Нелинейные системы

© 2021 г. А.И. МАЛИКОВ, д-р физ.-мат. наук (a_i_malikov@mail.ru) (Казанский национальный исследовательский технический университет им. А.Н. Туполева — КАИ)

ОЦЕНИВАНИЕ СОСТОЯНИЯ И СТАБИЛИЗАЦИЯ НЕЛИНЕЙНЫХ СИСТЕМ С ДИСКРЕТНЫМ УПРАВЛЕНИЕМ И НЕОПРЕДЕЛЕННЫМИ ВОЗМУЩЕНИЯМИ 1

Рассматриваются непрерывные системы с дискретным управлением с неопределенными нелинейностями, подверженные воздействию ограниченных внешних возмущений. На основе метода квадратичных функций Ляпунова, матричных систем сравнения и техники дифференциальных линейных матричных неравенств развивается подход к задачам оценивания состояния, подавления начальных отклонений и неопределенных возмущений с помощью обратной связи по состоянию, доступному в дискретные моменты времени. Предлагается способ синтеза периодического и апериодического дискретного управления, обеспечивающий на конечном интервале принадлежность заданному множеству траекторий исходной системы при любых возмущениях, ограниченных по L_{∞} норме.

Kлючевые слова: непрерывные системы с липшицевыми нелинейностями, неопределенные возмущения, оценивание состояния, дискретное управление, дифференциальные линейные матричные неравенства.

DOI: 10.31857/S0005231021040048

1. Введение

В обширной литературе по синтезу управления область, которой уделяется мало внимания, — это управление системами с дискретными данными. В этой задаче объект с непрерывным временем обычно управляется алгоритмом обратной связи с дискретным временем. Устройство дискретизации и квантования обеспечивает согласование между непрерывным временем и дискретным временем. Одним из способов решения проблемы дискретного управления является реализация алгоритма непрерывного управления с достаточно малым периодом дискретизации. Однако аппаратное обеспечение, используемое для дискретизации и проведения измерений на объекте или вычисления управляющего воздействия с обратной связью, может сделать невозможным сокращение периода выборки до уровня, который гарантирует приемлемые характеристики замкнутой системы. В этом случае становится интересным исследовать применение алгоритмов дискретного управления, основанных на модели процесса с непрерывным временем.

 $^{^1}$ Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 18-08-01045а).

В последнее время дискретное управление широко применяется в цифровых и сетевых системах [1–6]. Большое внимание уделяется анализу их устойчивости [7–21]. Как отмечено в [1], существуют три основных подхода к анализу устойчивости и синтезу системы с дискретными данными, основанные на технике линейных матричных неравенств (ЛМН). Первый подход связан с представлением системы с дискретными данными в виде системы с запаздыванием [1, 2, 5–7]. Такой подход в основном применяется для линейных систем с дискретными данными при постоянной или изменяющейся во времени дискретизацией. Условия устойчивости таких систем получены с помощью функционалов Ляпунова—Красовского или функций типа Ляпунова—Разумихина [2].

Во втором подходе [8, 9, 13, 17 и др.] исходная система с дискретными данными представляется как система с импульсами. Выбирая кусочно-зависимый от времени функционал Ляпунова—Красовского или разрывный функционал Ляпунова—Красовского, можно получить менее консервативные условия устойчивости [14, 15, 18, 21, 22].

Следует отметить, что, хотя некоторые менее консервативные критерии устойчивости могут быть получены с использованием вышеупомянутых двух подходов, выбранные функционалы Ляпунова—Красовского обычно сложны. Так как полученные ЛМН требуют при решении большего количества скалярных и матричных переменных, общая вычислительная сложность критериев устойчивости определенно намного выше.

Третий подход – это подход с дискретным временем [1, 2, 10–12, 17, 19, 20], при котором система с дискретными данными эквивалентно преобразуется в конечномерную систему с дискретным временем, в которой сохраняется информация о состоянии системы между моментами дискретизации. Системы с апериодическими дискретными данными также изучались в дискретной временной области. В частности, линейные системы с постоянными коэффициентами с апериодической дискретизацией были проанализированы с использованием модели линейной системы с дискретным временем с переменным параметром. Эффект дискретизации может быть смоделирован с помощью оператора, а проблема устойчивости может быть решена в рамках подхода устойчивости входа/выхода [1, 2, 19]. В данной статье используется второй подход для решения задачи оценивания состояния и синтеза дискретного управления.

Как было отмечено в обзоре [1], несмотря на то что в публикациях были представлены значительные достижения в этой области, проблемы, связанные как с основами таких систем, так и с выводом конструктивных методов анализа устойчивости, остаются открытыми даже для случая линейной системы. Следует также отметить, что не все предлагаемые в литературе критерии устойчивости, представленные в виде ЛМН, могут быть применены для синтеза дискретного управления.

Обычно в основу способов синтеза дискретного управления полагается обеспечение устойчивости (асимптотической, экспоненциальной) [6–8, 10, 12, 17, 23] или оптимального качества по H_2 или H_∞ критериям исходной непрерывной системы [24–28]. При этом рассматриваются, как правило, линейные

системы без учета возмущений. В [29] показатели H_2 и H_{∞} качества определяются и выражаются через дифференциальные линейные матричные неравенства (ДЛМН). На основе принципа оптимальности Беллмана, выраженного в терминах уравнения динамического программирования, связанного с интервалом времени, соответствующим двум последовательным моментам выборки, предлагаются способы синтеза оптимальных H_2 и H_{∞} регуляторов полного порядка с обратной связью по выходу периодических дискретных данных для линейных инвариантных систем с непрерывным временем. Задачи синтеза оптимальных регуляторов решаются путем преобразования всех ограничений в ЛМН и использования методов полуопределенного программирования. В [30] предложены способы синтеза стабилизирующих динамических регуляторов с обратной связью по выходу для класса линейных апериодических импульсных систем. Условия синтеза сформулированы в виде ЛМН, зависящих от времени, которые могут быть решены численно с использованием методов релаксации матричных сумм квадратов. Полученные результаты применены для синтеза динамических регуляторов с обратной связью по выходу для систем с апериодическими дискретными данными. В [31] подход с использованием векторной функции Ляпунова для 2D систем используется для получения условий устойчивости импульсной системы, а затем решается задача синтеза робастного управления на основе наблюдателя для линейных систем с дискретными данными.

Цель данной статьи — представить способы оценивания состояния и синтеза дискретного управления для класса непрерывных систем с липшицевыми нелинейностями и неопределенными ограниченными по норме возмущениями. При этом исходная непрерывная модель представляется в виде системы с импульсным изменением координат состояния. Предложенный в [32, 33] и развитый в [34, 35] подход с использованием функции Ляпунова с изменяющимися коэффициентами и ДЛМН применяется для решения задач оценивания состояния, анализа ограниченности на конечном интервале и синтеза дискретного управления одного класса нелинейных систем при учете неопределенных возмущений. В результате задачи оценивания состояния и синтеза дискретного управления сводятся к совокупности задач оптимизации с ЛМН, получающихся при кусочно-линейной аппроксимации решения ДЛМН [36]. Рассматриваются случаи периодического и апериодического дискретного управления. На примере линейной системы второго порядка проводится сопоставление предлагаемого подхода с другими известными методами. Результаты применяются для стабилизации однозвенного манипулятора с помощью как периодического, так и апериодического дискретного управления.

2. Непрерывная система с дискретным управлением

Рассматривается система с дискретным управлением

(1)
$$\dot{x}(t) = A(t)x(t) + D(t)w(t) + \Phi(t)\varphi(t, x(t)) + B(t)u(t),$$

где $x \in \mathbb{R}^n$ — вектор состояния, $w(t) \in W \subset \mathbb{R}^r$ — вектор неопределенных внешних возмущений, $u \in \mathbb{R}^m$, $u(t) = K(t_k)x(t_k)$, $t \in [t_k, t_{k+1})$ — вектор управления в форме обратной связи по состоянию, измеряемому в дискретные

моменты времени $t_k \in \Theta = \{t_0, \ t_k = t_{k-1} + h_k, k = 1, \dots, N-1\}, \ h_k$ — шаг выборки измерений, $A \in \mathbf{R}^{n \times n}, \ B \in \mathbf{R}^{n \times m}, \ D \in \mathbf{R}^{n \times r}, \ \Phi \in \mathbf{R}^{n \times q}$ — известные матрицы с постоянными или непрерывными и ограниченными элементами при всех $t \in T, \ T = [t_0, t_N], \ t_0, t_N$ — начальный и конечный моменты времени.

Нелинейная векторная функция $\varphi(t,x)$ является непрерывной и удовлетворяет ограничению

(2)
$$\|\varphi(t,x)\|^2 \le \mu_0 + \mu_1 \|C_f(t)x\|^2 \quad \forall t \in T, \quad x \in \mathbb{R}^n,$$

где $C_f(t)x\in \mathbf{R}^{q\times n}$ — известная матрица с ограниченными элементами при всех $t\in T$. Здесь и далее $\|\cdot\|$ означает евклидову норму вектора, $\mu_0,\ \mu_1\geq 0$ — заданные константы.

Предположим, что неопределенные возмущения являются непрерывными и ограниченными в каждый момент времени функциями:

(3)
$$W = \{ w(t) \in \mathbb{R}^r : ||w(t)|| \le 1 \ \forall t \in T \}.$$

3. Задача оценивания состояния

Пусть в начальный момент времени состояние системы $x(t_0)=x_0$ принадлежит заданному эллипсоиду

(4)
$$E(Q_0) = \left\{ x \in \mathbb{R}^n : x^{\mathrm{T}} Q_0^{-1} x \le 1 \right\},\,$$

где Q_0 — заданная положительно определенная матрица, индекс T — знак транспонирования.

Требуется найти оценку в виде эллипсоида, ограничивающего множество состояний исходной системы (1) на рассматриваемом интервале $[t_0, t_N]$. В дальнейшем будет предложен способ синтеза дискретного управления, обеспечивающего минимизацию следа матрицы эллипсоида, ограничивающего состояние или выход рассматриваемой системы.

Задача оценивания состояния решается с использованием второго подхода, при котором исходная система с дискретным управлением представляется как импульсная система [1]. Определим переменные $u(t) = Kx(t_k)$ и $z(t) = (x^{\mathrm{T}}(t), u^{\mathrm{T}}(t))^{\mathrm{T}}$. Тогда систему (1) можно представить как систему с импульсами

(5)
$$\dot{z}(t) = A_z(t)z(t) + D_z(t)w(t) + \Phi_z(t)\varphi(t,x(t)), \quad t \neq t_k,$$

(6)
$$z(t_k) = J_z(t_k)z(t_k - 0), \quad t = t_k \in \Theta,$$

где

$$A_z(t) = \begin{bmatrix} A(t) & B(t) \\ 0 & 0 \end{bmatrix}, \quad D_z(t) = \begin{bmatrix} D(t) \\ 0 \end{bmatrix},$$

$$\Phi_z(t) = \begin{bmatrix} \Phi(t) \\ 0 \end{bmatrix}, \quad J_z(t_k) = \begin{bmatrix} I & 0 \\ K(t_k) & 0 \end{bmatrix}.$$

При этом $z(t_0)=z_0=(x_0^{\rm T},u_0^{\rm T})\in E(Q_{z0})$, где $Q_{z0}={\rm diag}(Q_0,KQ_0K^{\rm T}),\ x(t)=$ $=Cz(t),\ C=(I_n\ 0_m),\ I_n-$ единичная $(n\times n)$ -матрица. Обозначим $C_{fz}(t)=$ $=[C_f(t),0]$. В дальнейшем для краткости опускаем зависимость от t или t_k у матриц $A_z(t),\ D_z(t),\ \Phi_z(t),\ C_{fz}(t),\ J_z(t_k)$.

На интервалах непрерывности $[t_k, t_{k+1})$ (k = 0, 1, ..., N-1) для оценивания состояния будут использоваться теоремы 1 и 2 из [34], которые здесь приводятся для указанных интервалов.

T е о p е м а 1 [34]. Если существует решение $Q(t)=Q(t,t_k,Q_k)>0$ диф-ференциального матричного уравнения

(7)
$$dQ(t)/dt = A_z(t)Q(t) + Q(t)A_z^{\mathrm{T}} + \alpha Q(t) + \frac{1}{\alpha - \mu_0/\beta}D_zD_z^{\mathrm{T}} + \beta \Phi_z \Phi_z^{\mathrm{T}} + \frac{\mu_1}{\beta}Q(t)C_{fz}^{\mathrm{T}}C_{fz}Q(t)$$

при $t \in [t_k, t_{k+1})$ и $\beta > 0$, $\alpha > \mu_0/\beta$, то эмипсоид E(Q(t)) является ограничивающим для траекторий системы (5), стартующих из начального эмипсоида $E(Q_k)$, т.е.

$$z(t, t_k, z(t_k)) \in E(Q(t))$$
 npu $scex \ t \in [t_k, t_{k+1}).$

Здесь $Q(t_0)=Q_{z0},\,\beta,\,\alpha$ — свободные параметры, которые в общем случае могут зависеть от времени.

Доказательство теоремы 1 представлено в [34]. Там же были доказаны утверждения о существовании и ограниченности положительно определенных решений уравнения (7) при фиксированных значениях параметров α и β . Вопрос же выбора значений α и β не был рассмотрен. Однако ими можно распорядиться для получения оценки, оптимальной в каждый момент времени по критерию следа матрицы $Q(t) = Q(t, t_k, Q_k)$, определяющего сумму длин полуосей ограничивающего эллипсоида E(Q(t)). Это обеспечивается минимизацией следа матрицы правой части (7) по β , α при всех $t \in [t_k, t_{k+1})$.

 \mathcal{H} емма. Пусть матрицы Φ_z , D_z имеют хотя бы по одному ненулевому элементу при всех $t \in [t_k, t_{k+1})$. Тогда если существует на $[t_k, t_{k+1})$ решение $Q(t) = Q(t, t_k, Q_k) > 0$ уравнения (7), где

$$\beta(Q(t)) = \sqrt{\frac{\mu_0 \operatorname{trace}(Q(t)) + \mu_1 \operatorname{trace}(Q(t)C_{fz}^{\mathrm{T}}C_{fz}Q(t))}{\operatorname{trace}(\Phi_z \Phi_z^{\mathrm{T}})}},$$
(8)
$$\alpha(Q(t)) = \frac{\mu_0}{\beta(Q(t))} + \sqrt{\frac{\operatorname{trace}(D_z D_z^{\mathrm{T}})}{\operatorname{trace}(Q(t))}},$$

то эллипсоид E(Q(t)), ограничивающий состояния системы (5), будет оптимальным по критерию $\operatorname{trace}(Q(t)) \to \min_{Q(t),\beta(t)}$ при каждом $t \in [t_k, t_{k+1})$.

Доказательство леммы дано в Приложении.

 $3\,a\, M\,e\, q\, a\, h\, u\, e\, 1.$ При подстановке выражений (8) уравнение (7) становится существенно нелинейным. При практических применениях оно может быть решено численно. Исследование же вопросов существования и свойств решений этого уравнения выходит за рамки данной статьи. Здесь предлагается ограничиться заданием на каждом интервале $[t_k,t_{k+1})$ фиксированных значений параметров $\beta(Q(t_k)),\ \alpha(Q(t_k)),\$ определяемых по формулам (8) в моменты $t_k,\ k=0,\ldots,N-1.$ В этом случае согласно леммам 1 и 2 из [34] (7) будет являться матричной системой сравнения (МСС) для (5), а ее решение $Q(t)=Q(t,t_k,Q_k)$ при условии $Q(t_k)=Q_k>0$ будет положительно определенным. Ясно, что такое решение будет определять эллипсоид $E(Q(t)),\$ ограничивающий траектории системы (5), стартующие из эллипсоида $E(Q(t_k)),\$ который, однако, не будет оптимальным при всех $t\in[t_k,t_{k+1}).$ Поэтому для оценивания состояния здесь будет использоваться подход, основанный на численном решении задачи оптимизации с ДЛМН.

T е о p е м а 2 [34]. Если при некотором заданном $\alpha>0$ существует решение $Q(t)=Q(t,t_k,Q_k)>0,\,\beta(t)>\alpha/\mu_0$ дифференциального матричного неравенства

(9)
$$\begin{bmatrix} -dQ(t)/dt + A_z Q(t) + Q(t)A_z^{\mathrm{T}} + \alpha Q(t) + \beta \Phi_z \Phi_z^{\mathrm{T}} & D_z & Q(t)C_{fz}^{\mathrm{T}} & 0\\ D_z^{\mathrm{T}} & -\alpha I & 0 & I\\ C_{fz} Q(t) & 0 & -\frac{\beta(t)}{\mu_1} I & 0\\ 0 & I & 0 & -\frac{\beta(t)}{\mu_0} I \end{bmatrix} \leq 0$$

при $t \in [t_k, t_{k+1})$, то эллипсоид E(Q(t)) является ограничивающим для траекторий системы (5), стартующих из начального эллипсоида $E(Q_k)$.

Доказательство теоремы 2 представлено в [34].

Как отмечено в [34], положительно определенное решение уравнения (7) при некоторых $\alpha>0$, $\beta(t)\geq \mu_0/\alpha$ на рассматриваемом интервале времени (в данном случае $[t_k,t_{k+1})$) будет являться решением дифференциального матричного неравенства (9) при тех же значениях β , α . При тех же β , α могут существовать и другие решения (9), которые будут определять эллипсоид, ограничивающий траектории системы (5). При фиксированном $\alpha>0$ неравенство (9) становится линейным по переменным Q(t) и $\beta(t)$ и оптимальный ограничивающий эллипсоид будет определяться из решения следующей задачи оптимизации $\operatorname{trace}(Q(t)) \to \min_{Q(t),\beta(t)}$ при ограничениях Q(t)>0, $\beta(t)>\mu_0/\alpha$

и ДЛМН (9). Такое оптимальное решение будет зависеть от параметра α . Чтобы решение было оптимальным и по α , следовало бы добавить еще одномерную оптимизацию по α из заданного диапазона. Однако это еще более усложняет задачу нахождения оптимального ограничивающего эллипсоида. Поэтому значение параметра α предлагается вычислять только в дискретные моменты t_k из (8) по известной в этот момент матрице $Q(t_k)$, а затем при $\alpha_k = \alpha(Q(t_k))$ решать задачу оптимизации $\operatorname{trace}(Q(t)) \to \min_{Q(t),\beta(t)}$ при ограни-

чениях $Q(t)>0,\,\beta(t)>\mu_0/\alpha_k$ и ДЛМН (9). Далее будет показано, каким об-

разом эта задача оптимизации сводится в результате дискретизации к совокупности задач оптимизации с ограничениями в виде ЛМН.

В моменты t_k , $k=1,\ldots,N$, поведение системы представлено линейным разностным уравнением (6). В этом случае для оценивания состояния будет использоваться теорема 1 из [35], которая здесь приводится применительно к линейному разностному уравнению (6).

 $T \, e \, o \, p \, e \, m \, a \, 3$. Чтобы эллипсоид $E(Q(t_{k+1}))$ ограничивал состояния системы в момент t_{k+1} при условии, что $z(t_{k+1}-0) \in E(Q(t_{k+1}-0))$, достаточно, чтобы существовало решение $Q(t_{k+1}) > 0$ разностного линейного матричного неравенства (P / M H)

(10)
$$\begin{pmatrix} Q(t_{k+1}) & J_z Q(t_{k+1} - 0) \\ Q(t_{k+1} - 0) J_z^{\mathrm{T}} & Q(t_{k+1} - 0) \end{pmatrix} \ge 0.$$

Доказательство теоремы 3 для более общего случая дискретной системы с неопределенными возмущениями представлено в [35].

Рассмотрим теперь ряд случаев относительно параметра выборки h_k :

- 1. Все значения h_k равны $h_k = h > 0, k = 1, \dots, N, h$ постоянный период выборки;
- 2. Все значения $h_k > 0, k = 1, \dots, N$, известны (переменный период выборки);
- 3. Значения $h_k > 0, \ k = 1, \dots, N$, неизвестны и могут изменяться в интервале $[h_{\min}, h_{\max}]$, где $0 < h_{\min} < h_{\max}, \ h_{\min}, h_{\max}$ известны.

Рассмотрим сначала случай 1 с периодическими выборками (импульсами), т.е. $t_{k+1}-t_k=h={
m const.}$ Случай 2 при переменных, но известных h_k рассматривается аналогично.

Справедливо следующее утверждение.

Теорема 4. Эллипсоид E(Q(t)), где $Q(t) = Q(t, t_0, Q_{z0})$ — решение матричной системы дифференциальных уравнений (7) с РЛМН (10) или задачи оптимизации $\operatorname{trace}(Q(t, t_0, Q_{z0})) \to \min$ с ограничениями ДЛМН (9) и РЛМН (10) будет ограничивающим для состояний системы (5), (6), а эллипсоид с матрицей $CQ(t, t_0, Q_{z0})C^{\mathrm{T}}$ будет ограничивающим для состояний исходной системы (1) с дискретным управлением при всех нелинейностях из (2) и возмущениях из (3).

Доказательство основывается на последовательном применении теорем 1 и 2 на интервалах непрерывности $[t_k,t_{k+1})$ $(k=0,1,\ldots,N-1)$ для получения матрицы $Q(t,t_k,Q(t_k))>0$ эллипсоида, ограничивающего состояние $z(t,t_k,x(t_k))$ системы (5), (6) с начальными данными из эллипсоида с матрицей $Q(t_k)$ при всех нелинейностях из (2) и возмущениях из (3), и применении теоремы 3 в точках $t_{k+1},$ $(k=0,1,\ldots,N-1)$ для получения матрицы $Q(t_{k+1})>0,$ ограничивающей состояние $z(t_{k+1},t_k,x(t_k))$ системы (5), (6) после импульса при условии $z(t_{k+1}-0,t_k,x(t_k))\in E(Q(t_{k+1}-0)).$ Здесь $Q(t_{k+1}-0)=Q(t_k+h,t_k,Q_k)$ — матрица эллипсоида, ограничивающего состояние системы (5), (6) непосредственно перед импульсом в момент t_{k+1} . Она определяется как решение дифференциального матричного

уравнения (7) или задачи оптимизации $\operatorname{trace}(Q(t, t_k, Q_k)) \to \min$ с ДЛМН (9) на $[t_k, t_{k+1})$.

Таким образом, в случае периодического дискретного управления состояние системы (5), (6) с начальными данными из эллипсоида $E(Q_{z0})$ будет ограничено эллипсоидом с матричной функцией $Q(t,t_0,Q_{z0})$, являющейся решением МСС (7) с РЛМН (10) или задачи оптимизации $\operatorname{trace}(Q(t,t_0,Q_{z0})) \to \min$ с ограничениями ДЛМН (9) и РЛМН (10) при $t \in T$.

При численном решении задачи оптимизации проводится дискретизация ДЛМН (9) на рассматриваемом интервале $[t_0,t_N]$. Производная dQ(t)/dt на интервале $[t_k,t_{k+1})$ считается постоянной и представляется как dQ(t)/dt= $=Z(t_k)$, где $t_k=t_0+kh,\ k=1,\ldots,N,$ и N есть целая часть отношения $(t_N-t_0)/h$. Тогда для $t\in[t_k,t_{k+1})$ матрица Q(t) определится как

(11)
$$Q(t) = Q(t_k) + (t - t_k)Z(t_k),$$

причем $Q(t_0)=Q_{z0}$. Для того чтобы матрица Q(t) удовлетворяла неравенству Q(t)>0 и ДЛМН (9) при всех $t\in[t_k,t_{k+1})$, необходимо и достаточно, чтобы она удовлетворяла им в двух крайних точках $t\in\{t_k,t_k+h\}$, т.е. при каждом $k=0,\ldots,N-1$ одновременно должны выполняться неравенства [36]:

(12)
$$Q(t_k) > 0, \quad Q(t_k + h) > 0,$$

(13)
$$\begin{bmatrix} -Z(t_k) + A_z Q(t_k) + Q(t_k) A_z^{\mathrm{T}} + \alpha_k Q(t_k) + \beta \Phi_z \Phi_z^{\mathrm{T}} & D_z & Q(t_k) C_{fz}^{\mathrm{T}} & 0 \\ D_z^{\mathrm{T}} & -\alpha_k I & 0 & I \\ C_{fz} Q(t_k) & 0 & -\frac{\beta(t_k)}{\mu_1} I & 0 \\ 0 & I & 0 & -\frac{\beta(t_k)}{\mu_0} I \end{bmatrix} \leq 0,$$

$$\begin{bmatrix}
-Z(t_k) + A_z Q(t_k + h) + Q(t_k + h) A_z^{\mathrm{T}} + & D_z & Q(t_k + h) C_{fz}^{\mathrm{T}} & 0 \\
+ \alpha Q(t_k + h) + \beta \Phi_z \Phi_z^{\mathrm{T}} & -\alpha_k I & 0 & I \\
D_z^{\mathrm{T}} & -\alpha_k I & 0 & I \\
C_{fz} Q(t_k + h) & 0 & -\frac{\beta(t_k)}{\mu_1} I & 0 \\
0 & I & 0 & -\frac{\beta(t_k)}{\mu_0} I
\end{bmatrix} \leq 0,$$

где $Q(t_k+h)=Q(t_k)+hZ(t_k)=Q(t_{k+1}-0),$ $\alpha_k=\alpha(Q(t_k))$ из (8) и матрицы $A_z,\,D_z,\,\Phi_z,\,C_{fz}$ берутся в момент t_k .

В результате линейной аппроксимации (11) решения ДЛМН (9) нахождение матрицы Q(t)>0 эллипсоида, ограничивающего состояния системы, сводится к последовательному решению совокупности задач оптимизации: $\operatorname{trace}(Q(t_{k+1})) \to \min_{Q(t_{k+1})>0,\beta(t_{k+1})\geq \mu_0/\alpha_k}$ при ЛМН ограничениях (10), (12)–(14)

для $k=0,\ldots,N-1$. На первой итерации при k=0 по заданной матрице $Q(t_0)=Q_0$ и α_0 в результате решения указанной задачи оптимизации с

ЛМН вычисляются матрицы $Q(t_0+h)$ и $Q(t_1)$ с минимальным следом, которые определяют матрицу эллипсоида, ограничивающего состояния системы (5), (6) на интервале $[t_0, t_1]$. Затем при $k=1,2,\ldots,N-1$ по матрице $Q(t_k)$ вычисляются α_k и матрицы $Q(t_k+h)$ и $Q(t_{k+1})$, которые определяют матрицу эллипсоида, ограничивающего состояния системы (5), (6) на последующих интервалах $[t_k, t_{k+1}]$.

Для численного решения на каждой итерации задач оптимизации с ЛМН используются программные средства полуопределенного программирования (CVX, Sedumi, Yalmip и др.). Они позволяют решать такую задачу для системы размерности порядка 20 за доли секунды. Общее время, требуемое для численного решения всей совокупности задач и получения эллипсоидальных оценок, будет зависеть от длительности рассматриваемого интервала времени и шага дискретизации ДЛМН.

3а m е ч а n и е 2. С целью более точной аппроксимации решения задачи оптимизации с ДЛМН на интервалах $[t_k, t_{k+1})$ рекомендуется решать задачу с шагом $h_{ki} = h/M$, где M > 1 — количество промежуточных точек дискретизации интервала $[t_k, t_{k+1})$. В этом случае значение матрицы $Q(t_k + h) = Q(t_{k+1} - 0)$ определится как $Q(t_k + h) = Q(t_k) + hZ_{ks}$, где $Z_{ks} = \sum_{i=0}^{M-1} Z(t_{ki})/M$ среднее значение производной на интервале $[t_k, t_{k+1})$, $t_{ki} = t_k + ih_{ki}$.

Рассмотрим теперь случай 3, когда система (5), (6) является апериодической, т.е. импульсы происходят в нерегулярные моменты времени. Пусть выполнено ограничение в виде интервала времени для последовательности моментов импульсов, т.е. $t_{k+1}-t_k=h_k\in[h_{\min},h_{\max}]$. Пусть $t\in[t_k,t_{k+1}]$ и $\theta\in[0,h_{\max}-h_{\min}]$.

Так же как в случае 1, при $t \in [t_k, t_{k+1}) = [t_k, t_k + h_{\min} + \theta)$ может быть получена оценка в виде эллипсоида $E(t) = \{x : x^{\mathrm{T}}Q^{-1}(t)x \leq 1\}$, если при некоторых $\beta(t_k) > 0$, $\alpha(t_k) \geq \mu_0/\beta(t_k)$ найдется положительно определенное решение Q(t) > 0 матричной системы сравнения (7) или дифференциального линейного матричного неравенства (9) при $t \in [t_k, t_{k+1}), k = 0, 1, 2, \dots, N-1$. Однако момент возникновения каждого следующего импульса t_{k+1} является неопределенным и может изменяться в интервале $[t_k + h_{\min}, t_k + h_{\max}]$. В данном случае эллипсоид, ограничивающий состояние системы в момент t_{k+1} , должен гарантированно содержать все эллипсоиды, которые будут получены при импульсном воздействии из эллипсоидов, ограничивающих состояния до момента t_{k+1} при всех $t_{k+1} = t_k + h_k \in [t_k + h_{\min}, t_k + h_{\max}]$. Поэтому (10) заменяется неравенством

(15)
$$Q(t_{k+1}) \ge JQ(t_k + h_{\min} + \theta)J^{\mathrm{T}},$$

которое должно быть выполнено при любом $\theta \in [0, h_{\max} - h_{\min}]$. Проверка этого неравенства затруднена, однако при использовании линейной аппроксимации решения задачи оптимизации $\operatorname{trace}(Q(t)) \to \min$ при ДЛМН ограничениях (9) в виде $Q(t_k + h_{\min} + \theta) = Q(t_k) + (h_{\min} + \theta)Z(t_k)$ матричное неравенство (15) будет линейным по переменной $\theta \in [0, h_{\max} - h_{\min}]$. Поэтому оно будет выполнено при любых $\theta \in [0, h_{\max} - h_{\min}]$ тогда и только тогда, когда

выполняется одновременно в двух крайних точках рассматриваемого интервала, т.е. при $\theta \in \{0, h_{\text{max}} - h_{\text{min}}\}$:

(16)
$$Q(t_{k+1}) \ge JQ(t_k + h_{\min})J^{\mathrm{T}}, \quad Q(t_{k+1}) \ge JQ(t_k + h_{\max})J^{\mathrm{T}}.$$

Здесь матрицы $Q(t_k + h_{\min})$, $Q(t_k + h_{\max})$ определяются из (11), вычисленных при $t = t_k + h_{\min}$ и $t = t_k + h_{\max}$ соответственно.

Таким образом, в случае апериодического дискретного управления состояние системы (5), (6) с начальными данными из эллипсоида $E(Q_{z0})$ будет ограничено эллипсоидом с матричной функцией $Q(t,t_k,Q_k)$ на интервалах непрерывности $[t_k,t_{k+1})$ и эллипсоидом с матрицей Q_{k+1} при $t=t_{k+1}$. Матрица $Q(t,t_k,Q_k)$ определяется из (11), где $Z(t_k)$, а также матрицы $Q(t_k+h_k)$ и Q_{k+1} вычисляются в задаче оптимизации $\operatorname{trace}(Q(t_{k+1})) \to \min_{Q(t_{k+1})>0,\beta_k>\mu_0/\alpha_k}$ с ЛМН ограничениями (12)–(14) и (16).

Отметим, что оценку для вектора состояния x(t) исходной системы (1) с дискретным управлением, с нелинейностями из (2) и возмущениями из (3) при $x(t_0)$ из (4) будет определять эллипсоид с матрицей $CQ(t,t_0,Q_{z0})C^{\mathrm{T}}$.

4. Задача об ограниченности относительно заданных множеств

Обозначим множество начальных состояний $E(R_0) = \{x \in \mathbb{R}^n : x^T R_0^{-1} x \leq 1\}$ и множество допустимых траекторий $E(R(t)) = \{x \in \mathbb{R}^n : x^T R^{-1}(t) x \leq 1\}$, $R_0, R(t)$ — известные симметрические положительно определенные матрицы, $t \in T$. Так же как в [32], вводится определение.

Определение. Будем говорить, что система с дискретными данными (5), (6) обладает на $t \in T$ свойством ограниченности относительно заданных множеств $\{E(R_0), E(R(t))\}$, если для всех $z_0 \in E(R_0)$ существуют на $t \in T$ решения $z(t) = z(t, t_0, x_0)$ системы (5), (6) с начальными данными $z(t_0) = z_0$, для которых имеет место $z(t, t_0, z_0) \in E(R(t))$ при всех $t \in T$, всех нелинейностях из (2) и возмущениях из (3).

Отметим, что аналогичное определение было введено в [32] для линейных неавтономных систем, где были получены необходимые и достаточные условия в терминах разрешимости дифференциальных линейных матричных неравенств. Такое же динамическое свойство изучалось применительно к непрерывным в [34] и дискретным в [35] нелинейным липшицевым системам с неопределенными возмущениями. Особенностью данного динамического свойства является то, что оно определяет как качественное поведение, так и дает количественные оценки, поскольку в его определении указываются конкретные множества начальных данных и множества, которым должны принадлежать траектории системы с этими начальными данными.

С учетом полученных выше эллипсоидальных оценок состояния для системы с дискретными данными (5), (6), приходим к следующему утверждению.

Teopema 5. Система (5), (6) с периодическими (апериодическими) импульсами обладает на $[t_0, t_N]$ свойством ограниченности относительно заданных множеств $\{E(R_0), E(R(t))\}$, если существует решение Q(t) = $=Q(t,t_0,Q_{z0})\ MCC\ (7)\ c\ PЛМH\ (10)\ или\ ДЛМH\ (9)\ c\ PЛМH\ (10)\ (coom-ветственно задачи оптимизации trace(<math>Q(t_{k+1})$) $\to \min_{Q(t_{k+1})>0,\beta\geq\mu_0/\alpha_k} c\ ЛМH$ ограничениями (12)–(14) и (16)) c начальными данными $Q_0\geq R_0$, удовлетворяющее неравенству $Q(t)\leq R(t)$ для всех $t\in T$.

При выполнении условий теоремы 5 исходная система (1) с дискретным управлением будет обладать ограниченностью относительно заданных множеств $\{E(CR_0C^T), E(CR(t)C^T)\}$.

5. Задача синтеза дискретного управления, обеспечивающего ограниченность непрерывной системы

Рассмотрим систему (1) с управлением, которое должно удовлетворять ограничению

(17)
$$u(t) \in \left\{ u : u^{\mathrm{T}} U^{-1} u \le 1 \right\}, \quad t \in T,$$

где U — заданная симметрическая положительно определенная $(m \times m)$ -матрица.

Задача состоит в нахождении управления в виде обратной связи по состоянию, доступному в дискретные моменты времени $t_k, \ k=0,1,\ldots,N-1$:

(18)
$$u(t) = K(t_k)x(t_k), \quad t \in [t_k, t_{k+1}), \quad k = 0, 1, \dots, N-1,$$

стабилизирующего замкнутую систему и подавляющего начальные отклонения и воздействие внешних возмущений в смысле минимальности ограничивающего эллипсоида для состояний или обеспечивающего ограниченность замкнутой системы. Здесь K — матрица коэффициентов усиления дискретного регулятора.

Задача синтеза с учетом рассмотренного в разделе 3 способа численного решения ДЛМН (9) сводится к задаче оптимизации критерия при ограничениях в виде разностных линейных матричных неравенств. В качестве критерия берется след матрицы, определяющий размер ограничивающего состояния эллипсоида в дискретные моменты времени t_k , $k=1,2,\ldots,N$.

Представим исходную систему с дискретным управлением (18) в виде (5) с импульсами (6). Искомая матрица коэффициентов усиления регулятора входит только в разностное уравнение для импульсов (6). Представим его в виде

(19)
$$z(t_k) = J_z z(t_k - 0) = \left(\tilde{J} + \tilde{B}K(t_k)C\right) z(t_k - 0), \quad t_k \in \Theta,$$

где

$$\tilde{J} = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, \quad \tilde{B} = \begin{pmatrix} 0 \\ I \end{pmatrix}, \quad C = \begin{pmatrix} I & 0 \end{pmatrix}, \quad z(t_0 - 0) = z(t_0) \in E(Q_{z_0}),$$

 $Q_{z0}>0$ — заданная матрица эллипсоида, ограничивающего начальные состояния.

Справедлива следующая теорема.

T е о р е ма 6. Пусть при $Q(t_0-0)=Q_{z0},$ $\alpha_k=\alpha(Q(t_k-0))$ из (8) и всех $t_k,$ $k=0,1,\ldots,N-1,$ найдутся решения $Q(t_k),$ $Q(t_{k+1}-0)=Q(t_k+h)=Q(t_k)+hZ(t_k),$ $Y(t_k)$ задачи

$$\operatorname{trace}[Q(t_{k+1}-0)] \to \min$$

npu ограничениях (12)-(14) u

(20)
$$\begin{pmatrix} Q(t_k) & \tilde{J}Q(t_k - 0)C^{\mathrm{T}} + \tilde{B}Y_k) \\ CQ(t_k - 0)\tilde{J}^{\mathrm{T}} + Y_k^{\mathrm{T}}\tilde{B}^{\mathrm{T}} & CQ(t_k - 0)C^{\mathrm{T}} \end{pmatrix} \ge 0$$

(21)
$$\begin{pmatrix} U & Y_k \\ Y_k^{\mathrm{T}} & CQ(t_k - 0)C^{\mathrm{T}} \end{pmatrix} \ge 0,$$

где минимизация проводится по матричным переменным $Q(t_k)$, $Y_k \in \mathbb{R}^{m \times n}$, $Z(t_k) \in \mathbb{R}^{n \times n}$, скалярной переменной $\beta(t_k) > \mu_0/\alpha_k$, определяет согласно (11) матрицу Q(t) ограничивающего эллипсоида для вектора состояния z(t) и зависимую от времени матрицу коэффициентов дискретного управления по состоянию $K(t_k) = Y_k(CQ(t_k-0)C^T)^{-1}$. Если, кроме того, матрица Q(t) удовлетворяет дополнительно ограничениям $Q_{z0} \geq R_0$ и $Q(t) \leq R(t)$ для всех $t \in [t_0, t_0 + Nh]$, где R_0 и R(t) — заданные положительно определенные симметрические матрицы, то искомое управление (18) обеспечивает ограниченность замкнутой системы относительно множеств $\{E(R_0), E(R(t))\}$.

Доказательство теоремы 6 дано в Приложении.

В случае апериодического дискретного управления $(t_{k+1} - t_k = h_k \in [h_{\min}, h_{\max}])$ с учетом полученных в разделе 3 оценок состояния задача синтеза сводится к подобной задаче оптимизации $\operatorname{trace}[Q(t_{k+1} - 0)] \to \min$ при ЛМН ограничениях (12)–(14) и (20), (21) с той лишь разницей, что добавляются дополнительные ограничения на матрицу $Q(t_{k+1} - 0)$:

(22)
$$Q(t_{k+1} - 0) \ge Q(t_k) + h_{\min} Z(t_k), \quad Q(t_{k+1} - 0) \ge Q(t_k) + h_{\max} Z(t_k).$$

Замечание 3. С целью уменьшения погрешности при линейной аппроксимации решения задачи оптимизации с шагом, равным периоду дискретного управления, предлагается аппроксимировать решение задачи оптимизации на каждом дискретном интервале $[t_k,t_{k+1})$ с более мелким шагом, чем период дискретного управления, т.е. $h_i=(t_{k+1}-t_k)/M=h/M$, где M— количество промежуточных точек интервала $[t_k,t_{k+1})$. В результате исходная задача оптимизации заменяется следующей:

$$\operatorname{trace}\left(Q\left(t_{k+1}-0
ight)
ight)
ightarrow \min$$
 с ЛМН ограничениями $Q\left(t_{kj}
ight)=Q\left(t_{k(j-1)}
ight)+\left(j-1
ight)h_{i}Z\left(t_{k(j-1)}
ight)>0,$

$$\begin{bmatrix} -Z(t_{k(j-1)}) + A_z Q(t_{k(j-1)}) + Q(t_{k(j-1)}) A_z^{\mathrm{T}} + & D_z & Q(t_{k(j-1)}) C_{fz}^{\mathrm{T}} & 0 \\ & + \alpha_{kj} Q(t_{k(j-1)}) + \beta \Phi_z \Phi_z^{\mathrm{T}} & D_z & Q(t_{k(j-1)}) C_{fz}^{\mathrm{T}} & 0 \\ & D_z^{\mathrm{T}} & -\alpha_{kj} I & 0 & I \\ & C_{fz} Q(t_{k(j-1)}) & 0 & -\frac{\beta_{kj}}{\mu_1} I & 0 \\ & 0 & I & 0 & -\frac{\beta_{kj}}{\mu_0} I \end{bmatrix} \leq 0,$$

$$\begin{bmatrix} -Z(t_{k(j-1)}) + A_z Q(t_{kj}) + Q(t_{kj}) A_z^{\mathrm{T}} + & D_z & Q(t_{kj}) C_{fz}^{\mathrm{T}} & 0 \\ + \alpha_{kj} Q(t_{kj}) + \beta \Phi_z \Phi_z^{\mathrm{T}} & -\alpha_{kj} I & 0 & I \\ D_z^{\mathrm{T}} & -\alpha_{kj} I & 0 & I \\ C_{fz} Q(t_{kj}) & 0 & -\frac{\beta_{kj}}{\mu_1} I & 0 \\ 0 & I & 0 & -\frac{\beta_{kj}}{\mu_0} I \end{bmatrix} \le 0,$$

при всех $j=1,2,\ldots,M$ и ЛМН

$$\begin{pmatrix} Q(t_k) & \tilde{J}Q(t_k-0)\tilde{C}^{\mathrm{T}} + \tilde{B}Y_k) \\ \tilde{C}Q(t_k-0)\tilde{J}^{\mathrm{T}} + Y_k^{\mathrm{T}}\tilde{B}^{\mathrm{T}} & \tilde{C}Q(t_k-0)\tilde{C}^{\mathrm{T}} \end{pmatrix} \geq 0,$$

где $t_{kj} = t_{k(j-1)} + (j-1)h_i$, $\alpha_{kj} = \alpha(Q(t_{kj}))$ и матрицы A_z, D_z, Φ_z, C_{fz} берутся в момент t_{kj} .

6. Численные примеры

Для сравнения рассмотрим часто встречающийся пример из [6] линейной системы с дискретным управлением со значениями параметров:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & -0.1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0.1 \end{bmatrix}, \quad K = \begin{bmatrix} -3.75 & -11.5 \end{bmatrix}.$$

Среди разрабатываемых подходов [6, 7, 9, 14, 16, 17] наибольшая верхняя оценка h=1,7294 периода дискретного управления с постоянными коэффициентами K была получена в [18] с использованием так называемого петлевого функционала с граничными условиями. Применение предложенного здесь подхода при численном решении МСС (7), принимающей вид $dQ(t)/dt = A_zQ + QA_z^{\rm T}$ для линейной системы без возмущений, с РЛМН (10), получена такая же верхняя граница рассматриваемого дискретного управления, при котором эллипсоидальные оценки множества решений с начальными данными из заданного эллипсоида через некоторый промежуток времени стягиваются к началу координат, что соответствует поведению асимптотически устойчивой системы.

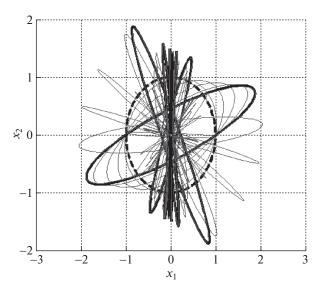


Рис. 1. Эллипсоидальные оценки множества состояний системы с периодическим (h=1,7294) дискретным управлением.

Следует отметить, что в [18] с помощью достаточно сложного, так называемого петлевого функционала анализ асимптотической устойчивости линейной автономной системы без возмущений сводился к разрешимости задачи оптимизации с ЛМН, в которой наряду с обычными переменными появляется большое количество вспомогательных матричных переменных. При этом существенно возрастает размерность ЛМН. В отличие от [18] предлагаемый подход применительно к линейным системам без возмущений позволяет свести задачу оценивания состояния (а также анализа асимптотической устойчивости) к совокупности задач оптимизации с ЛМН, в которых отсутствуют какие-либо вспомогательные переменные, что приводит к сокращению вычислений.

На рис. 1 толстыми сплошными линиями показаны эллипсы, ограничивающие состояния рассматриваемой системы в дискретные моменты времени $t_k=kh,\ k=1,\ldots,N,$ при h=1,7294, а тонкими сплошными линиями — в промежуточные моменты времени. Начальный эллипс с матрицей $Q_0=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ показан штриховой линией.

Пусть теперь период дискретного управления задан как $h=5\,\mathrm{c}$. В результате решения задачи оптимизации $\mathrm{trace}(Q(t_{k+1}))\to \min\ \mathrm{c}$ ЛМН ограничениями (12)–(14) и (22) при каждом $k=0,1,\ldots,19$ были получены коэффициенты усиления $K(t_k)$ дискретного управления, которое обеспечивает ограниченность на интервале $[0,\ 70\,\mathrm{c}]$ траекторий рассматриваемой системы, с начальными данными из эллипса с матрицей Q_0 (показан на рис. 2,a толстой штриховой линией). Тонкими сплошными линиями показаны эллипсы, ограничивающие состояния в точках дискретизации t_k указанного интервала времени. При этом эллипсы сначала при каждом $t_k \in [0,\ 25\,\mathrm{c})$ расширяются (по критерию $\mathrm{trace}(Q(t_k))$, а во второй части интервала $[0,\ 70\,\mathrm{c}]$ медленно сжимаются.

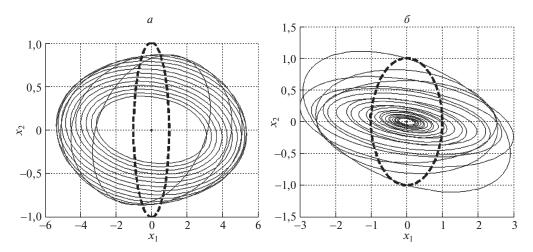


Рис. 2. Эллипсоидальные оценки множества состояний системы с периодическим $(h=5\,\mathrm{c})$ дискретным управлением.

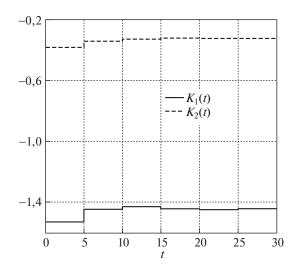


Рис. 3. Изменения коэффициентов усиления периодического $(h=5\,\mathrm{c})$ дискретного управления.

С использованием замечания 2 при $h_i = h/5 = 1$ с были получены коэффициенты дискретного управления и эллипсоидальные оценки состояния, которые представлены на рис. $2, \delta$. Штриховой линией показан начальный эллипс, а тонкими сплошными линиями — эллипсы, ограничивающие состояния в дискретные t_k и промежуточные t_{ki} моменты времени рассматриваемого интервала $[0, 70 \, \mathrm{c}]$.

Сравнивая рис. 2,a и $2,\delta$, можно отметить, что полученное периодическое дискретное управление обеспечивает после $t=5\,\mathrm{c}$ постепенное сжатие эллипсоидальных оценок, причем более эффективное (по критерию следа матрицы эллипса) при использовании замечания 2. На рис. 3 изображены графики изменения коэффициентов усиления дискретного управления.

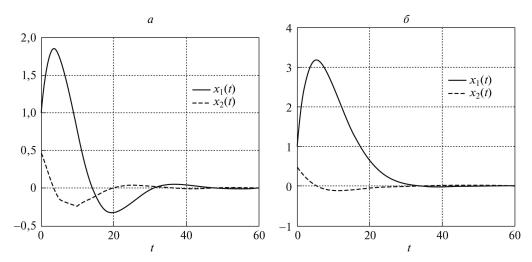


Рис. 4. Изменения координат состояния рассматриваемой системы (a) с периодическим, (δ) с апериодическим дискретным управлением.

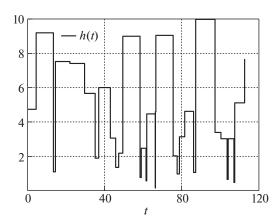


Рис. 5. Изменение шага дискретизации в системе с апериодическим дискретным управлением.

В результате решения задачи оптимизации из теоремы 6 для системы с апериодическим дискретным управлением ($h_{\min}=0.01\,\mathrm{c}$; $h_{\max}=10\,\mathrm{c}$) получены коэффициенты усиления $K=[-0.0617\ -0.4326\]$, при которых обеспечивается сначала расширение, а после $10\,\mathrm{c}$ — медленное сжатие эллипсоидальных оценок. На рис. 4,a показаны изменения координат состояния рассматриваемой системы с полученным периодическим ($h=5\,\mathrm{c}$) дискретным управлением, а на рис. $4,\delta$ — с апериодическим дискретным управлением при изменении шага дискретизации $h_k \in [h_{\min}, h_{\max}]$, задаваемого с помощью датчика случайных чисел (показано на рис. 5).

7. Приложение к однозвенному манипулятору

Рассматривается манипулятор с одним звеном, который через редуктор соединен с выходным валом двигателя постоянного тока [37]. Предполагается, что движение манипулятора происходит в вертикальной плоскости (рис. 6).



Рис. 6. Кинематическая схема однозвенного манипулятора.

Обозначим θ_1 — угол отклонения от вертикальной оси, $\dot{\theta}_1 = d\theta_1/dt$ — угловая скорость звена манипулятора. Предполагается, что известны значения θ_1 , $\dot{\theta}_1$ только в дискретные моменты времени $t_k \in \Theta$.

Уравнение динамики манипулятора имеет вид

$$(23) (m_1 l_1^2 + I_{p1})\ddot{\theta}_1 = -m_1 g l_1 \sin \theta_1 + T_1 - B_{\theta 1} \dot{\theta}_1 - w_1.$$

Здесь m_1 , l_1 , I_{p1} — масса, расстояние до центра масс и момент инерции звена, $B_{\theta 1}$ — коэффициент пропорциональности момента вязкого трения, w_1 — неопределенное возмущение, вызванное моментами сопротивления, сухого трения и других неучтенных моментов, T_1 — момент, создаваемый двигателем постоянного тока.

Пренебрегая электромагнитными переходными процессами в якорной обмотке двигателя и полагая, что момент двигателя пропорционален напряжению якорной обмотки, выражение для момента представляется в виде

(24)
$$T_1 = \frac{K_g K_m}{R} V_1 - \frac{(K_g K_m)^2}{R} \dot{\theta}_1,$$

где K_g, K_m, R — коэффициенты редукции, пропорциональности и активное сопротивление обмотки двигателя, V_1 — управляющее напряжение. Таким образом, момент, приложенный к звену, является функцией входного напряжения якорной обмотки двигателя. Второй член пропорционален угловой скорости со знаком минус потому, что ЭДС вращения вызывает противодействующий момент по сравнению с моментом, создаваемым входным напряжением.

Положение равновесия для манипулятора определяется из уравнения

$$-m_1gl_1\sin\theta_1 + T_1 = 0.$$

Если требуется стабилизировать манипулятор в заданном положении θ_{10} , то необходимо приложить управляющий момент $T_0 = m_1 g l_1 \sin \theta_{10}$. Тогда из (24) получаем выражение для установочного значения напряжения для выбранного положения:

$$V_0 = m_1 g l_1 \sin \theta_{10} \frac{R}{K_g K_m}.$$

Введем обозначения для отклонений от невозмущенного движения θ_{10} и от установочных значений момента и напряжения:

$$\theta = \theta_1 - \theta_{10}, \quad \dot{\theta} = \dot{\theta}_1, \quad \ddot{\theta} = \ddot{\theta}_1, \quad T = T_1 - T_0, \quad V = V_1 - V_0.$$

После подстановки (24) в (23) с учетом обозначения $\beta = K_g K_m$ получаем уравнение движения манипулятора в отклонениях от требуемого положения равновесия θ_{10} :

$$\ddot{\theta} = \frac{-m_1 g l_1 [\sin(\theta + \theta_{10}) - \sin(\theta_{10})] - \left(B_{\theta 1} + \frac{\beta^2}{R}\right) \dot{\theta} + \frac{\beta}{R} V - w}{m_1 l_1^2 + I_{p1}}.$$

Определим вектор состояния $x = (\theta, \dot{\theta})^{\mathrm{T}}$ и управление $u(t_k) = V(t_k) = K(t_k)x(t_k)$. Тогда исходное уравнение представляется в виде (1), где

$$A = \begin{pmatrix} 0 & 1 \\ \frac{m_1 g l_1}{m_1 l_1^2 + I_{p1}} & -\frac{B_{\theta 1} + \frac{\beta^2}{R}}{m_1 l_1^2 + I_{p1}} \end{pmatrix},$$

$$B = \begin{pmatrix} 0 \\ \frac{\beta}{R(m_1 l_1^2 + I_{p1})} \end{pmatrix}, \quad D_1 = \begin{pmatrix} 0 \\ -\frac{1}{m_1 l_1^2 + I_{p1}} \end{pmatrix}, \quad \Phi = \begin{pmatrix} 0 \\ \frac{-m_1 g l_1}{m_1 l_1^2 + I_{p1}} \end{pmatrix},$$

$$C_f = \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad \varphi(\theta) = \sin(\theta + \theta_{10}) - \sin(\theta_{10}) - \theta.$$

Моделирование системы с регуляторами проводилось при значениях параметров: $l=0.5; I_P=0.05; g=9.8; R=2.6; K_q=3.7; K_m=3.835; B_\theta=0.025.$

Пусть требуется стабилизировать звено манипулятора в вертикальном положении $\theta_{10}=\pi$. При таком θ_{10} нелинейность $\varphi(\theta)$ удовлетворяет условию (2) при $\mu_0=0,\ \mu_1\leq 1$.

С использованием теоремы 6 в результате решения совокупности задач оптимизации с ЛМН при $\alpha=0{,}0043,\ \beta=1{,}0296$ было получено периодическое с h=2 с дискретное управление с постоянными коэффициентами усиления $K=[-3{,}2518\ -0{,}0025]$, которое обеспечивает на конечном интервале [0 100 c] стабилизацию манипулятора с начальными данными из эллипса с матрицей $Q_0=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. На рис. 7 представлены эллипсоидальные оценки состояния однозвенного манипулятора с периодическим дискретным управлением. Начальный эллипс с матрицей Q_0 обозначен толстой штриховой линией. Тонкими сплошными линиями показаны эллипсы, ограничивающие состояние в дискретные моменты времени $t_k,\ k=1,2,\ldots,50$. Предельный эллипс с матрицей $Q_0=\begin{bmatrix} 0{,}1193\ -0{,}0159\ 0{,}5904 \end{bmatrix}$, к которому стягиваются оценки состояния при $t\geq 90$ с, обозначен толстой сплошной линией.

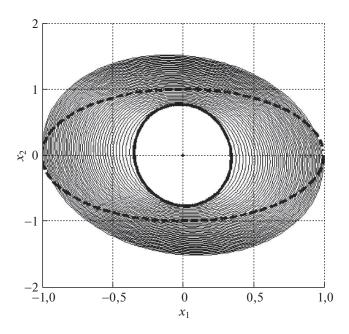


Рис. 7. Оценки множества состояний однозвенного манипулятора с периодическим дискретным управлением при действии возмущений.

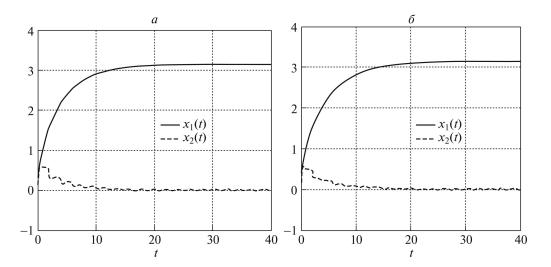


Рис. 8. Изменения координат состояния однозвенного манипулятора (a) с периодическим дискретным управлением, (δ) с апериодическим дискретным управлением при действии возмущений.

На рис. 8,a и 8,b показаны изменения координат состояния однозвенного манипулятора соответственно с периодическим и апериодическим дискретным управлением при действии возмущения, заданного в виде $w(t) = \sin(2\cos(3t))$.

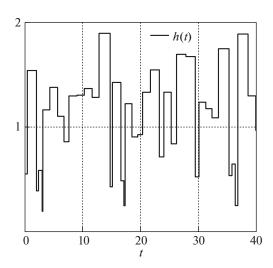


Рис. 9. Изменение шага дискретизации в системе с апериодическим дискретным управлением.

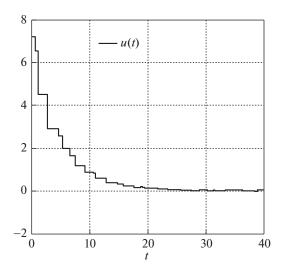


Рис. 10. Изменение апериодического дискретного управляющего сигнала.

На рис. 9 и 10 представлены соответственно изменения шага дискретизации и управляющего сигнала в системе с апериодическим дискретным управлением при действии возмущений.

8. Заключение

Для непрерывных систем с липшицевыми нелинейностями, неопределенными возмущениями и дискретным управлением предложены способы оценивания состояния в виде эллипсоидов, ограничивающих состояния для процессов с начальными данными из заданного эллипсоида. Исходная система с дискретным управлением представлена как импульсная система. С исполь-

зованием квадратичной функции Ляпунова с изменяющимися параметрами получены условия ограниченности на конечном интервале в виде разрешимости дифференциального матричного уравнения и задачи оптимизации с дифференциально-разностными линейными матричными неравенствами. При кусочно-линейной аппроксимации решения ДЛМН задачи оценивания состояния и синтеза как периодического, так и апериодического дискретного управления сведены к совокупности задач оптимизации с ЛМН, для численного решения которых применены методы полуопределенного программирования. Для сравнения рассмотрен пример линейной системы второго порядка без возмущений. Для него известными методами была ранее получена верхняя граница периода дискретного управления с постоянными коэффициентами, при которых обеспечивается асимптотическая устойчивость. Такая же верхняя граница получена с применением предложенного подхода при сокращении количества варьируемых переменных в задаче оптимизации. Кроме того, данный подход позволяет получать на конечном интервале времени эллипсоидальные оценки множества состояний исходной нелинейной системы с дискретным управлением и неопределенными возмущениями, синтезировать дискретное управление, обеспечивающее свойство ограниченности относительно заданных множеств. Результаты применены для оценивания состояния и синтеза периодического и апериодического дискретного управления, обеспечивающего стабилизацию на конечном интервале времени однозвенного манипулятора, представленного нелинейной моделью с неопределенными возмущениями.

ПРИЛОЖЕНИЕ

Доказательство леммы. Чтобы скалярная переменная $\operatorname{trace}(Q(t))$, зависящая от времени и параметров, принимала наименьшее значение при каждом $t \in [t_k, t_{k+1})$, достаточно, чтобы ее производная $d(\operatorname{trace}(Q(t)))/dt$ была минимальной по параметрам $\beta > 0$, $\alpha > \mu_0/\beta$ при всех $t \in [t_k, t_{k+1})$. Поскольку $d(\operatorname{trace}(Q(t)))/dt = \operatorname{trace}(dQ(t)/dt)$, то приходим к следующей задаче оптимизации:

(II.1) trace
$$\left(A_z Q + Q A_z^{\mathrm{T}} + \alpha Q + \frac{\beta}{\alpha \beta - \mu_0} D_z D_z^{\mathrm{T}} + \beta \Phi_z \Phi_z^{\mathrm{T}} + \frac{\mu_1}{\beta} Q C_{fz}^{\mathrm{T}} C_{fz} Q\right) \rightarrow \min_{\alpha, \beta}$$
.

Так как trace $(A_zQ+QA_z^{\rm T})$ не зависит от α и β , то минимум для (П.1) (если существует) будет отличаться от минимума функции $F(\alpha,\beta)=\alpha {\rm trace}(Q)+\frac{\beta}{\alpha\beta-\mu_0}{\rm trace}(D_zD_z^{\rm T})+\beta {\rm trace}(\Phi_z\Phi_z^{\rm T})+\frac{\mu_1}{\beta}{\rm trace}(QC_{fz}^{\rm T}C_{fz}Q)$ на постоянную при каждом t величину ${\rm trace}(A_zQ+QA_z^{\rm T})$. По условиям леммы матрицы Φ_z и D_z имеют хотя бы по одному ненулевому элементу при каждом $t\in [t_k,t_{k+1})$. Величины ${\rm trace}(D_zD_z^{\rm T})$ и ${\rm trace}(\Phi_z\Phi_z^{\rm T})$ будут положительными при всех $t\in [t_k,t_{k+1})$, так как они представляют собой квадрат нормы Φ робениуса для матриц $D_z^{\rm T}$ и $\Phi_z^{\rm T}$ соответственно. Матрица Q(t) является положительно определенной при всех $t\in [t_k,t_{k+1})$, так что ${\rm trace}(Q(t))>0$ и ${\rm trace}(QC_{fz}^{\rm T}C_{fz}Q)\geq 0$. Функция $F(\alpha,\beta)$ определена, непрерывна, непрерывно

дифференцируема, ограничена снизу $F(\alpha,\beta)>0$ в открытой выпуклой области $\beta>0,\ \alpha>\mu_0/\beta$. Проверим условие выпуклости функции $F(\alpha,\beta)$ по α,β . Для этого вычислим частные производные второго порядка для $F(\alpha,\beta)$ по параметрам β,α :

$$\begin{split} (\Pi.2) \qquad \partial \operatorname{trace}(dQ(t)/dt)/\partial \alpha &= \operatorname{trace}(Q(t)) - \frac{\beta^2}{(\alpha\beta - \mu_0)^2} \operatorname{trace}(D_z D_z^{\mathrm{T}}), \\ (\Pi.3) \qquad \partial \operatorname{trace}(dQ(t)/dt)/\partial \beta &= -\frac{\mu_1}{\beta^2} \operatorname{trace}(Q C_{fz}^{\mathrm{T}} C_{fz} Q) - \\ &- \frac{\mu_0}{(\alpha\beta - \mu_0)^2} \operatorname{trace}(D_z D_z^{\mathrm{T}}) + \operatorname{trace}(\Phi_z \Phi_z^{\mathrm{T}}), \\ \partial^2 \operatorname{trace}(dQ(t)/dt)/\partial \alpha^2 &= \frac{2\beta^3}{(\alpha\beta - \mu_0)^3} \operatorname{trace}(D_z D_z^{\mathrm{T}}), \\ \partial^2 \operatorname{trace}(dQ(t)/dt)/\partial \alpha \partial \beta &= \partial^2 \operatorname{trace}(dQ(t)/dt)/\partial \beta \partial \alpha &= \frac{2\beta\mu_0}{(\alpha\beta - \mu_0)^3} \operatorname{trace}(D_z D_z^{\mathrm{T}}), \\ \partial^2 \operatorname{trace}(dQ(t)/dt)/\partial \beta^2 &= \frac{2\mu_1}{\beta^3} \operatorname{trace}(Q C_{fz}^{\mathrm{T}} C_{fz} Q) + \frac{2\mu_0 \alpha}{(\alpha\beta - \mu_0)^3} \operatorname{trace}(D_z D_z^{\mathrm{T}}). \end{split}$$

Легко видеть, что матрица вторых производных (гессиан)

$$\nabla^{2} F(\alpha, \beta) = \frac{2}{(\alpha \beta - \mu_{0})^{3}} \operatorname{trace}(D_{z} D_{z}^{T}) \begin{bmatrix} \beta^{3} & \mu_{0} \beta \\ \mu_{0} \beta & \mu_{0} \alpha \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 2\mu_{1} \operatorname{trace}(Q C_{fz}^{T} C_{fz} Q)/\beta^{3} \end{bmatrix}$$

является положительно определенной при всех $\beta > 0$, $\alpha > \mu_0/\beta$. Согласно теореме 5 из [38, с. 163], функция $F(\alpha,\beta)$ является выпуклой по параметрам β , α из области определения. Известно, что если выпуклая функция имеет минимум внутри открытой выпуклой области, то этот минимум будет глобальным. Для нахождения минимума определим стационарные точки, используя необходимые условия экстремума функции [38]. Приравнивая производные (Π .2), (Π .3) нулю, получаем:

(II.4)
$$\operatorname{trace}(Q(t)) = \frac{\beta^2}{(\alpha\beta - \mu_0)^2} \operatorname{trace}(D_z D_z^{\mathrm{T}}),$$

$$(\Pi.5) \qquad \operatorname{trace}(\Phi_z \Phi_z^{\mathrm{T}}) = \frac{\mu_1}{\beta^2} \operatorname{trace}(Q C_{fz}^{\mathrm{T}} C_{fz} Q) + \frac{\mu_0}{(\alpha \beta - \mu_0)^2} \operatorname{trace}(D_z D_z^{\mathrm{T}}).$$

Уравнение (П.5) с учетом (П.4) принимает вид

$$\operatorname{trace}(\Phi_z \Phi_z^{\mathrm{T}}) = \frac{1}{\beta^2} \left[\mu_0 \operatorname{trace}(Q(t)) + \mu_1 \operatorname{trace}(QC_{fz}^{\mathrm{T}} C_{fz} Q) \right].$$

Отсюда находится $\beta(Q(t))$ как в (8). Далее из первого уравнения находим $(\alpha\beta-\mu_0)^2=rac{\beta^2\mathrm{trace}(D_zD_z^T)}{\mathrm{trace}(Q(t))}$ и, извлекая квадратный корень из обеих частей,

получаем второе в (8) выражение для $\alpha(Q(t))$. Так что (8) является единственным решением уравнений (П.2), (П.3) при $\beta > 0$, $\alpha > \mu_0/\beta$.

Выше было показано, что матрица вторых частных производных является положительно определенной при всех $\beta > 0$, $\alpha > \mu_0/\beta$, а значит, и для β , α из (8). Таким образом, согласно достаточным условиям [38] полученные выражения (8) действительно доставляют глобальный минимум $d(\operatorname{trace}(Q(t)))/dt$ при каждом $t \in [t_k, t_{k+1})$, что завершает доказательство леммы.

 \mathcal{A} оказательство теоремы 6. В случае периодического дискретного управления $(h_k = h = \mathrm{const} > 0)$, как показано в разделе 3, задача построения оценки состояния сводится к совокупности задач оптимизации $\mathrm{trace}(Q(t_{k+1}-0)) \to \min$ с ЛМН ограничениями (10), (12)–(14) для всех $k=0,\ldots,N-1$. С учетом (19) матричное неравенство (10) здесь принимает вид

$$\begin{pmatrix} Q(t_k) & (\tilde{J} + \tilde{B}K(t_k)C)Q(t_k - 0) \\ Q(t_k - 0)(\tilde{J} + \tilde{B}K(t_k)C)^{\mathrm{T}} & Q(t_k - 0) \end{pmatrix} \ge 0.$$

Далее, умножая последнее неравенство слева на матрицу $\operatorname{diag}(I,C)$, а справа — на $\operatorname{diag}(I,C^{\mathrm{T}})$ и вводя замену $Y_k = K(t_k)CQ(t_k-0)C^{\mathrm{T}}$, приходим к РЛМН (20) относительно матричных переменных $Q(t_k)$, $Q(t_{k+1}-0)$ и Y_k . Ограничение на управление (17) обеспечивается ЛМН (21). Отметим, что параметр α_k при каждом $k=0,1,2,\ldots,N-1$ определяется из (8) по известной после k-й итерации матрице $Q(t_k-0)$, а матрица $CQ(t_k-0)C^{\mathrm{T}}$ будет положительно определенной, так как является верхним левым блоком размерности $(n\times n)$ -матрицы $Q(t_k-0)$. Теорема 6 доказана.

Автор выражает благодарность А.И. Матасову за ряд ценных замечаний по статье.

СПИСОК ЛИТЕРАТУРЫ

- 1. Hetel L., Fiter C., Omran H., Seuret A., Fridman E., Richard J.-P., Niculescu S. Recent Developments on the Stability of Systems with Aperiodic Sampling: an Overview // Automatica. 2017. V. 76. P. 309–335.
- 2. Seuret A. Contributions to the Stability Analysis and Control of Networked Systems. Automatic Control Engineering. Université Toulouse 3 Paul Sabatier, 2017.
- 3. Hespanha J.P., Naghshtabrizi P., Xu Y. A Survey of Recent Results in Networked Control Systems // Proc. IEEE. 2007. V. 95 (1). P. 138–162.
- 4. Zhang X.-M., Han Q.-L., Yu X. Survey on Recent Advances in Networked Control Systems // IEEE Trans. Ind. Inf. 2016. V. 12. P. 1740–1752.
- 5. Lee T., Wu Z.-G., Park J. Synchronization of a Complex Dynamical Network with Coupling Time-Varying Delays via Sampled-Data Control // Appl. Math. Comput. 2012. V. 219 (3). P. 1354–1366.
- 6. Fridman E., Seuret A., Richard J.-P. Robust Sampled-Data Stabilization of Linear Systems: An Input Delay Approach // Automatica. 2004. V. 40. P. 1441–1446.
- 7. Fridman E. A Refined Input Delay Approach to Sampled-Data Control // Automatica. 2010. V. 46. P. 421–427.

- 8. Naghshtabrizi P., Hespanha J., Teel A. On the Robust Stability and Stabilization of Sampled-Data Systems: A Hybrid System Approach. // Proc. 45th IEEE Conf. on Decision and Control, San Diego, CA, USA, 13–15 December 2006. P. 4873–4878.
- 9. Naghshtabrizi P., Hespanha J.P, Teel A.R. Exponential Stability of Impulsive Systems with Application to Uncertain Sampled-Data Systems // Syst. Control Lett. 2008. V. 57. P. 378–385.
- Suh Y. Stability and Stabilization of Nonuniform Sampling Systems // Automatica. 2008. V. 44. P. 3222–3226.
- 11. Fujioka H. A Discrete-time Approach to Stability Analysis of Systems with Aperiodic Sample-and-hold Devices // IEEE Trans. Automat. Control. 2009. V. 54 (10). P. 2440–2445.
- 12. Oishi Y., Fujioka H. Stability and Stabilization of Aperiodic Sampled-Data Control Systems Using Robust Linear Matrix Inequalities // Automatica. 2010. V. 46. P. 1327–1333.
- 13. Chen W.-H., Zheng W.X. Input-to-State Stability for Networked Control Systems via an Improved Impulsive System Approach // Automatica. 2011. V. 47. P. 789–796.
- Seuret A. A Novel Stability Analysis of Linear Systems under Asynchronous Sampling // Automatica. 2012. V. 48. P. 177–182.
- 15. Zhang C.-K., Jiang L., He Y., Wu H., Wu M. Stability Analysis for Control Systems with Aperiodically Sampled Data Using an Augmented Lyapunov Functional Method // IET Control Theory Appl. 2012. No. 7. P. 1219–1226.
- 16. Seuret A., Peet M.M. Stability Analysis of Sampled-Data Systems Using Sum of Squares // IEEE Trans. Automat. Control. 2013. V. 58 (6). P. 1620–1625.
- 17. Briat C. Convex Conditions for Robust Stability Analysis and Stabilization of Linear Aperiodic Impulsive and Sampled-Data Systems under Dwell-Time Constraints // Automatica. 2013. V. 49. P. 3449–3457.
- 18. Seuret A., Briat C. Stability Analysis of Uncertain Sampled-Data Systems with Incremental Delay Using Looped Functionals // Automatica. 2015. V. 55. P. 274–278.
- 19. Omran H., Hetel L., Petreczky M., Richard J.P., Lamnabhi-Lagarrigue F. Stability Analysis of Some Classes of Input-Affine Nonlinear Systems with Aperiodic Sampled-Data Control // Automatica. 2016. V. 70. P. 266–274.
- 20. Jiang X., Yin Z., Wu J. Stability Analysis of Linear Systems Under Time-Varying Samplings by a Non-Standard Discretization Method. // Electronics. 2018. V. 7 (10). P. 1–11.
- Xiao S.-P., Lian H., Teo K., Zeng H.-B., Zhang X.-H. A New Lyapunov Functional Approach to Sampled-Data Synchronization Control for Delayed Neural Networks // J. Franklin Inst. 2018. P. 8857–8873.
- Park J.M., Park P.G. An Improved Stability Criterion for Linear Systems with Multi-Rate Sampled Data // Nonlinear Analysis: Hybrid Systems. 2020. V. 38. P. 100947.
- 23. Sevim U., Goren-Sumer L. Singular Value Assignment for Nonuniformly Sampled Systems: Stabilization and Control. arXiv:1706.00967v2 [math.DS] 29 Jun 2020.
- 24. Khargonekar P.P., Sivashankar N. H₂ optimal Control for Sampled-Data Systems // Syst. Control Lett. 1991. V. 17. No. 6. P. 425–436.
- 25. Hu L.S., Lam J., Cao Y.Y., Shao H.H. An LMI Approach to Robust H₂ Sampled-Data Control for Linear Uncertain Systems // IEEE Trans. Syst., Man and Cybernetics, Part B: Cybernetics. 2003. V. 33. No. 1. P. 149–155.
- 26. Kim J.H., Hagiwara T. Extensive Theoretical/Numerical Comparative Studies on $\rm H_2$ and Generalized $\rm H_2$ Norms in Sampled-Data Systems // Int. J. Control. 2017. V. 90. No. 11. P. 2538–2553.

- 27. Kim J.H., Hagiwara T. Upper/Lower Bounds of Generalized H₂ Norms in Sampled-Data Systems with Convergence Rate Analysis and Discretization Viewpoint // Syst. Control Lett. 2017. V. 107. P. 28–35.
- 28. *Бирюков Р.С.* Обобщенное H₂-управление линейным непрерывно-дискретным объектом на конечном горизонте // AиT. 2020. № 8. С. 40–53. *Birukov R.S.* Generalized H₂-optimal Control of Continuous-Discrete Linear Plant on a Finite Horizont // Autom. Remote Control. 2020. V. 81. No. 8. P. 1394–1404.
- 29. Geromel J.C., Colaneri P., Bolzern P. Differential Linear Matrix Inequality in Optimal Sampled-Data Control // Automatica. 2019. V. 100. P. 289–298.
- 30. Holicki T., Carsten W., Scherer C.W. Output Feedback Synthesis for a Class of Aperiodic Impulsive Systems. arXiv:1910.03486v3 [math.OC] 21 Jun 2020.
- 31. Ríos H., Hetel L., Efimov D. Robust Output-feedback Control for Uncertain Linear Sampled-Data Systems: A 2D Impulsive System Approach // Nonlinear Analysis: Hybrid Systems, 2019. P. 177–201.
- 32. Amato F., Ambrosino R., Ariola M., Cosentino C., De Tommasi G. Finite Time Stability and Control. London: Springer-Verlag, 2014.
- 33. Amato F., De Tommasi G., Pironti A. Finite-time Stability: an Input-output Approach. N.Y.: Wiley, 2018.
- 34. *Маликов А.И.* Оценивание состояния и стабилизация непрерывных систем с неопределенными нелинейностями и возмущениями // AuT. 2016. № 5. С. 19–36. *Malikov A.I.* State Estimation and Stabilization of Continuous Systems with Uncertain Nonlinearities and Disturbances // Autom. Remote Control. 2016. V. 77. No. 5. P. 764–778.
- 35. *Маликов А.И.* Оценивание состояния и стабилизация дискретных систем с неопределенными нелинейностями и возмущениями // АиТ. 2019. № 11. С. 59–82. *Malikov A.I.* State Estimation and Stabilization of Discrete-time Systems with Uncertain Nonlinearities and Disturbances // Autom. Remote Control. 2019. V. 80. No. 11. P. 1976–1995.
- 36. *Маликов А.И.*, *Дубакина Д.И*. Численные способы решения задач оптимизации с дифференциальными линейными матричными неравенствами // Изв. ВУЗов. Математика. 2020. N 4. С. 74–86.
 - $Malikov\ A.I.,\ Dubakina\ D.I.$ Numerical Methods for Solving Optimization Problems with Differential Linear Matrix Inequalities // Izv. Vyssh. Uchebn. Zaved. Mat. 2020. No. 4. P. 74–86.
- 37. *Маликов А.И.* Синтез наблюдателей состояния по результатам измерений для нелинейных липшицевых систем с неопределенными возмущениями //AuT. 2017. № 5. С. 16–35.
 - $Malikov\ A.I.$ State Observer Synthesis by Measurement Results for Nonlinear Lipschitz Systems with Uncertain Disturbances // Autom. Remote Control. 2017. V. 78. No. 5. P. 782–797.
- 38. Васильев В.П. Методы оптимизации. М.: Факториал Пресс, 2002.

Статья представлена к публикации членом редколлегии А.И. Матасовым.

Поступила в редакцию 11.09.2020

После доработки 21.11.2020

Принята к публикации 08.12.2020