Линейные системы

 © 2022 г. О.В. ДРУЖИНИНА, д-р физ.-мат. наук (ovdruzh@mail.ru) (Федеральный исследовательский центр «Информатика и управление» РАН, Москва,
 Институт проблем управления им. В.А. Трапезникова РАН, Москва),
 H.O. СЕДОВА, д-р физ.-мат. наук (sedovano@ulsu.ru) (Ульяновский государственный университет, Ульяновск)

К ЗАДАЧЕ СТАБИЛИЗАЦИИ ПО ВЫХОДУ: ПОСТРОЕНИЕ ЗАПАЗДЫВАЮЩЕЙ ОБРАТНОЙ СВЯЗИ ДЛЯ КРАТНОГО ИНТЕГРАТОРА

Предлагается структура обратной связи, стабилизирующей *n*-кратный интегратор с четным *n*. Известно, что для многих дифференциальных систем, в частности для моделей механических систем, задачи стабилизации допускают преобразование в специальную форму, содержащую кратные интеграторы в качестве подсистемы. Построенное управление для произвольного четного порядка интегратора представляет собой линейную комбинацию координат запаздывающего состояния с нечетными индексами и зависит от трех числовых параметров. Эти параметры удовлетворяют ограничениям простого вида и могут изменяться в широких пределах в зависимости от требований к качеству управления. Приведены примеры структур систем более общего вида, для которых построенное управление обеспечивает асимптотическую устойчивость положения равновесия. Для обоснования стабилизирующих свойств управления используются свойства устойчивости систем с запаздыванием каскадной структуры.

Ключевые слова: кратный интегратор, стабилизация по выходу, запаздывание.

DOI: 10.31857/S0005231022020027

1. Введение

Всюду ниже используются в основном стандартные обозначения: R^n обозначает *n*-мерное пространство векторов $x = (x_1, \ldots, x_n)^\top$, $R^+ = [0, +\infty)$, $\dot{x}_i(t)$ – *правостороннюю* производную (уточнение требуется в связи с изначально предполагаемым запаздыванием в структуре обратной связи, которое превращает исследуемую систему в систему с запаздывающим аргументом).

Рассмотрим управляемую систему, описываемую уравнением $x^{(n)}(t) = u(t), t \in \mathbb{R}^+$, что эквивалентно системе, часто называемой цепью интеграторов (chain on integrators) или кратным интегратором:

(1)
$$\dot{x}_i(t) = x_{i+1}(t), \ i = 1, \dots, n-1, \\ \dot{x}_n(t) = u(t).$$

В дальнейшем без специальных оговорок управление называем стабилизирующим, а замкнутую систему — асимптотически устойчивой, если нулевое решение системы глобально равномерно асимптотически устойчиво.

Стабилизация системы (1) является составной частью решения различных задач управления, а в ряде случаев полностью решает рассматриваемую задачу. Например, в [1] приведены нелинейные системы, для которых задача стабилизации сводится к аналогичной задаче для (1).

Задача стабилизации системы (1) в различных постановках исследовалась во многих работах (некоторые результаты и историю вопроса, см., например, в [2–6]). В частности, известно, что стабилизирующее управление для (1) не может зависеть менее чем от n значений координат. Следовательно, закон управления, определяемый текущим состоянием, должен использовать все координаты.

Несмотря на впечатляющие результаты, полученные в теории управления в последние десятилетия, остается актуальной задача построения простых по структуре стабилизирующих управлений по выходу. В [7] подчеркивается, что задача о статической стабилизации по выходу для линейной системы в общем случае является NP-сложной и ее исчерпывающее решение неизвестно. Проблема уменьшения размерности вектора, используемого для построения стабилизирующей обратной связи, исследовалась с помощью различных подходов. Перспективной идеей является использование запаздывающих значений. В частности, доказано, что при некоторых предположениях устойчивость системы с обратной связью по-прежнему гарантируется, если в стабилизирующем регуляторе значения производных заменены разностными аналогами при достаточно малых значениях запаздываний [6]. Эта идея начала активно использоваться с начала 2000-х годов. Например, в [8] построено управление по выходу, решающее задачу слежения для линейной SISO-системы при наличии параметрической и структурной неопределенности, а также внешних возмущений. В случае известной относительной степени γ объекта управления построенный регулятор определяется значениями ошибки слежения выхода в моменты $t, t - \tau, \ldots, t - \gamma \tau$ и зависит от $\gamma + 2$ параметров.

Исследование системы (1) показало, что n различных значений координат системы необходимы [9] и достаточны [10] для построения стабилизирующего управления. В зависимости от решаемой задачи авторы предлагают различные структуры управления с использованием запаздывающих значений координат. В [11] используются функции насыщения, зависящие от $x_i(t-\tau)$ $(i = 1, ..., n, \tau > 0)$; для определения этих функций требуется задать значения n + 1 параметров (включая выбор τ , верхняя граница для которого определяется остальными n значениями). В [5] управление с заданной верхней границей определяется n функциями насыщения с уровнями насыщения, связанными между собой некоторыми условиями; используются значения только первой координаты, величина запаздывания выбирается из некоторого интервала вида (0, d). В [10] управление определяется с формулой $u(t) = -\sum_{i=1}^{m} k_i x_1(t-\tau_i), 0 \leq \tau_1 < \tau_2 < \cdots < \tau_m$, коэффициен-

ты k_i зависят от n, τ_i и дополнительного параметра. В силу упомянутого выше необходимого условия стабилизации минимальное количество слагаемых в сумме составляет m = n, поэтому необходимо задать n + 1 параметров. В [12] для интегратора четвертого порядка строится управление u(t) = $= -k_1 x_1(t) + k_2 x_1(t-\tau) - k_3 x_3(t) + k_4 x_3(t-h)$, в котором шесть параметров. Отметим, что алгоритмы построения упомянутых управлений предполагают анализ характеристического уравнения замкнутой системы для определения значений параметров. Другой подход — применение прямого метода Ляпунова. Например, в [1] с использованием функции Ляпунова–Разумихина построено управление по состоянию, зависящее от $\tau > 0$ и одного дополнительного параметра $b \in (0, 1/\tau)$. В [13] предложено управление по выходу, зависящее от значений $x_1(t), x_1(t-\tau), \ldots, x_1(t-(n-1)\tau)$ и от n+2 параметров; все параметры, кроме τ , определяются в результате решения системы линейных матричных неравенств, полученных с применением функционала Ляпунова–Красовского. При этом получаемая обратная связь остается стабилизирующей при всех значениях $\tau > 0$, меняется лишь область притяжения. Отличительной особенностью построенного закона управления является также нелинейность: авторы показывают, что такой регулятор выигрывает по скорости сходимости у линейного.

Важным частным случаем задачи управления по выходу является стабилизация механической системы без измерения скоростей, которая активно изучается в последние десятилетия. Различные подходы к решению этой задачи обсуждаются, например, в [14, 15]; в линейной постановке для нее разработаны алгоритмы разной степени сложности, отличающиеся в том числе формой представления системы и видом управления; для нелинейной системы предлагаемые методы содержат, как правило, эвристическую составляющую.

Именно исследованиями в этом направлении, в частности идеей замены переменных в уравнениях движения механической системы из недавней статьи [12], в первую очередь мотивирована постановка задачи в данной работе: построить для *n*-кратного интегратора с четным *n* глобально стабилизирующую статическую обратную связь, линейно зависящую только от значений координат с нечетными номерами (текущих и/или запаздывающих).

Еще одной вдохновляющей задачей стала стабилизация линейной системы вида

(2)
$$\ddot{y}(t) = A_1 y(t) + A_2 \dot{y}(t) + B u(t) \quad (y(t) \in \mathbb{R}^l)$$

управлением в форме $u(t) = K_1 y(t - \tau_1) + K_2 y(t - \tau_2)$. Здесь $\tau_1 > 0, \tau_2 > 0, A_1, A_2, B, K_1, K_2$ – постоянные матрицы подходящих размерностей. В [16] в предположении статической стабилизируемости системы по состоянию доказано существование управления предлагаемой структуры при достаточно малых значениях τ_1, τ_2 ; коэффициенты обратной связи находятся в результате решения системы линейных матричных неравенств. Заметим, что в переменных $x = (y_1 \ \dot{y}_1 \ y_2 \ \dot{y}_2 \dots y_l \ \dot{y}_l)^{\top}$ система (2) преобразуется в стандартную линейную систему порядка 2l, при этом выбранная структура управления зависит только от значений координат с нечетными номерами. Структура остальной части статьи стандартна: за введением следует раздел с основным результатом и некоторыми обсуждениями, раздел 3 представляет результаты численного моделирования для интегратора шестого порядка, раздел 4 посвящен иллюстративным примерам и возможным приложениям, раздел 5 содержит заключительные замечания.

2. Основной результат

Рассмотрим 2*l*-кратный интегратор с управляющим входом в зависимости от *l*:

(3)
$$\dot{x}_i(t) = x_{i+1}(t), \ i = 1, \dots, 2l-1, \\ \dot{x}_{2l}(t) = u_l(t).$$

Тогда имеет место следующий результат:

 $T \, e \, o \, p \, e \, m \, a \, 1.$ Предположим, что $\tau > 0, \, 0 < a - b < a + b < (\pi/\tau)^2.$ Тогда закон управления

(4)
$$u_l(t) = -\sum_{m=1}^l \left[C_l^m \sum_{k=0}^m C_m^k (-1)^k a^{m-k} b^k x_{2(l-m)+1}(t-k\tau) \right]$$

стабилизирует систему (3) (здесь использовано стандартное обозначение $C_l^k = \frac{l!}{k!(l-k)!}$).

Доказательство теоремы 1 приведено в Приложении.

Замечание 1. Закон управления, построенный в теореме 1, содержит три параметра. Предлагаемая структура управления показывает, что можно произвольно увеличивать запаздывание при уменьшении двух других параметров. Этот вопрос подробно изучался в [11] для общей формы управления, которая зависит от всех запаздывающих координат. Настраивая параметры, можно регулировать характеристики управления (см. результаты численного моделирования ниже).

Заметим, что любая управляемая линейная стационарная система, заданная в общей форме, невырожденным линейным преобразованием приводится к каноническому виду, эквивалентному уравнению $x^{(2l)}(t) + a_1x(t) + a_2\dot{x}(t) +$ $+ \cdots + a_{2l}x^{(2l-1)}(t) = u(t)$. Можно ли применить предлагаемый способ построения управления к задаче стабилизации для последнего уравнения?

Рассмотрим соответствующую двумерную систему:

(5)
$$\begin{aligned} \dot{x}_1(t) &= x_2(t), \\ \dot{x}_2(t) &= -a_1 x_1(t) - a_2 x_2(t) + u_1(t). \end{aligned}$$

Очевидно, слагаемое $-a_1x_1(t)$ не влияет на изменения в структуре управления (4), и можно рассматривать то же управление $u_1(t)$ с заменой *a* на $a + a_1$ (по этим же соображениям в системе порядка 2l все коэффициенты с нечетными номерами могут быть произвольными).

При $a_2 > 0$ область устойчивости в пространстве параметров управления предсказуемо расширяется (рис. 1, слева) и управление $u_1(t)$ остается

Рис. 1. Фрагмент области устойчивости для системы (5), (4) при малом $|a_2|\tau$.

стабилизирующим для значений $a + a_1$ и b из треугольника, определяемого условиями теоремы 1. При $a_2 < 0$ область устойчивости, наоборот, сужается (рис. 1, справа); при достаточно больших значениях $|a_2|\tau$ треугольники, заштрихованные на рис. 8, стягиваются в точки, и система становится неустойчивой для всех $a + a_1$ и b.

Поэтому рассмотренный подход к стабилизации не обобщается непосредственно на уравнение $x^{(2l)}(t) + a_1x(t) + a_2\dot{x}(t) + \cdots + a_{2l}x^{(2l-1)}(t) = u_l(t)$ с произвольными параметрами a_i даже в случае l = 1, и задача требует дополнительного исследования.

3. Результаты численного моделирования

Для иллюстрации работоспособности предложенной схемы управления исследуем с помощью моделирования поведение траекторий 6-кратного интегратора с законом управления (4). Для всех представленных графиков в каче-

Рис. 2. Траектории системы (3), (4) при $a = 5, b = 4, \tau = 0,5$ (малое запаздывание, большая амплитуда $x_6(t)$).

Рис. 3. Траектории системы (3), (4) при $a = 0,5, b = 0,4, \tau = 1,5$ (большое запаздывание, большая амплитуда $x_1(t)$).

Рис. 4. Траектории системы (3), (4) при $a = 5, b = 4, \tau = 1$ (близость к границе области устойчивости, медленное затухание).

стве начальной точки выбрана (-2, 1, 1, 2, -4, 2); параметры a, b и τ различны для разных расчетов и указаны в подписях к рисункам.

Как и ожидалось, если значения параметров не попадают в область устойчивости, управление не стабилизирует систему; характеристики переходного

Рис. 5. Траектории системы (3), (4) при $a = 5, b = 4, \tau = 2$ (выход за границу области устойчивости).

процесса ухудшаются по мере приближения значений параметров к границе области устойчивости; при больших значениях запаздывания и малых значениях коэффициентов скорость сходимости уменьшается, а максимальные отклонения увеличиваются (см. рис. 2–5).

4. Примеры

Каноническая форма Бруновского, которая представляется в виде независимых подсистем — интеграторов некоторого порядка, широко применяется для построения алгоритмов управления линейными системами. Кроме того, многие нелинейные системы, аффинные относительно управления, неособенным преобразованием переменных (как состояния, так и управления) приводятся к линейным системам (см., например, [17]). Среди аффинных систем выделяют также те, которые преобразуются к так называемому квазиканоническому виду. Такие системы содержат подсистему, которая линеаризацией обратной связью преобразуется в каноническую форму Бруновского, и подсистему общего вида [18].

Еще одной известной формой представления систем, для которой можно использовать полученные результаты, является нормальная форма Исидори [19], которая представляет собой декомпозицию системы на кратный интегратор и подсистему, не зависящую от управляющего воздействия:

(6)
$$\dot{x}^{1}(t) = f(x^{1}(t), x^{2}(t)),$$
$$\dot{x}^{2}_{i}(t) = x^{2}_{i+1}(t), \quad i = 1, \dots, p-1;$$
$$\dot{x}^{2}_{p}(t) = u(t),$$

где $x^1 \in \mathbb{R}^{n-p}, x^2 \in \mathbb{R}^p \ (0$ 28 Асимптотическая устойчивость этой системы при p = 2l и $u(t) = u_l(t)$ в силу ее каскадной структуры следует из аналогичного свойства системы $\dot{x}^1(t) = f(x^1(t), 0)$. Утверждение остается в силе, даже если $x^1(t)$ является решением не обыкновенного дифференциального уравнения, а уравнения с запаздыванием [20]. Для гарантии глобального свойства асимптотической устойчивости необходимы дополнительные ограничения; удобными для проверки (но, с другой стороны, довольно ограничительными) являются условия, ограничивающие рост слагаемых, зависящих от «возмущающих» переменных x^2 в правой части системы f (см., например, [20]).

Замечание 2. Для случая систем без запаздывания свойства устойчивости каскадных систем хорошо изучены. Систему $\dot{x}^1(t) = f(t, x^1(t), 0)$ называют при этом системой нулевой динамики, а в случае асимптотической устойчивости нулевого решения последней исходная система называется минимально-фазовой [19]. Для не минимально-фазовой системы построение стабилизирующего управления для подсистемы переменных x^2 может в общем случае обеспечить стабилизацию исходной системы лишь по части переменных. В ряде случаев нулевое решение системы $\dot{x}^1(t) = f(t, x^1(t), 0)$ оказывается (глобально) устойчивым (не асимптотически). Тогда нулевое решение системы (6) будет обладать свойством устойчивости (глобальной — при некоторых дополнительных ограничениях); одно из обоснований последнего результата для систем, учитывающих наличие запаздывания, можно найти в [1].

Рассмотрим механическую систему, уравнения движения которой могут быть записаны в виде

(7)
$$M(q)\ddot{q} + C(q,\dot{q}) = B(q)Q,$$

где q - l-мерный вектор обобщенных координат системы, m-мерный вектор Q обозначает обобщенные силы от исполнительных механизмов (m < l). Систему (7) глобально обратимой заменой координат можно преобразовать к виду

(8)
$$\dot{z}^1 = z^2, \quad \dot{z}^3 = f_3(z), \\ \dot{z}^2 = u, \quad \dot{z}^4 = f_4(z),$$

где $z = ((z^1)^\top (z^2)^\top (z^3)^\top (z^4)^\top)^\top \in R^{2l}$, $u \in R^m$ [21]; частные случаи вида (8), условия и способы приведения к такой форме, а также приложения к механическим системам приведены, например, в [22]. Заметим, что управление вида (4) при некоторых дополнительных предположениях стабилизирует систему (8) (см. замечание 2).

В заключение рассмотрим применение управления (4) к двум хрестоматийным примерам.

Пример 1. Рассмотрим перевернутый плоский двухзвенный маятник, управляемый скалярным, приложенным к нижнему звену, крутящим моментом $\tau(t)$ (схему и обозначения см. на рис. 6).

Рис. 6. Двухзвенный маятник в окрестности верхнего положения равновесия.

Следуя [12], выразим крутящий момент через входное напряжение: $\tau(t) = (k_{\tau}/R_m)V(t)$, где k_{τ} – постоянная крутящего момента, а R_m – сопротивление якоря двигателя. Введем также обозначения

$$\begin{split} \beta_1 &= m_1 r_1^2 + m_2 r_2^2 + I_1, \\ \beta_2 &= m_2 l_1 r_2, \\ \beta_3 &= m_1 (l_1 + r_1), \\ \beta_4 &= m_2 r_2, \\ \beta_5 &= g / \left[(m_2 r_2^2 + I_2) \left((m_2 l_1 r_2)^2 - (m_1 r_1^2 + m_2 r_2^2 + I_1) (m_2 r_2^2 + I_2) \right) \right]. \end{split}$$

Определим вектор состояния системы $(\theta_1 \ \dot{\theta}_1 \ \theta_2 \ \dot{\theta}_1)^{\top}$ и рассмотрим линеаризацию уравнений движения в окрестности равновесия $(\pi/2 \ 0 \ 0 \ 0)^{\top}$; пусть вектор $z \in R^4$ задает координаты отклонения от равновесия в системе линейного приближения. Пусть теперь $y(t) = z_1(t) + z_3(t)$ — выходная переменная, желаемый закон изменения которой описывается гладкой функцией $y^*(t)$, и $e(t) = y(t) - y^*(t)$. Тогда для переменных $x_1(t) = e(t), x_2(t) = \dot{e}(t), x_3(t) = \ddot{e}(t), x_4(t) = e^{(3)}(t)$ получаем систему [12]:

(9)

$$\begin{aligned} \dot{x}_2(t) &= x_3(t), \\ \dot{x}_3(t) &= x_4(t), \\ \dot{x}_4(t) &= \beta_2 \beta_3 \beta_4 \beta_5 g z_1(t) - \beta_1 \beta_4^2 \beta_5. \end{aligned}$$

 $\dot{x}_1(t) = x_2(t),$

$$\begin{aligned} (t) &= \beta_2 \beta_3 \beta_4 \beta_5 g z_1(t) - \beta_1 \beta_4^2 \beta_5 g(z_1(t) + z_3(t)) \\ &+ (k_\tau \beta_2 \beta_4 \beta_5 / R_m) V(t) - y^{*(4)}(t). \end{aligned}$$

После этого $V(t) = R_m/(k_\tau\beta_2\beta_4\beta_5)[u_2(t) - (\beta_2\beta_3\beta_4\beta_5g)z_1(t) + (\beta_1\beta_4^2\beta_5g)(z_1(t) + z_3(t)) + y^{*(4)}(t)]$ приводит систему (9) к виду (3) при l = 2. Таким образом, для стабилизации системы (9) и сходимости $y(t) \rightarrow y^*(t)$ достаточно задать $u_2(t)$ формулой (4) (заметим, что результирующее управление V(t) в этом случае не зависит от значений скоростей системы).

Рис. 7. Маятник с нитью переменной длины (рис. из [23]).

Пример 2. Рассмотрим маятник переменной длины (рис. 7).

Определим вектор состояния системы $y = (l, \dot{l}, \varphi, \dot{\varphi})^{\top}$ и рассмотрим задачу стабилизации равновесия вида $(y_1^*, 0, 0, 0)$ $(y_1^* > 0)$. Запишем уравнения движения маятника в отклонениях $(x_1, x_2, x_3, x_4) = (y_1 - y_1^*, y_2, y_3, y_4)$. При этом, следуя [23], определим управление $v = \ddot{x}_1$. Тогда уравнения движения маятника примут вид (6), где p = 2, $x^1 = (x_3, x_4)^{\top}$, $x^2 = (x_1, x_2)^{\top}$, $f = \left(x_4, -2\frac{x_2x_4}{(x_1+x_1^*)} - \frac{g}{(x_1+x_1^*)}\sin x_3\right)^{\top}$. Заметим, что при $x_1 = x_2 = 0$ подсистема для координат x^1 устойчива. Поэтому в силу замечания 2 рассматриваемое положение равновесия маятника при управлении $v = u_1(t)$ является асимптотически устойчивым по l, \dot{l} и устойчивым по $\varphi, \dot{\varphi}$.

5. Заключительные замечания

К задаче стабилизации кратного интегратора подходящей заменой переменных сводятся различные задачи управления, в том числе для нелинейных систем.

В работе искомое стабилизирующее управление для интегратора четной кратности предполагается зависящим от значений производных нечетного порядка; при этом используются текущие и предыдущие (запаздывающие) значения. Структура полученного управления предусматривает задание значений трех параметров, которые могут быть произвольно выбраны из области устойчивости двумерной системы, имеющей простую форму и алгебраическое описание. Варьирование значений параметров позволяет регулировать характеристики переходного процесса.

Построенное управление можно рассматривать как один из возможных вариантов решения задачи стабилизации механической системы по выходу, в частности без измерения скоростей (см. [12]). Использование свойств каскадной системы позволяет доказать, что стабилизирующие свойства предлагаемого управления сохраняются для нелинейных систем определенной структуры, содержащих кратный интегратор в качестве подсистемы. Если такая система не является минимально-фазовой, то построенное управление без дополнительных построений не обеспечивает асимптотическую устойчивость положения равновесия (только по части координат), однако все еще может гарантировать (глобальную) устойчивость для широкого класса систем.

ПРИЛОЖЕНИЕ

Доказательство теоремы 1. Рассмотрим сначала двойной интегратор:

(II.1)
$$\dot{x}_1(t) = x_2(t),$$

 $\dot{x}_2(t) = u_1(t).$

где $u_1(t) = -ax_1(t) + bx_1(t - \tau)$ определяется формулой (4). Используя методологию *D*-разбиения [24], получаем область устойчивости для (П.1) с управлением выбранного вида (зависящим от трех параметров); проекция этой области на плоскость (a, b) (при фиксированном значении τ) заштрихована на рис. 8 и содержит, в частности, область, определяемую неравенствами

$$0 < a - b < a + b < (\pi/\tau)^2$$

Заметим, что для значений (a, b) из других треугольных частей области устойчивости затраты на управление возрастают с ростом a; численные эксперименты показывают, что характеристики переходного процесса при этом не улучшаются.

Теперь рассмотрим систему (3) при l = 2; она эквивалентна следующей:

(II.2)
$$\begin{aligned} \dot{x}_1(t) &= x_2(t), \qquad \dot{y}_1(t) &= y_2(t), \\ \dot{x}_2(t) &= u_1(t) + y_1(t), \quad \dot{y}_2(t) &= u_2(t) - \ddot{u}_1(t), \end{aligned}$$

где $y_1(t) = x_3(t) - u_1(t)$. Пусть $u_2(t) = \ddot{u}_1(t) + \bar{u}_1(t)$, где $\bar{u}_1(t) = -ay_1(t) + by_1(t-\tau)$, и параметры a, b и τ выбраны из упомянутой выше области

Рис. 8. Область устойчивости для системы (П.1), (4) при фиксированном $\tau > 0$.

устойчивости. Тогда система

$$\dot{y}_1(t) = y_2(t),$$

 $\dot{y}_2(t) = u_2(t) - \ddot{u}_1(t)$

асимптотически устойчива. Теперь из свойств устойчивости каскадных систем [20] следует также асимптотическая устойчивость системы (П.2). Таким образом, закон управления $u_2(t) = \ddot{u}_1(t) + \bar{u}_1(t) = -a^2 x_1(t) + 2abx_1(t-\tau) - -b^2 x_1(t-2\tau) + 2(-ax_3(t) + bx_3(t-\tau))$ обеспечивает асимптотическую устойчивость системы (П.2).

Доказательство завершается индукцией по *l*.

СПИСОК ЛИТЕРАТУРЫ

- 1. Седова Н.О. Достаточные условия устойчивости и построение стабилизирующих управлений для дифференциальных систем специального вида с запаздыванием // Сиб. журн. индустр. мат. 2010. Т. 13. № 4 (44). С. 118–130.
- Каменецкий В.А. Синтез ограниченного стабилизирующего управления для *n*-кратного интегратора // АиТ. 1991. Вып. 6. С. 33–40.
 Kamenetskii V.A. Synthesis of Bounded Stabilizing Control for an *n*-Fold Integrator // Autom. Remote Control. 1991. V. 52. No. 6. P. 770–775.
- Kaliora G., Astolfi A. Nonlinear Control of Feedforward Systems with Bounded Signals // IEEE Trans. Automat. Control. 2004. V. 49. No. 11. P. 1975–1990.
- Kokame H., Mori T. Stability Preserving Transition from Derivative Feedback to Its Difference Counterparts // IFAC Proceeding Volumes. 2002. V. 5. Iss. 1. P. 129–134.
- Niu X., Lin W., Gao X. Static Output Feedback Control of a Chain of Integrators with Input Constraints Using Multiple Saturations and Delays // Automatica. 2021. V. 125. No. 3. P. 109457.
- Zhou B., Duan G.-R., Li Z.-Y. On Improving Transient Performance in Global Control of Multiple Integrators System by Bounded Feedback // Syst. Control Lett. 2008. V. 57. No. 10. P. 867–875.
- Поляк Б.Т., Щербаков П.С. Трудные задачи линейной теории управления. Некоторые подходы к решению // АиТ. 2005. Вып. 5. С. 7–46.
 Polyak B.T., Shcherbakov P.S. Hard Problems in Linear Control Theory: Possible Approaches to Solution // Autom. Remote Control. 2005. V. 66. No. 5. P. 681–718.
- Фуртат И.Б. Робастный статический алгоритм управления линейными объектами // АнТ. 2015. Вып. 3. С. 94–107. Furtat I.B. Robust Static Control Algorithm for Linear Objects // Autom. Remote Control. 2015. V. 76. No. 3. P. 446–457.
- Kharitonov V.L., Niculescu S.I., Moreno J., Michiels W. Static Output Feedback Stabilization: Necessary Conditions for Multiple Delay Controllers // IEEE Trans. Automat. Control. 2005. V. 50. No. 1. P. 82–86.
- Niculescu S.-I., Michiels W. Stabilizing a Chain of Integrators Using Multiple Delays // IEEE Trans. Automat. Control. 2004. V. 49. No. 5. P. 802–817.
- Mazenc F., Mondie S., Niculescu S.-I. Global Asymptotic Stabilization for Chains of Integrators with a Delay in the Input // Proceedings of the 40th IEEE Conf. on Decision and Control. 2001. P. 1843–1848.

- Ochoa-Ortega G., Villafuerte-Segura R., Luviano-Juárez A., et al. Cascade Delayed Controller Design for a Class of Underactuated Systems // Hindawi Complexity. 2020. Article ID 2160743.
- Nekhoroshikh A.N., Efimov D., Polyakov A., et al. On Output-Based Accelerated Stabilization of a Chain of Integrators: Implicit Lyapunov-Krasovskii Functional Approach // IFAC-PapersOnLine. 2020. 53(2). P. 5982–5987.
- 14. *Андреев А.С., Перегудова О.А.* О стабилизации программных движений голономной механической системы без измерения скоростей // ПММ. 2017. Т. 81. Вып. 2. С. 137–153.
- 15. Антипов А.С., Краснов Д.В., Уткин А.В. Декомпозиционный синтез системы управления электромеханическими объектами в условиях неполной информации // ПММ. 2019. Т. 83. № 4. С. 530–548.
- 16. Fridman E., Shaikhet L.E. Delay-induced Stability of Vector Second-Order Systems via Simple Lyapunov Functionals // Automatica. 2016. V. 74. P. 288–296.
- Елкин В.И., Коновалова Л.Б. О редукции нелинейных управляемых систем к линейным // АнТ. 2000. Вып. 2. С. 45–55.
 Elkin V.I., Konovalova L.B. Reduction of Nonlinear Control Systems to Linear Systems // Autom. Remote Control. 2000. V. 61. No. 2. P. 215–225.
- 18. Крищенко А.П. Преобразование нелинейных систем и стабилизация программных движений // Труды МВТУ им. Н.Э. Баумана. 1988. № 512. С. 69–87.
- Isidori A. Nonlinear Control Systems: An Introduction (3rd ed.). London: Springer, 1995.
- Седова Н.О. Глобальная асимптотическая устойчивость и стабилизация в нелинейной каскадной системе с запаздыванием // Изв. вузов. Математика. 2008. № 11. С. 68–79.
- Knoll C., Röbenack K. Maneuver-Based Control of the 2-Degrees of Freedom Underactuated Manipulator in Normal Form Coordinates // Syst. Sci. Control. Engineer. 2015. V. 3. No. 1. P. 26–38.
- 22. Olfati-Saber R. Normal Forms for Underactuated Mechanical Systems with Symmetry // IEEE Transactions on Automatic Control. 2002. V. 47. No. 2. P. 305–308.
- Knoll C., Röbenack K. Analysis and Control of an Underactuated Pendulum / In Crossing Borders within the ABC: Automation, Biomedical Engineering and Computer Science. 2010. V. 55. P. 440–445.
- Neimark Y.I. D-Partition and Robust Stability // Computational Mathematics and Modeling. 1998. V. 9. No. 2. P. 160–166.

Статья представлена к публикации членом редколлегии Л.Б. Рапопортом.

Поступила в редакцию 20.08.2021 После доработки 11.10.2021 Принята к публикации 15.10.2021