Нелинейные системы

© 2022 г. Э.М. СОЛНЕЧНЫЙ, д-р физ.-мат. наук (solnechn@ipu.ru), Л.А. ЧЕРЁМУШКИНА, канд. биол. наук (cheremushkina_l@mail.ru) (Институт проблем управления им. В.А. Трапезникова РАН, Москва)

ДИНАМИЧЕСКИЕ СВОЙСТВА ОДНОМЕРНОЙ СИСТЕМЫ ТЕПЛОПЕРЕДАЧИ ПРИ ДВИЖУЩЕМСЯ ИСТОЧНИКЕ НАГРЕВА

Для одномерной системы теплопередачи с движущимся источником тепла вычисляются передаточные и импульсные переходные функции температуры в системе по отношению к температурам внешней среды на границах системы, а также реакция температуры на поток тепла от движущегося источника нагрева. Размеры источника нагрева по сравнению с размерами системы считаются в работе пренебрежимо малыми, что делает естественным использование аппарата обобщенных функций.

Ключевые слова: система теплопередачи, движущийся источник потока тепла, передаточная функция, импульсная переходная функция.

DOI: 10.31857/S0005231022080025, EDN: AGGMGI

1. Введение

Использование движущихся источников тепла для нагрева слитков металла перед прокаткой встречается в металлургии наиболее часто. Поэтому математическое описание процессов нагрева технических объектов и методов управления ими как распределенной системой является весьма актуальной проблемой современности.

Естественным аппаратом для исследования динамики распределенных систем является теория дифференциальных систем уравнений с частными производными. Наиболее фундаментальные результаты в этой области приведены, в частности, в [1, 2].

Одной из конкретных технических областей исследования распределенных систем является исследование методов нагрева массивных тел с помощью движущихся источников тепла. В этой области хорошо известны работы сотрудников А.Г. Бутковского [3–6], разрабатывавших методы формирования температурных полей, необходимых для работы технических объектов, с помощью движущихся источников тепла.

Переходные процессы в распределенных системах исследуются, в частности, в [7]. В настоящей работе проводится исследование динамических свойств температуры в одномерной распределенной системе, подверженной влиянию температур внешней среды на границах и тепловому воздействию, производимому движущимся источником тепла. При этом размерами самого источника тепла в сравнении с размерами нагреваемого объекта считается возможным пренебречь, и поэтому используется известный аппарат δ -функций Дирака [8, гл. VI, § 1, п. 83]. В настоящей работе получены выражения для передаточных функций и импульсных переходных функций системы по отношению к температурам внешней среды на границах системы и ко внешнему потоку тепла.

2. Уравнение передачи тепла в одномерной теплопередающей среде с движущимся источником тепла

Закон сохранения тепловой энергии в одномерной теплопередающей среде выражается уравнением [9, гл. II, § 6]

(2.1)
$$c\rho \frac{\partial T}{\partial t} = -\frac{\partial q}{\partial x} + Q(x,t),$$

где t – время, $x \in [0, l]$ – пространственная координата, T – температура, Q – внешний поток тепла (на единицу длины), q – тепловой поток в сечении x, ρ – плотность вещества среды (на единицу длины), c – теплоемкость вещества среды.

Согласно закону Фурье [9, гл. II, § 6] тепловой поток qопределяется соотношением

(2.2)
$$q = -\lambda \frac{\partial T}{\partial x},$$

где λ – коэффициент теплопроводности среды (считаем его постоянной величиной).

Тогда из (2.1) и (2.2) следует дифференциальное уравнение процесса нагрева:

(2.3)
$$\frac{\partial T}{\partial t} = a^2 \frac{\partial^2 T}{\partial x^2} + \frac{Q(x,t)}{c\rho},$$

где $a^2 = \lambda/c\rho$ – коэффициент температуропроводности.

Считая источник тепла движущимся с постоянной скоростью v (на активном участке движения) и пренебрегая его размерами, вносимый им тепловой поток Q(x,t) можем выразить с помощью δ -функции Дирака [8, гл. VI, § 1, п. 83], записав уравнение (2.3) условно в виде

(2.4)
$$\frac{\partial T}{\partial t} = a^2 \frac{\partial^2 T}{\partial x^2} + M \frac{\delta(t - x/v)}{c\rho},$$

где M – интенсивность источника тепла; она принимается постоянной величиной.

Граничные условия задаем в виде

(2.5)
$$T(0,t) = \mu_0(t), \quad T(l,t) = \mu_l(t),$$

где μ_0 , μ_l – заданные функции времени.

3. Решение дифференциального уравнения процесса нагрева (в изображениях по Лапласу)

Введем обозначение $\theta(x, p)$ для изображения по Лапласу функции $T(x, \cdot)$:

$$\theta(x,p) = \int_{0}^{\infty} T(x,p) \exp(-pt) dt.$$

Теорема 1. Изображение по Лапласу уравнения (2.4) имеет вид

(3.1)
$$a^2 \frac{\partial^2 \theta}{\partial x^2}(x,p) - p\theta(x,p) = -\frac{M}{c\rho} \exp\left(-p\frac{x}{v}\right),$$

и решение его при преобразованных по Лапласу граничных условиях (2.5) имеет вид

$$(3.2) \quad \theta(x,p) = \theta(0,p) \frac{\sinh\left((l-x)\sqrt{p}/a\right)}{\sinh\left(l\sqrt{p}/a\right)} + \theta(l,p) \frac{\sinh\left(x\sqrt{p}/a\right)}{\sinh\left(l\sqrt{p}/a\right)} + \frac{M}{c\rho} \frac{v^2}{p(v^2 - a^2p)} \left(\exp\left(-p\frac{x}{v}\right) - \frac{\sinh\left((l-x)\sqrt{p}/a\right)}{\sinh\left(l\sqrt{p}/a\right)} - \frac{\sinh\left((\sqrt{p}/a)\right)}{\sinh\left(l\sqrt{p}/a\right)} \exp\left(-\frac{pl}{v}\right)\right).$$

Доказательство теоремы 1 см. в Приложении 1.

4. Реакции температуры в системе на входные воздействия

Теорема 2. Реакция температуры $T(x, \cdot)$ на граничное воздействие μ_{α} ($\alpha = 0, l$) определяется сверткой [8, гл. VI, § 1, п. 81] функций μ_{α} и импульсной переходной функции [1, гл. 2, § 8] $w_{\alpha}(x, \cdot)$ по каналу $\mu_{\alpha} \to T(x, \cdot)$:

(4.1)
$$(\mu_{\alpha} * w_{\alpha}(x, \cdot))(t) = \int_{0}^{t} \mu_{\alpha}(\tau) w_{\alpha}(x, t-\tau) d\tau.$$

 Φ ункция w_{α} вычисляется как сумма ряда

(4.2)
$$w_{\alpha}(x,t) = s(t) \sum_{n=1}^{\infty} b_{\alpha n}(x) \exp(p_n t),$$

где

$$b_{\alpha n}(x) = 2(-1)^{n+1} \left(\frac{\alpha}{l}\right)^2 \pi n \sin\left(\frac{\xi_{\alpha}(x)}{l}\pi n\right),$$

$$\xi_0(x) = l - x, \quad \xi_l(x) = x, \quad s(t) = \begin{cases} 0 \text{ при } t < 0, \\ 1 \text{ при } t \ge 0. \end{cases}$$

Доказательство теоремы 2 см. в Приложении 2.

 $T \, e \, o \, p \, e \, m \, a \, 3$. Реакция $T_M(x, \cdot)$ температуры $T(x, \cdot)$ в системе на тепловое воздействие движущегося источника нагрева вычисляется следующим образом:

(4.3)
$$T_M(x,t) = \frac{M}{c\rho} \sum_{j=1}^3 R_j(x,t),$$

где

$$R_{1}(x,t) = s\left(t - \frac{x}{v}\right) \left(1 - \exp\left(\left(\frac{v}{a}\right)^{2}\left(t - \frac{x}{v}\right)\right)\right),$$

$$R_{2}(x,t) = s(t) \left(r_{20}(x) + r_{2v}(x) \exp\left(\left(\frac{v}{a}\right)^{2}t\right) + \sum_{n=1}^{\infty} r_{2n}(x) \exp(p_{n}t)\right),$$

$$r_{20}(x) = -\frac{l - x}{l}, \quad r_{2v}(x) = \frac{\sinh\left((l - x)v/a^{2}\right)}{\sinh(lv/a^{2})},$$

$$r_{2n}(x) = (-1)^{n+1}\frac{2}{\pi n}\frac{(lv)^{2}\sin\left(\pi n(l - x)/l\right)}{a^{4}(\pi n)^{2} + (lv)^{2}};$$

$$R_{3}(x,t) = s\left(t - \frac{l}{v}\right) \left(r_{30}(x) + r_{3v}(x)\exp\left(\left(\frac{v}{a}\right)^{2}\left(t - \frac{l}{v}\right)\right) + \sum_{n=1}^{\infty} r_{3n}(x)\exp\left(p_{n}\left(t - \frac{l}{v}\right)\right)\right);$$

$$r_{30}(x) = -\frac{x}{l}, \quad r_{3v}(x) = \frac{\sinh(xv/a^{2})}{\sinh(lv/a^{2})}, \quad r_{3n}(x) = (-1)^{n+1}\frac{2}{\pi n}\frac{(lv)^{2}\sin\left(\pi nx/l\right)}{a^{4}(\pi n)^{2} + (lv)^{2}}$$

Доказательство теоремы 3 см. в Приложении 3.

ПРИЛОЖЕНИЕ 1

Так как преобразование δ -функции по Лапласу, сдвинутой вправо на $\frac{x}{v}$, имеет вид [8, гл. VI, § 1, п. 83]

(II.1.1)
$$\int_{0}^{\infty} \delta\left(t - \frac{x}{v}\right) \exp(-pt) dt = \exp\left(-p\frac{x}{v}\right),$$

преобразование по Лапласу уравнения (2.4) имеет вид

(II.1.2)
$$a^2 \frac{\partial^2 \theta}{\partial x^2}(x,p) - p\theta(x,p) = -\frac{M}{c\rho} \exp\left(-p\frac{x}{v}\right).$$

Как легко проверить, фундаментальную систему решений однородного уравнения, соответствующего уравнению (П.1.2), могут составить гиперболические функции $\cosh(x\sqrt{p}/a)$ и $\sinh(x\sqrt{p}/a)$. Общее решение этого однородного уравнения можно представить в виде $A(p) \cosh\left(\frac{x}{a}\sqrt{p}\right) + B(p) \sinh\left(\frac{x}{a}\sqrt{p}\right)$, где A и B – произвольные функции от p. Частное же решение уравнения (П.1.2) ищем в виде

(II.1.3)
$$\varphi(x,p) = C(p)\frac{M}{c\rho}\exp\left(-p\frac{x}{v}\right),$$

где функция C определяется из условия удовлетворения функции $\varphi(x,p)$ уравнению (П.1.2). Так как $\frac{\partial^2}{\partial x^2}\varphi(x,p) = C(p)\frac{M}{c\rho}\left(\frac{p}{v}\right)^2 \exp\left(-p\frac{x}{v}\right)$, подстановка функции φ в (П.1.2) приводит к равенству

$$a^{2}C(p)\frac{M}{c\rho}\left(\frac{p}{v}\right)^{2}\exp\left(-p\frac{x}{v}\right) - pC(p)\frac{M}{c\rho}\exp\left(-p\frac{x}{v}\right) = -\frac{M}{c\rho}\exp\left(-p\frac{x}{v}\right),$$

из которого определяется функция C:

(II.1.4)
$$C(p) = -\frac{1}{a^2(p/v)^2 - p} = \frac{v^2}{p(v^2 - a^2p)}.$$

Таким образом, $\varphi(x,p) = \frac{M}{c\rho} \frac{v^2 \exp(-px/v)}{p(v^2 - a^2 p)}$, и общее решение системы (3.1) имеет вид

(II.1.5)
$$\theta(x,p) = A(p) \cosh\left(\frac{x}{a}\sqrt{p}\right) + B(p) \sinh\left(\frac{x}{a}\sqrt{p}\right) + \frac{M}{c\rho} \frac{\exp(-px/v)}{p(v^2 - a^2p)}.$$

Функции А и В определяются с помощью граничных условий (2.5):

(II.1.6)
$$A(p) = \theta(0, p) - \frac{M}{c\rho} \frac{v^2}{p(v^2 - a^2 p)}$$

$$(\Pi.1.7) \qquad B(p) = \frac{1}{\sinh(l\sqrt{p}/a)} \left[\theta(l,p) - \theta(0,p) \cosh\left(\frac{l\sqrt{p}}{a}\right) + \frac{M}{c\rho} \frac{v^2}{p(v^2 - a^2p)} \left(\cosh\left(\frac{l\sqrt{p}}{a}\right) - \exp\left(-\frac{pl}{v}\right) \right) \right].$$

Таким образом, решение уравнения (П.1.2), соответствующее граничным условиям (2.5), имеет вид

$$(\Pi.1.8) \qquad \theta(x,p) = \theta(0,p) \left[\cosh \frac{x\sqrt{p}}{a} - \coth \frac{l\sqrt{p}}{a} \sinh \frac{x\sqrt{p}}{a} \right] + \\ + \theta(l,p) \frac{\sinh \left(x\sqrt{p}/a\right)}{\sinh \left(l\sqrt{p}/a\right)} + \frac{Mv^2}{c\rho p(v^2 - a^2 p)} \left[\exp\left(-\frac{px}{v}\right) - \\ - \cosh\frac{x\sqrt{p}}{a} + \frac{\sinh\left(x\sqrt{p}/a\right)}{\sinh\left(l\sqrt{p}/a\right)} \left(\cosh\frac{l\sqrt{p}}{a} - \exp\left(-\frac{pl}{v}\right) \right) \right].$$

В силу соотношения между гиперболическими функциями

$$\sinh(l\sqrt{p}/a)\cosh(x\sqrt{p}/a) - \cosh(l\sqrt{p}/a)\sinh(x\sqrt{p}/a) = \sinh((l-x)\sqrt{p}/a)$$

[10, п.2.5.2.3.3] получаем выражение (3.2) для решения уравнения (3.1), приведенное в формулировке теоремы 1.

ПРИЛОЖЕНИЕ 2

Импульсная переходная функция оператора $\mu_{\alpha} \to T(x, \cdot)$ ($\alpha = 0, l$) определяется как оригинал передаточной функции (см. (3.2))

(II.2.1)
$$W_{\alpha}(x,p) = \frac{\sinh\left(\xi_{\alpha}(x)\sqrt{p}/a\right)}{\sinh\left(l\sqrt{p}/a\right)}, \quad \text{где} \quad \xi_{0}(x) = l - x, \quad \xi_{l}(x) = x.$$

Функция $\sinh\left(l\sqrt{p}/a\right)$ имеет нули вида $p_n = -(a\pi n/l)^2 \ (n \ge 0).$

Построим правильную [8, гл. V, § 1, п. 71] систему { $L_n, n \ge 0$ } контуров в виде окружностей с центром в нуле комплексной плоскости **C**. Так как $W_{\alpha}(x,0) = \xi_{\alpha}(x)/l$ и значения функций $W_{\alpha}(x, \cdot)$ на контурах L_n стремятся к нулю при $n \to \infty$, то, согласно теореме Коши [8, гл. V, § 1, п. 71], эти функции могут быть представлены суммами сходящихся рядов, составленных из главных частей этих функций в полюсах p_n $(n \ge 1)$:

(II.2.2)
$$W_{\alpha}(x,p) = \sum_{n=1}^{\infty} \frac{b_{\alpha n}(x)}{p - p_n}$$

где

$$b_{\alpha n}(x) = \operatorname{res}_{p_n} W_{\alpha}(x, \cdot) = 2 \frac{a}{l} \sqrt{p_n} \frac{\sinh(\xi_{\alpha}(x)\sqrt{p_n}/a)}{\cosh(l\sqrt{p_n}/a)} =$$
$$= 2(-1)^{n+1} \left(\frac{a}{l}\right)^2 \pi n \sin\left(\frac{\xi_{\alpha}(x)}{l}\pi n\right).$$

34

Таким образом, импульсная переходная функция $w_{\alpha}(x, \cdot)$ оператора $\mu_{\alpha} \to T(x, \cdot)$ может быть представлена в виде

(П.2.3)
$$w_{\alpha}(x,t) = s(t) \sum_{n=1}^{\infty} b_{\alpha n}(x) \exp(p_n t)$$
, где $s(t)$ – см. раздел 4

ПРИЛОЖЕНИЕ 3

Изображение по Лапласу реакции температуры $T(x, \cdot)$ на воздействие $\frac{M}{c \rho} \delta(t - x/v)$ может быть представлено согласно (3.2) в виде

(II.3.1)
$$\theta_M(x,p) = \frac{Mv^2}{c\rho p \left(v^2 - a^2 p\right)} \sum_{j=1}^3 F_j(x,p),$$

где

$$F_1(x,p) = \exp\left(-p\frac{x}{v}\right), \quad F_2(x,p) = -\frac{\sinh\left((l-x)\sqrt{p}/a\right)}{\sinh\left(l\sqrt{p}/a\right)},$$
$$F_3(x,p) = -\frac{\sinh\left(x\sqrt{p}/a\right)}{\sinh\left(l\sqrt{p}/a\right)}\exp\left(-\frac{pl}{v}\right).$$

Используя выражения для W_{α} в (П.2.1), получаем, что функция $F_2(x,p)$ может быть представлена в виде $-W_0(x,p)$, а функция $F_3(x,p)$ — в виде $-W_l(x,p) \exp(-pl/v)$.

1) Так как умножение функции F(p) на $\exp(-p\tau)$ ($\tau \ge 0$) означает сдвиг графика оригинала этой функции вправо на τ [8, гл. VI, § 1, п. 80], оригинал функции $\frac{F_1(x,p)v^2}{p(v^2-a^2p)} = \exp(-px/v)\left(\frac{1}{p}-\frac{1}{p-(v/a)^2}\right)$, входящей в выражение (П.3.1) для $\theta_M(x,p)$, имеет вид

(II.3.2)
$$R_1(x,t) = s\left(t - \frac{x}{v}\right)\left(1 - \exp\left(\left(\frac{v}{a}\right)^2 \left(t - \frac{x}{v}\right)\right)\right).$$

2) Так как функция $F_2(x, \cdot)$ имеет вид $-W_0(x, \cdot)$, функция $F_2(x, p)v^2/p(v^2 - a^2p)$, также входящая в выражение (П.3.1) для $\theta_M(x, p)$, представляется в виде $f_2(x, p) = \frac{(v/a)^2}{p(p-(v/a)^2)} \frac{\sinh((l-x)\sqrt{p}/a)}{\sinh(l\sqrt{p}/a)}$ и потому может быть представлена суммой ряда, составленного из главных частей функции $f_2(x, \cdot)$:

(II.3.3)
$$f_2(x,p) = \frac{r_{20}(x)}{p} + \frac{r_{2v}(x)}{p - (v/a)^2} + \sum_{n=1}^{\infty} \frac{r_{2n}(x)}{p - p_n},$$

где

$$r_{20}(x) = \operatorname{res}_{0} f_{2}(x, \cdot) = -\frac{l-x}{l}, \quad r_{2v}(x) = \operatorname{res}_{(v/a)^{2}} f_{2}(x, \cdot) = \frac{\sinh\left((l-x)v/a^{2}\right)}{\sinh(lv/a^{2})},$$
$$r_{2n}(x) = \operatorname{res}_{p_{n}} f_{2}(x, \cdot) = (-1)^{n+1} \frac{2}{\pi n} \frac{(lv)^{2} \sin\left(\pi n(l-x)/l\right)}{a^{4}(\pi n)^{2} + (lv)^{2}}.$$

Следовательно, оригинал функци
и $F_2(x,p)v^2/p\left(v^2-a^2p\right)$ может быть представлен в виде суммы ряда

(II.3.4)
$$R_2(x,t) = s(t) \left(r_{20}(x) + r_{2v}(x) \exp\left(\left(\frac{v}{a}\right)^2 t\right) + \sum_{n=1}^{\infty} r_{2n}(x) \exp(p_n t) \right).$$

3) Функция $F_3(x,p)$ представляется в виде $-W_l(x,p)\exp(-pl/v)$, где $W_l(x,p) -$ см. (П.2.1). Поэтому функция $F_3(x,p)v^2/p(v^2-a^2p)$, также входящая в выражение (П.3.1) для $\theta_M(x,p)$, может быть представлена в виде $f_3(x,p)\exp\left(-\frac{pl}{v}\right)$, где

$$f_3(x,p) = \frac{(v/a)^2}{p(p - (v/a)^2)} \frac{\sinh(x\sqrt{p}/a)}{\sinh(l\sqrt{p}/a)}.$$

Функция $f_3(x, p)$ имеет вид, аналогичный виду функции f_2 , (отличие лишь в числителе) и потому может быть представлена суммой ряда, аналогичного ряду (П.3.3), чья сумма представляет функцию $f_2(x, p)$:

(II.3.5)
$$f_3(x,p) = \frac{r_{30}(x)}{p} + \frac{r_{3v}(x)}{p - (v/a)^2} + \sum_{n=1}^{\infty} \frac{r_{3n}(x)}{p - p_n},$$

где

$$r_{30}(x) = \operatorname{res}_{0} f_{3}(x, \cdot) = -\frac{x}{l}, \quad r_{3v}(x) = \operatorname{res}_{(v/a)^{2}} f_{3}(x, \cdot) = \frac{\sinh(xv/a^{2})}{\sinh(lv/a^{2})},$$
$$r_{3n}(x) = \operatorname{res}_{p_{n}} f_{3}(x, \cdot) = (-1)^{n+1} \frac{2}{\pi n} \frac{(lv)^{2} \sin(\pi nx/l)}{a^{4}(\pi n)^{2} + (lv)^{2}}.$$

Следовательно, оригинал функции

$$F_3(x,p)\frac{v^2}{p(v^2 - a^2p)} = \left(\frac{r_{30}(x)}{p} + \frac{r_{3v}(x)}{p - (v/a)^2} + \sum_{n=1}^{\infty} \frac{r_{3n}(x)}{p - p_n}\right) \exp\left(-\frac{pl}{v}\right)$$

имеет вид

(II.3.6)
$$R_3(x,t) = s\left(t - \frac{l}{v}\right)\left(r_{30}(x) + r_{3v}(x)\exp\left(\left(\frac{v}{a}\right)^2\left(t - \frac{l}{v}\right)\right) + \sum_{n=1}^{\infty} r_{3n}(x)\exp\left(p_n\left(t - \frac{l}{v}\right)\right)\right).$$

4) Таким образом, реакция $T_M(x, \cdot)$ исследуемой системы вида (2.4) на внешнее воздействие $M\delta(t - x/v)/c\rho$ может быть представлена в следующем виде:

(II.3.7)
$$T_M(x,t) = \frac{M}{c\rho} \sum_{j=1}^3 R_j(x,t),$$

где $R_1(x,t)$ — см. (П.3.2), $R_2(x,t)$ — см. (П.3.4), $R_3(x,t)$ — см. (П.3.6). 36

СПИСОК ЛИТЕРАТУРЫ

- 1. *Бутковский А.Г.* Методы управления системами с распределенными параметрами. М.: Наука, 1975.
- 2. *Лионс Ж.-Л.* Оптимальное управление системами, описываемыми уравнениями с частными производными. Перевод с французского. М.: Мир, 1972.

Lions J.L. Contrôle optimal des systèmes gouvernés par des equations aux derivées partielles. Paris: Dunod Gauthier-Villars, 1968.

- 3. *Кубышкин В.А., Финягина В.И*. Оптимизация температурных режимов электродов плазмотронов методами подвижного управления // Проблемы управления. 2009. № 5. С. 53–60.
- Финягина В.И. Метод подстановки в решении двумерной задачи нагрева тел с помощью подвижных источников тепла // Проблемы управления. 2010. № 1. С. 57–63.
- 5. Финягина В.И. Расчет аппроксимирующих функций двумерных температурных полей в задачах управления подвижными источниками воздействий // Проблемы управления. 2010. № 4. С. 79–85.
- 6. *Финягина В.И.* Многоцикловое подвижное управляющее воздействие в решении двумерных задач нагрева тел // Проблемы управления. 2012. № 1. С. 47–54.
- 7. *Кадымов Я.Б.* Переходные процессы в системах с распределенными параметрами. М.: Наука, 1968.
- 8. *Лаврентьев М.А., Шабат Б.В.* Методы теории функций комплексного переменного. М.: Лань, 2002.
- 9. *Арсенин В.Я.* Математическая физика. Основные уравнения и специальные функции. М.: Наука, 1966.
- 10. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. Совместное издание Лейпциг: Тойбнер, М.: Наука, 1981.

Статья представлена к публикации членом редколлегии А.Г. Кушнером.

Поступила в редакцию 28.10.2021 После доработки 27.03.2022 Принята к публикации 28.04.2022