© 2020 г. В.Н. БУРКОВ, д-р техн. наук (vlab17@bk.ru), И.В. БУРКОВА д-р техн. наук (irbur27@gmail.com) (Институт проблем управления им. В.А. Трапезникова, Москва), В.Г. ЗАСКАНОВ, д-р техн. наук (zaskanov@mail.ru) (Самарский государственный аэрокосмический университет им. академика С.П. Королева)

МЕТОД СЕТЕВОГО ПРОГРАММИРОВАНИЯ В ЗАДАЧАХ КАЛЕНДАРНОГО ПЛАНИРОВАНИЯ¹

Рассматривается применение метода сетевого программирования к решению дискретной задачи минимизации стоимости проекта при заданной продолжительности его реализации. Описаны два базовых алгоритма решения задачи для случаев независимых и последовательных работ. Более сложные случаи (сеть типа дерева и агрегируемая сеть) решаются на основе последовательного применения базовых алгоритмов. Для сети «сборка с комплектующими» предлагается метод, который состоит в определении множества работ, фиксация продолжительности которых приводит к одному из рассмотренных случаев (либо сеть – дерево, либо – агрегируемая сеть).

Рассматриваются все возможные варианты фиксации продолжительностей работ выделенного множества и решение задачи для каждого варианта. Из всех вариантов выбирается лучший. Рассмотрен также случай произвольного сетевого графика.

Kлючевые слова: продолжительность работ, стоимость работ, сетевой график дерево, агрегируемая сеть, метод сетевого программирования.

DOI: 10.31857/S0005231020060025

1. Введение

Задачи календарного планирования относятся, как правило, к сложным (NP-трудным) задачам дискретной оптимизации ([1–8] и др.). В статье рассматривается так называемая задача оптимизации сети по стоимости. Она заключается в определении стоимости выполнения работ проекта так, чтобы проект был выполнен за определенное время, а суммарная стоимость работ была минимальной. При этом для каждой работы имеется конечное число вариантов ее выполнения, отличающихся величиной стоимости и величиной продолжительности выполнения. В статье рассматривается случай, когда для каждой работы имеется два варианта. Однако предложенные алгоритмы несложно обобщить и на случаи, когда для каждой работы имеется более двух вариантов.

 $^{^1}$ Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-07-01258) и Российского научного фонда (проект № 16-19-10609).

2. Постановка задачи

Рассмотрим сетевой график, содержащий n работ (работы изображаются вершинами). Обозначим через τ_i — продолжительность i-й работы. Для каждой работы i задана величина Δ_i возможного сокращения ее продолжительности и затраты s_i на это сокращение. Обозначим T_k — продолжительность проекта (длина критического пути) при продолжительностях работ τ_i , T — требуемая продолжительность проекта ($Q = T_k - T$ — требуемое сокращение). Пусть $x_i = 1$, если продолжительность работы i сокращается, $x_i = 0$ в противном случае.

3 а д а ч а 1. Определить $\{x_i; i=\overline{1,n}\}$ так, чтобы продолжительность проекта была не более T, а суммарные затраты на ее уменьшение были минимальными:

(1)
$$S(x) = \sum_{i} s_i x_i \to \min.$$

Будем рассматривать пять вариантов сетевых графиков.

2.1. Независимые работы

В этом случае задача 1 принимает вид: минимизировать (1) при ограничениях

(2)
$$x_i \Delta_i \ge \tau_i - T, \quad i = \overline{1, n}.$$

Задача легко решается. Оптимальное решение имеет вид

$$x_i = \begin{cases} 0, \text{ если } \tau_i \leq T, \\ 1, \text{ если } \tau_i > T, \end{cases} \quad i = \overline{1, n}.$$

Этот алгоритм назовем базовым алгоритмом А. В дальнейшем потребуется его параметрическая реализация, т.е. параметрическая зависимость минимальных затрат S(Y) от продолжительности проекта Y, где величина Y меняется в пределах

(4)
$$\max_{i} (\tau_i - \Delta_i) \le Y \le \max_{i} \tau_i.$$

 $\Pi p u m e p 1$. Имеются itcnm работ, данные о которых приведены в табл. 1.

Таб	лиг	қа 1	-			
i	1	2	3	4	5	6
$ au_i$	5	9	8	10	6	7
Δ_i	2	5	4	7	2	3
s_i	3	7	6	12	4	5

Вычисляем $4 \le Y \le 10$. Таблица вариантов имеет вид табл. 2.

Таблица 2

Вариант	0	1	2	3	4	5	6
Y	10	9	8	7	6	5	4
S(Y)	0	12	19	25	30	34	37

2.2. Последовательные работы (сетевой график-путь)

В этом случае ограничение задачи 1 принимает вид

$$\sum_{i} x_i \Delta_i \ge Q.$$

Этот и последующие случаи решаются методом сетевого программирования, который будет рассмотрен ниже.

Получение параметрической зависимости $S\left(Y\right)$ для последовательности работ будем называть базовым алгоритмом B.

2.3. Сетевой график-дерево

Сетевой график типа дерева, как правило, соответствует процессам сборки сложных изделий (см. рис. 1), где работы обозначены номерами 1–5.

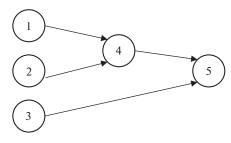


Рис. 1.

2.4. Агрегируемый сетевой график

Дадим определения множеств параллельных и последовательных работ.

Определение 1. Параллельными называется множество работ, для которых множество предшествующих работ одно и то же и множество последующих работ одно и то же.

Определение 2. Последовательным называется множество работ, образующих путь такой, что полустепени исхода и захода вершин пути (за исключением начальной и конечной вершины) равны единице.

Агрегируемым называется сетевой график, который путем замены последовательных и (или) параллельных работ одной работой можно свести к одной работе (рис. 2).

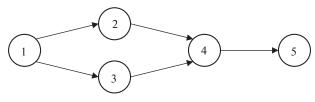


Рис. 2.

На рис. 2 две работы 2 и 3 можно заменить одной работой (2, 3) (эти работы независимые, т.е. параллельные). Затем последовательность работ $1 \rightarrow (2,3) \rightarrow 4 \rightarrow 5$ можно также заменить одной работой.

2.5. Сетевой график «сборка с комплектацией»

Мы не будем рассматривать общий случай производственного сетевого графика, а ограничимся сетевым графиком типа «сборка с комплектацией» (рис. 3). К дереву сборки добавляются работы 1, 2 и 3, производящие необходимые комплекты для сборки.

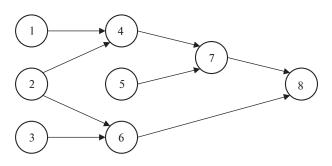


Рис. 3.

3. Метод сетевого программирования

Суть метода сетевого программирования состоит в том, что целевую функцию и ограничение в задаче календарного планирования можно представить в виде суперпозиции более простых функций. Такое представление удобно изображать в виде сети, на нижнем уровне которой находятся вершины, соответствующие переменным (входы сети), промежуточные вершины соответствуют функциям, входящим в суперпозицию, а конечная вершина (выход) соответствует исходной функции (сетевое представление).

Метод применим, если и целевая функция, и ограничение имеют одинаковые сетевые представления. Если сетевое представление имеет вид дерева, то метод дает оптимальное решение задачи. В противном случае получаем верхнюю (нижнюю) оценку, которую можно использовать в методе ветвей и границ [9]. Метод сетевого программирования подробно изложен в [9]. Поэтому дадим иллюстрацию его работы на примере последовательности работ (базовый алгоритм В).

 $\Pi p u m e p 2$. Проект состоит из четырех последовательных работ, данные о которых приведены в табл. 3.

Таб.	Таблица 3								
i	1	2	3	4					
$ au_i$	5	6	9	8					
Δ_i	2	3	5	4					
s_i	7	8	4	6					

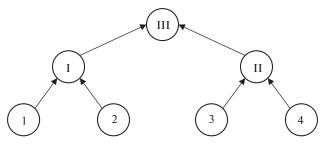


Рис. 4.

Пусть
$$T = 20$$
, $Q = 28 - 20 = 8$.

Задача имеет вид

$$7x_1 + 8x_2 + 4x_3 + 6x_4 \rightarrow \min$$

при ограничении

$$2x_1 + 3x_2 + 5x_3 + 4x_4 \ge 8.$$

Возьмем структуру сетевого представления, приведенную на рис. 4. 1 шаг. Рассматриваем работы 1 и 2. Решение приведено в табл. 4.

Таблица 4

1	8; 3	15; 5
0	0; 0	7; 2
$\frac{2}{1}$	0	1

Первое число в клетке – это затраты, а второе – сокращение продолжительности. Результаты сведены в табл. 5.

Таблица 5. Объединенная работа I

Вариант	0	1	2	3
Затраты	0	7	8	15
Сокращение продолжительности	0	2	3	5

 $2\ mar.$ Рассматриваем работы 3 и 4. Решение приведено в табл. 6.

Таблипа 6

1	6; 4	10; 9
0	0; 0	4; 5
$\frac{4}{3}$	0	1

Результат сведены в табл. 7. Вариант 2 (затраты равны 6, сокращение равно 4) исключен, поскольку он доминируется вариантом 1 (затраты равны 4, сокращение равно 5).

Таблица 7. Объединенная работа II

Вариант	0	1	2
Затраты	0	4	10
Сокращение продолжительности	0	5	9

3 шаг. Рассматриваем объединенные работы I и II. Решение приведено в табл. 8.

Таблица 8

2	10; 9	17; 11	18; 12	25; 14
1	4; 5	11; 7	12; 8	19; 10
0	0; 0	7; 2	8; 3	15; 5
II I	0	1	2	3

Результаты сведены в табл. 9. В этой таблице варианты упорядочены по возрастанию затрат. При этом оставлены только Парето-оптимальные варианты (варианты (7; 2), (8 3), (11, 7), (12, 8), (19, 10), (15, 5) исключены).

Таблица 9. Объединенная работа III

Вариант	0	1	2	3	4	5
Затраты	0	4	10	17	18	25
Сокращение продолжительности	0	5	9	11	12	14

В результате получили параметрическую таблицу S(Y). Для $Y \ge Q = 8$ имеем: Y = 9, S(9) = 10, что соответствует сокращению продолжительностей работ 3 и 4. Фактически рассматривается случай последовательных работ, т.е. базовый алгоритм В. Далее покажем, как на основе базовых алгоритмов А и В решать задачу для вариантов «сетевой график-дерево», «агрегируемый сетевой график» и «сетевой график «сборка с комплектацией».

4. Сетевой график-дерево

Если сетевой график является деревом, то сетевое представление также является деревом. На рис. 5 приведено сетевое представление сетевого графика, рис. 1. На нижнем уровне расположены вершины, соответствующие работам. В остальных вершинах указаны базовые алгоритмы A и B, применяемые для решения соответствующих задач.

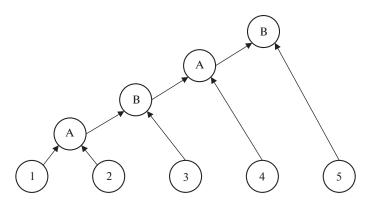


Рис. 5.

 $\Pi p u m e p 3$. Данные о работах приведены в таблице 10.

Таб.	Таблица 10									
i	1	2	3	4	5					
$ au_i$	6	5	8	6	9					
Δ_i	3	2	4	4	5					
s_i	7	5	6	5	8					

Примем T = 13; Q = 21 - 13 = 8.

 $1\ max$. Рассматриваем работы $1\ u\ 2$, применяя базовый алгоритм A. Решение приведено в табл. 11.

Таблица 11

Вариант	0	1	2
Затраты	0	7	12
Сокращение продолжительности	0	1	3

2 шаг. Рассматриваем объединенную работу (1, 2) и работу 4. Применяем базовый алгоритм В. Решение приведено в табл. 12.

Таблица 12

Вариант	0	1	2	3
Затраты	0	5	12	7
Сокращение продолжительности	0	4	5	7

3 шаг. Рассматриваем объединенную работу (1, 2, 4) и работу 3. Применяем базовый алгоритм А. Решение приведено в табл. 13.

Таблица 13

Вариант		1	2	3
Затраты	0	5	18	23
Сокращение продолжительности	0	4	5	7

4 шаг. Рассматриваем объединенную работу (1, 2, 4, 3) и работу 5. Применяем базовый алгоритм В. Решение приведено в табл. 14.

Таблица 14

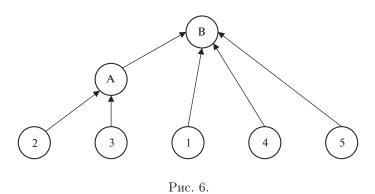
Вариант		1	2	3
Затраты	0	5	8	13
Сокращение продолжительности	0	4	5	9

Множество сокращаемых работ определяется алгоритмом обратного хода аналогично методу динамического программирования.

Оптимальному решению соответствует вариант 3 с затратами 13. При этом варианте сокращается продолжительность работ 4 и 5.

5. Агрегируемый сетевой график

Агрегируемые сети также имеют сетевое представление в виде дерева. Пример сетевого представления для агрегируемой сети рис. 2 приведен на рис. 6. Как и в случае дерева, решение задачи состоит в последовательном применении базовых алгоритмов AuB согласно структуре сетевого представления.



 Πp имер 4. Возьмем данные примера 3 (табл. 10). Примем $T=21;\ Q=29-21=8.$

1 шаг. Рассматриваем работы 2 и 3, применяя базовый алгоритм А. Решение приведено в табл. 15.

Таблица 15

Вариант	0	1	2
Затраты	0	5	11
Сокращение продолжительности	0	2	4

2 шаг. Рассматриваем объединенную работу (2, 3) и работы 1, 4, 5, применяя базовый алгоритм B.

2.1. Рассматриваем работы (2, 3) и 1. Решение приведено в табл. 16.

Таблица 16

Вариант		1	2	3	4	5
Затраты	0	5	7	11	12	18
Сокращение продолжительности	0	2	3	4	5	7

2.2. Рассматриваем объединенную работу $(\overline{1, 3})$ и работу 4. Решение приведено в табл. 17.

Таблица 17

Вариант		1	2	3	4
Затраты	0	5	10	12	16
Сокращение продолжительности	0	4	6	7	8

2.3. Рассматриваем объединенную работу $(\overline{1, 4})$ и работу 5. Решение приведено в табл. 18.

Таблица 18

Вариант		1	2	3	4	5
Затраты	0	5	8	10	12	13
Сокращение продолжительности	0	4	5	6	7	9

Оптимальное решение определяется вариантом 5 с затратами 13 и сокращением продолжительности на 9. Ему соответствует сокращение продолжительностей работ 4 и 5.

6. Сетевой график «сборка с комплектацией»

Сетевой график «сборка с комплектацией» уже не допускает сетевого представления в виде дерева. Рассмотрим два подхода к решению задачи.

Подход 1

Определим множество вершин G первого слоя таких, что их степени больше 1 (фиксация продолжительностей соответствующих работ превращает оставшуюся сеть в сеть типа дерево). Если число вершин множества G равно q, то существует 2^q различных вариантов фиксации их продолжительностей. Рассматриваем каждый вариант и решаем задачу для сети типа дерево. К затратам полученного решения добавляем затраты работ множества G, продолжительности которых в рассматриваемом варианте уменьшены.

 $\Pi p u m e p 5$. Рассмотрим сетевой график рис. 3. Заметим, что если зафиксировать продолжительность работы 2, то сетевой график превращается в дерево с ограничениями на моменты начала работ 4 и 6. Поскольку q = 1, необходимо рассмотреть два варианта. Данные о работах приведены в табл. 19.

Таблипа 19

Lau	INI	ųa s	U					
i	1	2	3	4	5	6	7	8
$ au_i$	7	8	4	6	5	9	5	3
s_i	8	6	3	5	7	7	6	4
Δ_i	4	3	2	3	2	6	2	1

Вариант 1. Продолжительность работы 2 равна $\tau_2=8$. В этом случае работы 4 и 6 не могут начаться раньше 8 единиц времени. Поэтому очевидно, что $x_1=0$ и $x_3=0$. Примем Q=6.

1 шаг. Рассматриваем работы 4 и 5. Применяем базовый алгоритм А. Решение приведено в табл. 20.

Таблина 20

Вариант	0	1
Затраты	0	5
Сокращение продолжительности	0	3

2 шаг. Рассматриваем объединенную работу (4, 5) и работу 7. Применяем базовый алгоритм В. Решение приведено в табл. 21.

Таблипа 21

Вариант	0	1	2
Затраты	0	5	11
Сокращение продолжительности	0	3	5

3 шаг. Рассматриваем объединенную работу (4, 5, 7) и работу 6. Применяем базовый алгоритм А. Решение приведено в табл. 22.

Таблица 22

Вариант			2	3
Затраты	0	5	12	18
Сокращение продолжительности	0	2	3	5

4 *шаг.* Рассматриваем объединенную работу $(\overline{4,7})$ и работу 8. Применяем базовый алгоритм В. Решение приведено в табл. 23.

Таблипа 23

1	4; 1	9; 3	16; 4	22; 6
0	0; 0	5; 2	12; 3	18; 5
8 (4, 7)	0	1	2	3

Оптимальное решение определяется клеткой (22; 6) с затратами 22. Ему соответствует уменьшение продолжительности работ 4, 6, 7 и 8.

Вариант 2. Продолжительность работы 2 равна $\tau_2 - \Delta_2 = 5$. В этом случае работа 6 может начаться не раньше, чем через 5 единиц времени. Поэтому $x_3 = 0$, так как $\tau_3 = 4$. Не будем повторять все шаги последовательного применения базовых алгоритмов, а приведем окончательную табл. 24.

Таблица 24

Вариант			2	3	4	5
Затраты	0	4	5	9	11	15
Сокращение продолжительности	0	1	3	4	5	6

Оптимальным является вариант 5 с затратами 15. С учетом затрат на сокращение продолжительности работы 2 получаем 21. Выбираем второй вариант, т.е. сокращаем продолжительности работ 2, 4, 7 и 8.

Подход 2

Разделим затраты s_i , $i \in G$ произвольным образом на столько частей, сколько работ обеспечивает комплектующими работа i. Без ограничения общности примем, что число таких работ равно двум для каждой $i \in G$, т.е.

$$s_i = v_i + u_i, \quad i \in G.$$

Фактически как бы произведено разделение вершины i на две вершины, поделились соответственно и затраты. При этом сетевой график превратился в дерево, и можно применить описанный выше алгоритм. Из теории сетевого программирования [9] известно, что полученная в результате величина

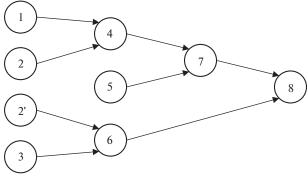


Рис. 7.

затрат дает нижнюю оценку для исходной задачи. Эту оценку применяем в методе ветвей и границ.

 $\Pi p u m e p 6$. Возьмем данные примера 5 (табл. 19). Пусть $u_2 = v_2 = 3$. После разделения вершины 2 на две вершины получаем дерево, приведенное на рис. 7.

Теперь можно применить алгоритм для дерева. Получаем оптимальное решение с затратами 18. Сокращаются работы 2', 4, 7, 8. Однако работа 2 не сокращается. Поэтому решение является недопустимым для исходной задачи и дает только оценку снизу. Применяем метод ветвей и границ. Делим множество всех решений на два подмножества. В первом $x_2 = 1$, а во втором $x_2 = 0$. Выбираем подмножество с лучшей оценкой (в данном случае это будет оптимальное решение, поскольку всего одна вершина 2 имеет степень исхода 2). Это решение было получено ранее. Сокращаются работы 2, 4, 7 и 8 с затратами 21.

Нижнюю оценку можно улучшить, изменяя разбиение затрат вершин множества G. Задача поиска варианта разбиения затрат, максимизирующего нижнюю оценку, называется обобщенной двойственной задачей [9]. Однако решение обобщенной двойственной задачи требует затрат времени. По-видимому, рациональной является смешанная стратегия, когда после нескольких шагов улучшения нижней оценки производится ветвление, затем снова несколько шагов улучшения и т.д.

Вычислительная сложность описанных алгоритмов определяется вычислительной сложностью базового алгоритма В, которая равна $O(nQ^2)$ при целочисленных значениях временных параметров.

Данная оценка не относится к задаче сборки с комплектацией, для которой вычислительная сложность равна $O(2^q nQ^2)$.

Оценка вычислительной сложности метода ветвей и границ требует экспериментальных исследований.

7. Заключение

Предложенный способ решения задач календарного планирования, основанный на методе сетевого программирования, позволяет использовать простые алгоритмы, легко поддающиеся программной реализации. При сетевой

структуре типа дерева получается точное решение задачи, а в общем случае – верхняя или нижняя оценка для использования в методе ветвей и границ.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Бурков В.Н.*, Ланда Б.Д., Ловецкий С.Е. и др. Сетевые модели и задачи управления. М.: Сов. радио, 1967.
- 2. *Баркалов С.А.*, *Буркова И.В.*, *Воропаев В.И. и др.*; под ред. В.Н. Буркова. Математические основы управления проектами. М.: Высш. школа, 2005.
- 3. Andres C., Hatami S. Evolutionary heuristics and an algorithm for the two-stage assembly scheduling problem to minimize makespan with setup times // Int. J. Product. Res.2011. No. 44. P. 4713–4735.
- 4. Allaoui H., Artiba A. Johnson's algorithm: a kay to solve optimally or approximately flow shop scheduling problems with unavailability periods // Int. J. Product. Econom. 2009. No. 121. P. 81–87.
- 5. Chenkong V., Haimes Y.Y. The tree stage assembly permutation flowshopscheduling problem // Proc. 5th Int. Conf. on Industrial Engineer. and Industrial Management, Cartagena. September 7–9. 2011.
- 6. Demeulemeester E.L., Herroelen W. Project scheduling: a research handbook. Kluwer Academ. Publisherr, 1976. 710p.
- 7. Garey M.R. The complexity of flowshop and jobshopscheduling // Math. Oper. Res. 1976. No. 1(2). P. 117–129.
- 8. Sun Y., Zhang C.Y., Gao L., Wang X.J. Multy-objactive optimization algorithms for flow shop scheduling problem: a review and prospects // Int. J. Advanced Manufactur. Technol. 2011. No. 55. P. 723–739.
- 9. *Буркова И.В.* Метод сетевого программирования в задачах нелинейной оптимизации // АиТ. 2009. № 10. С. 15–21.
 - Burkov I.V. A Method of Network Programming in Problems of Nonlinear Optimization // Autom. Remote Control. 2009. V. 70. No. 10. P. 1606–1613.

Статья представлена к публикации членом редколлегии А.А. Лазаревым.

Поступила в редакцию 10.07.2019

После доработки 22.10.2019

Принята к публикации 28.11.2019