводе порядка точности численных реализаций использовались достаточно консервативные неравенства – оценки сверху. Именно они привели к пессимистическому выводу о невозможности использования *простых* (несоставных) схем численного интегрирования для обработки наблюдений с мультипликативными шумами. Использование более «тонких» неравенств, возможно, позволит уточнить порядки точности тех или иных схем интегрирования. Во-вторых, полученные результаты делают возможным разработку численных методов решения задач фильтрации по непрерывным наблюдениям состояний марковских процессов более общего вида: общих МСП, диффузионных процессов и пр. В-третьих, открытым остается вопрос о величине расхождения оценок фильтрации по непрерывным и по дискретизованным наблюдениям. Все эти проблемы представляются перспективными для дальнейших исследований.

ПРИЛОЖЕНИЕ

 \mathcal{A} оказательство леммы 1. Первый сомножитель в (3.10) представляет собой вес ϱ^{kj} , при этом число точек в интегральной сумме L = 1. Из свойств матрицы интенсивности следует, что $\mathfrak{W} = \sum_{j=1}^{N} \varrho^{kj} = 1$. Далее в изложении будем использовать следующие обозначения: $\gamma^{kj}(y) \triangleq \psi^{kj}(y) - \xi^{kj}(y)$, $\gamma(y) \triangleq \|\gamma^{kj}(y)\|_{k,j=\overline{1,N}}$. Разность $\gamma^{kj}(y)$ с учетом того, что $g_k \equiv g$, может быть записана в виде

$$\gamma^{kj}(y) = \delta_{kj} \left(1 + \lambda_{jj}h - e^{\lambda_{jj}h} \right) \mathcal{N}(y, hf^j, hg) + \\ + (1 - \delta_{kj})\lambda_{kj}h \left(1 - e^{\lambda_{jj}h} \right) \mathcal{N}(y, hf^j, hg) + \\ + (1 - \delta_{kj})\lambda_{kj}e^{\lambda_{jj}h} \underbrace{\left(h\mathcal{N}(y, hf^j, hg) - \int\limits_{0}^{h} e^{(\lambda_{kk} - \lambda_{jj})u}\mathcal{N}(y, uf^k + (h - u)f^j, hg)du \right)}_{0}.$$

 $\triangleq \mathbb{J}^{kj}(y)$

Оценим сверху интеграл в правой части (2.11) с использованием формулы Тейлора первого и второго порядков:

$$\int_{\mathbb{R}^{M}} |\gamma^{kj}(y)| dy \leq \delta_{kj} \left(1 + \lambda_{jj}h - e^{\lambda_{jj}h} \right) + (1 - \delta_{kj})\lambda_{kj}h \left(1 - e^{\lambda_{jj}h} \right) + (1 - \delta_{kj})\lambda_{kj}e^{\lambda_{jj}h} \int_{\mathbb{R}^{M}} |\mathcal{I}^{kj}(y)| dy \leq K_{1}h^{2} + (1 - \delta_{kj})\lambda_{kj}e^{\lambda_{jj}h} \int_{\mathbb{R}^{M}} |\mathcal{I}^{kj}(y)| dy$$

для некоторой константы $K_1 > 0$. Разность $\mathcal{I}^{kj}(y)$ представляет собой ошибку численного интегрирования при использовании простой схемы «левых» прямоугольников и определяется следующим образом [2]:

$$\begin{aligned} \mathfrak{I}^{kj}(y) &= \frac{h^2}{2} \frac{d}{du} \left[e^{(\lambda_{kk} - \lambda_{jj})u} \mathfrak{N} \left(y, uf^k + (h-u)f^j, hg \right) \right] \Big|_{u=z} = \\ &= \frac{h^2}{2} e^{(\lambda_{kk} - \lambda_{jj})z} \mathfrak{N} \left(y, zf^k + (h-z)f^j, hg \right) \zeta_0(y, z), \end{aligned}$$

где $z=z(y)\in [0,h]$ – некоторый параметр, зависящий от y, и

(II.2)
$$\zeta_0(z) \triangleq \lambda_{kk} - \lambda_{jj} + \langle f^j, f^k - f^j \rangle_{g^{-1}} - \frac{z}{h} \|f^k - f^j\|_{g^{-1}}^2 + \frac{1}{h} \langle y, f^k - f^j \rangle_{g^{-1}}$$

Непосредственно интегрировать абсолютную величину \mathcal{J}^{kj} проблематично, так как $\int_{\mathbb{R}^M} |\mathcal{I}^{kj}(y)| dy = \int_{\mathbb{R}^M} |\mathcal{I}^{kj}(y, z^{kj}(y))| dy$, а зависимость $z^{kj}(y)$ в общем случае неизвестна. Поэтому предварительно оценим $|\mathcal{I}^{kj}|$ сверху. Прежде всего, можно непосредственно проверить истинность неравенства

(II.3)
$$\left\| y - z^{kj} f^k - \left(h - z^{kj}\right) f^j \right\|_{(hg)^{-1}}^2 \ge \\ \ge \left\| y \right\|_{(2hg)^{-1}}^2 - \left\| z^{kj} f^k + \left(h - z^{kj}\right) f^j \right\|_{(hg)^{-1}}^2$$

Отсюда следует, что

$$(\Pi.4) \qquad \frac{h^2}{2} e^{(\lambda_{kk} - \lambda_{jj})z} \mathcal{N}\left(y, z^{kj} f^k + \left(h - z^{kj}\right) f^j, hg\right) = \\ = \frac{h^2}{2} e^{(\lambda_{kk} - \lambda_{jj})z} (2\pi)^{-M/2} |hg|^{-1/2} \exp\left(-\frac{1}{2} \left\|y - z^{kj} f^k - \left(h - z^{kj}\right) f^j\right\|_{(hg)^{-1}}^2\right) \leqslant \\ \leqslant \frac{h^2}{2} e^{(\lambda_{kk} - \lambda_{jj})z} (2\pi)^{-M/2} |hg|^{-1/2} \exp\left(-\frac{1}{2} \left\|y\right\|_{(2hg)^{-1}}^2\right) \times \\ \times \exp\left(\frac{1}{2} \left\|z^{kj} f^k + \left(h - z^{kj}\right) f^j\right\|_{(hg)^{-1}}^2\right) \leqslant h^2 K_2 \mathcal{N}(y, 0, 2hg), \end{aligned}$$

где $K_2 > 0$ – некоторая константа. Тогда

$$\begin{aligned} (\Pi.5) & \int_{\mathbb{R}^{M}} |\mathcal{I}^{kj}(y)| dy \leqslant K_{2}h^{2} \int_{\mathbb{R}^{M}} \mathcal{N}(y,0,2hg) |\zeta_{0}(y,z)| dy \leqslant \\ & \leqslant K_{2}h^{2} \int_{\mathbb{R}^{M}} \left| \lambda_{kk} - \lambda_{jj} + \langle f^{j}, f^{k} - f^{j} \rangle_{g^{-1}} - \frac{z}{h} \left\| f^{k} - f^{j} \right\|_{g^{-1}}^{2} \right| \mathcal{N}(y,0,2hg) dy + \\ & + K_{2}h^{2} \int_{\mathbb{R}^{M}} \left| \frac{1}{h} \langle y, f^{k} - f^{j} \rangle_{g^{-1}} \right| \mathcal{N}(y,0,2hg) dy = \\ & = K_{2}h^{2} \int_{\mathbb{R}^{M}} \left| \lambda_{kk} - \lambda_{jj} + \langle f^{j}, f^{k} - f^{j} \rangle_{g^{-1}} - \frac{z}{h} \left\| f^{k} - f^{j} \right\|_{g^{-1}}^{2} \right| \mathcal{N}(y,0,2hg) dy + \\ & + \sqrt{2}K_{2}h^{\frac{3}{2}} \int_{\mathbb{R}^{M}} \left| \frac{1}{h} \left\langle y, g^{-\frac{1}{2}}(f^{k} - f^{j}) \right\rangle_{I} \right| \mathcal{N}(y,0,I) dy = K_{3}h^{2} + K_{4}h^{\frac{3}{2}} \end{aligned}$$

для некоторых неотрицательных констант K_3 и K_4 . Подставим эти неравенства в оценку интеграла абсолютной величины γ^{kj} :

$$\int_{\mathbb{R}^M} \left| \gamma^{kj}(y) \right| dy \leqslant K_1 h^2 + (1 - \delta_{kj}) \lambda_{kj} e^{\lambda_{jj} h} \left(K_3 h^2 + K_4 h^{\frac{3}{2}} \right) \leqslant K_5 h^{\frac{3}{2}}$$

с некоторой константой $K_5 > 0$. Условие (2.11) в этом случае приобретает форму

$$\max_{k=\overline{1,N}} \sum_{j=1}^{N} \int_{\mathbb{R}^{M}} |\gamma^{kj}(y)| dy \leq NK_5 h^{\frac{3}{2}},$$

а неравенство (2.13), характеризующее разницу условного распределения $\hat{x}_{T/h}$ и его аппроксимации первого порядка, реализованной с помощью дискретизации дифференциальной системы наблюдения, имеет вид

(II.6)
$$\sup_{\pi \in \Pi} \mathsf{E}\left\{ \|\widetilde{X}_{T/h} - \widehat{X}_{T/h}\|_1 \right\} \leqslant 2T\left(\overline{\lambda}^2 h + NK_5 h^{\frac{1}{2}}\right) \leqslant Ch^{\frac{1}{2}}$$

для некоторой константы C > 0.

Лемма 1 доказана.

Доказательство следствия 1. Оценим сначала величину \mathfrak{W} , предполагая для простоты, что $\lambda_{jj} \neq \lambda_{kk}$:

$$\mathfrak{W} = e^{\lambda_{kk}h} + \sum_{j:j\neq k} \varrho^{kj} \leqslant$$
$$\leqslant 1 + \lambda_{kk}h + \frac{\lambda_{kk}^2h^2}{2} + K_6h^3 + \sum_{j:j\neq k} \lambda_{kj} \frac{\lambda_{jj}h + \frac{\lambda_{jj}^2h^2}{2} - \lambda_{kk}h - \frac{\lambda_{kk}^2h^2}{2} + K_7h^3}{\lambda_{jj} - \lambda_{kk}} \leqslant$$

$$\leq 1 + \frac{\lambda_{kk}^2 h^2}{2} + \sum_{j:j \neq k} \lambda_{kj} h^2 \frac{\lambda_{jj}^2 - \lambda_{kk}^2}{2(\lambda_{jj} - \lambda_{kk})} + K_8 h^3 =$$
$$= 1 + \frac{\lambda_{kk}^2 h^2}{2} + \sum_{j:j \neq k} \frac{h^2 \lambda_{kj} (\lambda_{jj} + \lambda_{kk})}{2} + K_8 h^3 =$$
$$= 1 + \sum_{j:j \neq k} \frac{h^2 \lambda_{kj} \lambda_{jj}}{2} + K_8 h^3 \leq 1$$

для достаточно малых h и некоторых положительных констант K_6 , K_7 , и K_8 . Аналогичным образом можно показать, что $\mathfrak{W} \leq 1$ и при $\lambda_{kk} = \lambda_{jj}$. Далее, определим отклонение схемы (3.13) от эталона (3.8), учитывая, что $g_j \equiv g$:

$$\begin{split} \gamma^{kj}(y) &= \psi^{kj}(y) - \xi^{kj}(y) = \\ &= (1 - \delta_{kj}) \left(\varrho^{kj} \mathcal{N}(y, hf^j, hg) - \lambda_{kj} e^{\lambda_{jj}h} \int_0^h e^{(\lambda_{kk} - \lambda_{jj})u} \mathcal{N}\left(y, uf^k + (h - u)f^j, hg\right) du \right) = \\ &= (1 - \delta_{kj}) \left(\varrho^{kj} - \lambda_{kj} he^{\lambda_{jj}h} \right) \mathcal{N}(y, hf^j, hg) + \\ &+ (1 - \delta_{kj}) \lambda_{kj} e^{\lambda_{jj}h} \left(h \mathcal{N}(y, hf^j, hg) - \int_0^h e^{(\lambda_{kk} - \lambda_{jj})u} \mathcal{N}\left(y, uf^k + (h - u)f^j, hg\right) du \right) = \\ &= (1 - \delta_{kj}) \left(\varrho^{kj} - \lambda_{kj} he^{\lambda_{jj}h} \right) \mathcal{N}(y, hf^j, hg) + \\ &+ (1 - \delta_{kj}) \frac{\lambda_{kj}h^2}{2} e^{\lambda_{jj}h} \frac{d}{du} \left[e^{(\lambda_{kk} - \lambda_{jj})u} \mathcal{N}\left(y, uf^k + (h - u)f^j, hg\right) \right] \Big|_{u=z}, \end{split}$$

где $z = z(y) \in [0, h]$ – некоторый параметр, зависящий от y, и $\zeta_0(z)$ определено (П.2). Полностью повторяя выкладки (П.3)–(П.5), можно убедиться в справедливости неравенства (П.8) для схемы «левых» прямоугольников, которая также имеет порядок глобальной точности $\frac{1}{2}$. Следствие 1 доказано.

Доказательство леммы 2. Проверим для (3.14) выполнение условия (2.9), используя формулу Тейлора второго порядка и свойства матрицы интенсивности переходов Л:

$$\mathfrak{W} = \sum_{j,\ell} \varrho_{\ell}^{kj} = \sum_{j=1}^{N} \delta_{kj} e^{\lambda_{kk}h} + (1 - \delta_{kj})\lambda_{kj}he^{\frac{(\lambda_{kk} + \lambda_{jj})h}{2}} =$$
$$= 1 + \lambda_{kk}h + \frac{\lambda_{kk}^2h^2}{2} + C_{kk}(h)h^3 + \sum_{j:j \neq k}^{N} \lambda_{kj}h\left(1 + \lambda_{kj}h + \frac{\lambda_{kj}^2h^2}{2} + C_{kj}(h)h^3\right) =$$
$$= 1 + \frac{h^2}{2} \sum_{j:j \neq k}^{N} \lambda_{kj}\lambda_{jj} + C(h)h^3.$$

Здесь все функции $\{C_{kj}\}_{k,j}$ ограничены сверху константой $\frac{\max_k |\lambda_{kk}|^3}{6}$. Так как $\sum_{j:j\neq k}^N \lambda_{kj} \lambda_{jj} \leq 0$, то при достаточно малых h условие (2.9) выполнено: $\mathfrak{W} \leq 1$.

$$\begin{split} \gamma^{kj}(y) &= (1 - \delta_{kj}) \frac{\lambda_{kj}h^3}{24} e^{\lambda_{jj}h} \frac{d^2}{du^2} \left[e^{(\lambda_{kk} - \lambda_{jj})u} \mathcal{N}(y, uf^k + (h-u)f^j, hg) \right] \Big|_{u=z} = \\ &= (1 - \delta_{kj}) \frac{\lambda_{kj}h^2}{2} e^{\lambda_{jj}h} e^{(\lambda_{kk} - \lambda_{jj})z} \mathcal{N}\left(y, zf^k + (h-z)f^j, hg\right) [\zeta_0^2(y, z) - \zeta_1], \end{split}$$

где вновь $z = z(y) \in [0,h]$ – некоторый параметр, зависящий от y, а

(II.7)
$$\zeta_1(z) \triangleq \frac{\partial}{\partial z} \zeta_0(z) = \frac{1}{h} \|f^j - f^k\|_{g^{-1}}^2.$$

Выполняя выкладки, аналогичные (П.3)–(П.5), можно получить вариант условия (2.11) $\max_{k=\overline{1,N}} \sum_{j=1}^{N} \int_{\mathbb{R}^M} |\gamma^{kj}(y)| dy \leq NK_9 h^2$ и неравенства (2.13)

(II.8)
$$\sup_{\pi \in \Pi} \mathsf{E}\Big\{ \|\widetilde{x}_{T/h} - \widehat{x}_{T/h}\|_1 \Big\} \leqslant 2T \left(\overline{\lambda}^2 h + NK_{10}h\right) \leqslant CTh$$

для схемы интегрирования простых «средних» прямоугольников. В двух последних неравенствах K_9 , K_{10} и C – некоторые положительные константы. Лемма 2 доказана.

Доказательство леммы 3. Выполнение условия (2.9) доказывается аналогично, как и в леммах 1 и 2. Согласно [2] и с учетом того, что $g_n \equiv g$, абсолютные значения ошибок ограничены следующим образом:

(II.9)
$$|\epsilon_1(y)| \leq h^5 K_{11} \max_{u \in [0,h]} \left| \frac{\partial^4}{\partial u^4} \left[e^{(\lambda_{kk} - \lambda_{jj})u} \mathcal{N}\left(y, uf^k + (h-u)f^j, hg\right) \right] \right|,$$

$$(\Pi.10) \qquad \qquad |\epsilon_2(y)| \leqslant$$

$$\leqslant h^{5} K_{12} \max_{\substack{(u,v) \in \mathcal{D}, \\ k = 0,3}} \left| \frac{\partial^{3}}{\partial u^{k} \partial v^{3-k}} \left[e^{(\lambda_{kk} - \lambda_{ii})u + (\lambda_{ii} - \lambda_{jj})v} \mathcal{N}\left(y, uf^{k} + vf^{i} + (h - u - v)f^{j}, hg\right) \right] \right|,$$

где K_{11} и K_{12} – некоторые положительные константы.

Производная в (П.9) имеет вид

$$(\Pi.11) \qquad \qquad \frac{\partial^4}{\partial u^4} \left[e^{(\lambda_{kk} - \lambda_{jj})u} \mathcal{N}\left(y, uf^k + (h-u)f^j, hg\right) \right] = \\ = e^{(\lambda_{kk} - \lambda_{jj})u} \mathcal{N}\left(y, uf^k + (h-u)f^j, hg\right) \left(\zeta_0^4(u) + 6\zeta_0^2(u)\zeta_1(u) + 3\zeta_1^2(u)\right),$$

где ζ_0 и ζ_1 определены (П.2) и (П.7). Строя оценки сверху интеграла от абсолютного значения $e_1(y)$ подобно (П.5), можно получить неравенство $\int_{\mathbb{R}^M} |e_1(y)| dy \leqslant K_{13}h^3$, и аналогичная оценка для $|e_2(y)|$ имеет вид $\int_{\mathbb{R}^M} |e_2(y)| dy \leqslant K_{14}h^3$ для некоторых неотрицательных констант K_{13} и K_{14} . В этом случае неравенство (2.13) принимает вид $\sup_{\pi \in \Pi} \mathsf{E} \left\{ \| \widetilde{x}_{T/h} - \widehat{x}_{T/h} \|_1 \right\} \leqslant CTh^2$ для некоторой константы C > 0 и достаточно малого шага h. Лемма 3 доказана. Доказательство леммы 4. Сначала исследуем характеристики точности интегрирования простой схемы «средних» прямоугольников (т.е. $\alpha = 0$), а затем сделаем выводы на случай составного варианта данной схемы. Итак, с учетом того, что $f^j \equiv 0$,

$$\psi^{kj}(y) = \delta_{kj} e^{\lambda_{jj}h} \mathcal{N}(y, 0, hg_j) + (1 - \delta_{kj}) \lambda_{kj} h Q^{kj}\left(y, \frac{h}{2}\right).$$

При этом разность $\gamma^{kj}(y)=\psi^{kj}(y)-\xi^{kj}(y)$ представима в виде

$$\gamma^{kj}(y) = (1 - \delta_{kj})\lambda_{kj}e^{\lambda_{jj}h} \left[Q^{kj}\left(y, \frac{h}{2}\right) - \int_{0}^{h} Q^{kj}(y, u)du \right],$$

и согласно [2] для нее верно следующее равенство

$$\gamma^{kj}(y) = (1 - \delta_{kj}) \frac{\lambda_{kj} h^3 e^{\lambda_{jj} h}}{24} \frac{\partial^2}{\partial u^2} Q^{kj}(y, u) \Big|_{u=z} = (1 - \delta_{kj}) \frac{\lambda_{kj} h^3 e^{\lambda_{jj} h}}{24} Q^{kj}(y, z) \left[\eta_0^2(y, z) - \eta_1(y, z) \right],$$

где $z = z(y) \in [0,h]$ – параметр, зависящий от y,

(II.12)

$$\eta_0(y,z) \triangleq \lambda_{kk} - \lambda_{jj} - \frac{\frac{d}{dz}|zg_k + (h-z)g_j|}{2|zg_k + (h-z)g_j|} + \frac{1}{2}y^{\top}[zg_k + (h-z)g_j]^{-1}(g_k - g_j)[zg_k + (h-z)g_j]^{-1}y$$

И

$$(\Pi.13) \qquad \eta_1(y,z) \triangleq \\ \triangleq \frac{|zg_k + (h-z)g_j| \frac{d^2}{dz^2} |zg_k + (h-z)g_j| - (\frac{d}{dz} |zg_k + (h-z)g_j|)^2}{2|zg_k + (h-z)g_j|^2} + y^{\top} [zg_k + (h-z)g_j]^{-1} (g_k - g_j) [zg_k + (h-z)g_j]^{-1} (g_k - g_j) [zg_k + (h-z)g_j]^{-1} y$$

Предварительно оценим $|\gamma^{kj}|$ сверху. Свойства системы (2.2) гарантируют, что существуют такие симметрические матрицы g и G, что $0 < g \leq g_n \leq G$ для всех $n = \overline{1, N}$. Поэтому выполняется неравенство

(II.14)
$$Q^{kj}(y,u) \leqslant K_{15}\mathcal{N}(y,0,hg),$$

где

$$K_{15} = \frac{|G|}{|g|} \max_{\substack{k,j=\overline{1,N}:k\neq j\\u\in[0,h]}} e^{(\lambda_{kk}-\lambda_{jj})u}.$$

Из свойства определителей [5] следует, что

(II.15)
$$|zg_k + (h-z)g_j| = |z(g_k - g_j) + hg_j| = \sum_{n=0}^N z^n h^{N-n} G_{kjn},$$

где G_{kjn} – сумма всех определителей матриц, полученных из $u(g_k - g_j)$ путем замены n столбцов соответствующими столбцами hg_j . Отсюда следует, что

(II.16)
$$\frac{d}{dz}|zg_k + (h-z)g_j| = \sum_{n=1}^N nz^{n-1}h^{N-n}G_{kjn}.$$

Поэтому верно неравенство

$$\left|\frac{\frac{d}{dz}|zg_k + (h-z)g_j|}{2|zg_k + (h-z)g_j|}\right| = h^{-1} \left|\frac{\sum\limits_{n=1}^N n\left(\frac{u}{h}\right)^{n-1} G_{kjn}}{\sum\limits_{m=0}^N \left(\frac{u}{h}\right)^m G_{kjm}}\right| \leqslant \frac{K_{16}}{h}$$

для $K_{16} = \max_{\substack{k,j=1,N:\\k\neq j}} \frac{\sum_{n=1}^{N} n |G_{kjn}|}{2\min_{w\in[0,1]} |\sum_{m=0}^{N} G_{kjm} w^m|}$. Таким образом, для $|\eta_0|$ верна следующая оценка сверху:

(II.17)
$$|\eta_0| \leqslant K_{17} + \frac{K_{16}}{h} + \frac{K_{18}}{h^2} ||y||_I^2,$$

где $K_{17} = \max_{\substack{k,j=1,N:\\k\neq j}} |\lambda_{kk} - \lambda_{jj}|, K_{18} = \|g^{-1}Gg^{-1}\|_2^2$ – квадрат спектральной нормы матрицы. Заметим также, что $\int_{\mathbb{R}^M} \|y\|_I^2 \mathcal{N}(y,0,hg) dy = h \operatorname{tr}(g).$

Из (П.17) следует оценка сверху для квадрата ζ_0 :

(II.18)
$$\eta_0^2(y,u) \leqslant K_{21} + \frac{K_{22}}{h^2} \left(1 + \|y\|_I^2\right) + \frac{K_{23}}{h^3} \|y\|_I^2 + \frac{K_{24}}{h^4} \|y\|_I^4$$

с некоторыми положительными константами K_{21} , K_{22} , K_{23} и K_{24} . Используя (П.15) и (П.16), можно получить оценку абсолютного значения первого слагаемого в $\zeta_1(y, u)$:

$$\left| \frac{|zg_k + (h-z)g_j| \frac{d^2}{dz^2} |zg_k + (h-z)g_j| - \left(\frac{d}{dz} |zg_k + (h-z)g_j|\right)^2}{2|zg_k + (h-z)g_j|^2} \right| = \left| \frac{\sum\limits_{n=0}^N z^s h^{N-n} G_{kjn} \sum\limits_{m=2}^N m(m-1) z^{m-2} h^{N-m} G_{kjm} - \left(\sum\limits_{\ell=1}^N \ell z^{\ell-1} h^{N-\ell} G_{kj\ell}\right)^2}{2\left(\sum\limits_{s=0}^N z^s h^{N-s} G_{kjs}\right)^2} \right| = \frac{\left| \frac{\sum\limits_{n=0}^N z^s h^{N-n} G_{kjn} \sum\limits_{m=2}^N m(m-1) z^{m-2} h^{N-m} G_{kjm} - \left(\sum\limits_{\ell=1}^N \ell z^{\ell-1} h^{N-\ell} G_{kj\ell}\right)^2 \right|}{2\left(\sum\limits_{s=0}^N z^s h^{N-s} G_{kjs}\right)^2} \right| = \frac{\left| \frac{\sum\limits_{n=0}^N z^s h^{N-n} G_{kjn} \sum\limits_{m=2}^N m(m-1) z^{m-2} h^{N-m} G_{kjm} - \left(\sum\limits_{\ell=1}^N \ell z^{\ell-1} h^{N-\ell} G_{kj\ell}\right)^2 \right|}{2\left(\sum\limits_{s=0}^N z^s h^{N-s} G_{kjs}\right)^2} \right| = \frac{\left| \frac{\sum\limits_{n=0}^N z^s h^{N-n} G_{kjn} \sum\limits_{m=2}^N m(m-1) z^{m-2} h^{N-m} G_{kjm} - \left(\sum\limits_{\ell=1}^N \ell z^{\ell-1} h^{N-\ell} G_{kj\ell}\right)^2 \right|}{2\left(\sum\limits_{s=0}^N z^s h^{N-s} G_{kjs}\right)^2} \right| = \frac{\left| \frac{\sum\limits_{n=0}^N z^s h^{N-n} G_{kjn} \sum\limits_{m=2}^N m(m-1) z^{m-2} h^{N-m} G_{kjm} - \left(\sum\limits_{\ell=1}^N \ell z^{\ell-1} h^{N-\ell} G_{kj\ell}\right)^2 \right|}{2\left(\sum\limits_{s=0}^N z^s h^{N-s} G_{kjs}\right)^2} \right| = \frac{\left| \frac{\sum\limits_{m=0}^N z^s h^{N-n} G_{kjm} \sum\limits_{m=2}^N m(m-1) z^{m-2} h^{N-m} G_{kjm} - \left(\sum\limits_{\ell=1}^N \ell z^{\ell-1} h^{N-\ell} G_{kj\ell}\right)^2 \right|}{2\left(\sum\limits_{m=0}^N z^s h^{N-s} G_{kjs}\right)^2} \right| = \frac{\left| \frac{\sum\limits_{m=0}^N z^s h^{N-n} G_{kjm} \sum\limits_{m=2}^N m(m-1) z^m g_{km} - \left(\sum\limits_{m=0}^N \ell z^s h^{N-k} G_{kjm} - \left(\sum\limits_{m=0}^N \ell z^s h^{N-k} G_{kjm} - \left(\sum\limits_{m=0}^N \ell z^s h^{N-k} G_{kjm}\right)^2 \right|}{2\left(\sum\limits_{m=0}^N z^s h^{N-k} G_{kjm} - \left(\sum\limits_{m=0}^N \ell z^s h^{N-k} G_{kjm} - \left(\sum\limits_{$$

$$= \frac{1}{h^2} \left| \frac{\sum_{n=0}^{N} \left(\frac{z}{h}\right)^s G_{kjn} \sum_{m=2}^{N} m(m-1) \left(\frac{z}{h}\right)^{m-2} G_{kjm} - \left(\sum_{\ell=1}^{N} \ell \left(\frac{z}{h}\right)^{\ell-1} G_{kj\ell}\right)^2}{2 \left(\sum_{s=0}^{N} \left(\frac{z}{h}\right)^s G_{kjs}\right)^2} \right| \leqslant \frac{K_{25}}{h^2},$$

где $K_{25} = \max_{\substack{k,j=\overline{1,N}:\\k\neq j}} \frac{\sum_{n=0}^{N} |G_{kjn}| \sum_{m=2}^{N} m(m-1)|G_{kjm}| + (\sum_{\ell=1}^{N} \ell |G_{kj\ell}|)^2}{2\min_{w\in[0,1]} (\sum_{s=0}^{N} w^s G_{kjs})^2}$. Абсолютное значение второго слагаемого в $\zeta_1(y, u)$ также оценивается сверху:

$$y^{\top}[zg_{k} + (h-z)g_{j}]^{-1}(g_{k} - g_{j})[zg_{k} + (h-z)g_{j}]^{-1}(g_{k} - g_{j})[zg_{k} + (h-z)g_{j}]^{-1}y \leq \frac{K_{26}}{h^{3}}||y||_{I}^{2},$$

где $K_{26} = 4 \|g^{-1} G g^{-1} G g^{-1} \|_2^2.$

Используя все эти неравенства и связь между моментами 2-го и 4-го порядков гауссовского распределения, получаем следующий вариант неравенства (2.11):

$$\sum_{j=1}^{N} \int_{\mathbb{R}^{M}} |\gamma^{kj}(y)| dy \leq K_{27}h + K_{28}h^{2} + K_{29}h^{3}$$

для некоторых положительных констант K_{27} , K_{28} и K_{29} . Это значит, что $\int_{\mathbb{R}^M} |\gamma^{kj}(y)| dy = O(h)$, и согласно (2.13) $\sup_{\pi \in \Pi} \mathsf{E} \left\{ \| \widetilde{x}_{T/h} - \widehat{x}_{T/h} \|_1 \right\} = O(h^0).$

Используем для приближенного вычисления ξ^{kj} составную схему «средних» прямоугольников, разбив отрезок интегрирования [0,h] с шагом $h^{1+\alpha}$. В этом случае

$$\gamma^{kj}(y) = (1 - \delta_{kj}) \frac{\lambda_{kj} h^{3+2\alpha} e^{\lambda_{jj}h}}{24} \frac{\partial^2}{\partial u^2} Q_{kj}(y, u) \Big|_{u=z}.$$

Повторяя все предыдущие выводы этого доказательства для составной схемы «средних» прямоугольников, можно проверить, что она обеспечивает порядок точности $1 + 2\alpha$:

$$\sum_{j=1}^{N} \int_{\mathbb{R}^{M}} |\gamma^{kj}(y)| dy \leqslant NCh^{1+2\alpha},$$

и согласно (2.13) глобальный показатель точности имеет порядок $p = \min(1, 2\alpha)$:

$$\sup_{\pi\in\Pi}\mathsf{E}\left\{\|\widetilde{X}_{T/h}-\widehat{X}_{T/h}\|_1\right\}\leqslant CTh^p.$$

Лемма 4 доказана.

Доказательство следствия 2. Согласно (2.13) для сохранения второго порядка точности аналитической аппроксимации необходимо, чтобы локальная ошибка численного интегрирования на каждом шаге имела порядок не более $O(h^3)$. Составная схема «средних» прямоугольников, представленная в лемме 4, обеспечивает эту точность для вычисления одномерного интеграла – второго слагаемого в (3.16) – при выборе $\alpha = 1$. Выберем подходящую схему вычисления двойных интегралов по треугольнику, входящих в третье слагаемое (3.16). Прежде всего, определим величину ошибки приближения интеграла в (2.16) простым методом средних:

$$\lambda_{ki}\lambda_{ij}e^{\lambda_{jj}h}\int_{0}^{h}\int_{0}^{h-u}R^{kij}(y,u,v)dvdu = \frac{h^2}{2}\lambda_{ki}\lambda_{ij}e^{\lambda_{jj}h}R^{kij}\left(y,\frac{h}{3},\frac{h}{3}\right) + \lambda_{ki}\lambda_{ij}e^{\lambda_{jj}h}\int_{0}^{h}\int_{0}^{h-u}\chi_{2}^{kij}(y,u,v)dvdu,$$

где функция $\chi_2^{kij}(y,u,v)$ имеет вид

$$\chi_2^{kij}(y,u,v) \triangleq \frac{1}{2} \left(\left(z - \frac{h}{3} \right) \frac{\partial}{\partial z} + \left(w - \frac{h}{3} \right) \frac{\partial}{\partial w} \right)^2 R^{kij}(y,z,w) \bigg|_{(z(y,u),w(y,v))}$$

Согласно [2] для некоторой положительной константы K_{30} верно неравенство

$$\lambda_{ki}\lambda_{ij}e^{\lambda_{jj}h}\int_{0}^{h}\int_{0}^{h-u}\chi_{2}^{kij}(y,u,v)dvdu\leqslant h^{4}K_{30}\max_{\substack{\ell=0,1,2;\\(z,w)\in\mathcal{D}}}\left|\frac{\partial^{2}}{\partial z^{\ell}\partial w^{2-\ell}}\chi_{2}^{kij}(y,z,w)\right|.$$

В лемме 4 также оценивалась вторая производная, однако, от другой функции, Q^{kj} . Она содержала h^2 в знаменателе. Сравнивая Q^{kj} и R^{kij} , можно заключить, что вторая производная от R^{kij} также будет содержать h^2 в знаменателе, т.е. $\lambda_{ki}\lambda_{ij}e^{\lambda_{jj}h}\int_0^h\int_0^{h-u}\chi_2^{kij}(y,u,v)dvdu \leqslant h^2K_{31}$ для некоторой положительной константы K_{31} . Так как требуемый порядок точности – третий, то последнее равенство позволяет сделать вывод о том, что простой метод средних в данном случае нужной точности не обеспечивает.

Используем для вычисления двойного интеграла составной метод средних, разбив область интегрирования, прямоугольный треугольник с катетами длины h, на подобные треугольники с катетами h^2 . В этом случае

$$\lambda_{ki}\lambda_{ij}e^{\lambda_{jj}h}\int_{0}^{h}\int_{0}^{h-u}\chi_{2}^{kij}(y,u,v)dvdu\leqslant h^{4}K_{32}$$

для некоторой положительной константы K_{32} , и отсюда согласно (2.13) следует выполнение неравенства

$$\sup_{\pi \in \Pi} \mathsf{E}\left\{ \| \widetilde{X}_{T/h} - \widehat{X}_{T/h} \|_1 \right\} \leqslant CTh^2,$$

т.е. для численной реализации аппроксимации порядка s = 2 достаточно использования составных схем средних при вычислении одномерных и двойных интегралов с шагом дискретизации h^2 .

Следствие 2 доказано.

СПИСОК ЛИТЕРАТУРЫ

1. Борисов А.В. *L*₁-оптимальная фильтрация марковских скачкообразных процессов I: точное решение и численные схемы реализации // АиТ. 2020. № 11. С. 12–34.

Borisov A.V. \mathcal{L}_1 -Optimal Filtering of Markov Jump Processes I: Exact Solution and Numerical Realization Schemes // Autom. Remote Control. 2020. V. 81. No. 11.

- Isaacson E., Keller H. Analysis of Numerical Methods. N.Y.: Dover Publications, 1994.
- Elliott R.J., Aggoun L., Moore J.B. Hidden Markov Models: Estimation and Control. N.Y.: Springer, 2008.
- 4. *Kloeden P., Platen E.* Numerical solution of stochastic differential equations. Berlin: Springer, 1992.
- 5. *Magnus J., Neudecker H.* Matrix Differential Calculus with Applications in Statistics and Econometrics. N.Y.: Wiley, 2019.
- 6. Борисов А.В. Фильтрация Вонэма по наблюдениям с мультипликативными шумами // АиТ. 2018. № 1. С. 52–65.

Borisov A.V. Wonham filtering by observations with multiplicative noises // Autom. Remote Control. 2018. V. 79. No. 1. P. 39–50.

Статья представлена к публикации членом редколлегии А.И. Кибзуном.

Поступила в редакцию 02.03.2020

После доработки 25.05.2020

Принята к публикации 09.07.2020