——— МОЛЕКУЛЯРНАЯ БИОФИЗИКА =

УДК 577.353

ТРЕХСУТОЧНАЯ ФУНКЦИОНАЛЬНАЯ РАЗГРУЗКА СОПРОВОЖДАЕТСЯ УВЕЛИЧЕНИЕМ ЭКСПРЕССИИ ГЕНА *TTN* В *m. soleus* КРЫСЫ ПРИ ОТСУТСТВИИ ИЗМЕНЕНИЙ В АЛЬТЕРНАТИВНОМ СПЛАЙСИНГЕ В ДИАПАЗОНЕ ЭКЗОНОВ С 50-ГО ПО 111-Й

© 2019 г. А.Д. Уланова*, Ю.В. Грицына*, В.К. Жалимов**, Л.Г. Бобылёва*, С.П. Белова***, Т.Л. Немировская***, Б.С. Шенкман***, И.М. Вихлянцев* ****

*Институт теоретической и экспериментальной биофизики РАН,

**Институт биофизики клетки РАН – обособленное подразделение ФИЦ ПНЦБИ РАН,

142290, Пущино Московской области, Институтская ул., 3

***ГНЦ РФ – Институт медико-биологических проблем РАН, 123007, Москва, Хорошевское шоссе, 76а

****Пущинский государственный естественно-научный институт,

142290, Пущино Московской области, просп. Науки, 3

E-mail: ivanvikhlyantsev@gmail.com Поступила в редакцию 22.05.2019 г. После доработки 11.07.2019 г. Принята к публикации 12.07.2019 г.

Исследованы изменения экспрессии гена титина и альтернативный сплайсинг пре-мРНК титина в диапазоне экзонов с 50-го по 111-й в *m. soleus* крыс после трехсуточной функциональной разгрузки. Методом ПЦР с обратной транскрипцией в режиме реального времени обнаружено увеличение в 1,81 раза ($p \le 0,01, n = 6$) экспрессии гена титина в *m. soleus* крыс группы функциональной разгрузки в сравнении с контрольной группой (n = 7). Показано наличие всех экзонов мРНК титина в исследуемом диапазоне в *m. soleus* крыс двух исследуемых групп. Таким образом, трехсуточная функциональная разгрузка сопровождается увеличением экспрессии гена титина в *m. soleus* крысы при отсутствии изменений альтернативного сплайсинга в диапазоне экзонов с 50-го по 111-й.

Ключевые слова: функциональная разгрузка, ген титина, альтернативный сплайсинг, т. soleus. **DOI:** 10.1134/S000630291905003X

Функциональная разгрузка мышц приводит к развитию атрофии и снижению мышечного тонуса [1]. При этом мышца теряет эластичность, чему во многом может способствовать снижение содержания гигантского эластичного белка титина, повышенный протеолиз которого происходит в условиях функциональной разгрузки [2–6].

Титин (тайтин/коннектин) — самый большой из известных на сегодняшний день белков. В саркомерах сердечной и скелетных мышц позвоночных титин является третьим по количеству (после актина и миозина) белком. Его молекулы длиной около 1 мкм и диаметром 3–4 нм [7] перекрывают половину саркомера от М-зоны до Z-диска, формируя третий тип нитей [8], получивших название эластичных. В А-зоне саркомера титин связан с миозиновыми (толстыми) нитями [9]. В І- диске саркомера некоторые участки титиновой молекулы могут взаимодействовать с актиновыми (тонкими) нитями [10], однако большая часть его молекулы в этой зоне проходит свободно, соединяя концы миозиновых нитей с Z-диском. Расположение титина во всех зонах саркомера, эластические свойства и взаимодействие со многими белками создают основу для полифункциональности этого белка. Показано, что титин необходим для сборки миозиновых нитей и саркомеров [11]; участвует в поддержании высокоупорядоченной саркомерной структуры [12]; участвует в регуляции актин-миозинового взаимодействия и вносит вклад в развитие мышечного сокращения [10]. Предполагается, что титин играет роль сенсора растяжения и напряжения и в комплексе с сигнальными белками участвует в процессах внутриклеточной сигнализации, в частности, в регуляции экспрессии генов мышечных белков и белкового обмена в саркомере

^{142290,} Пущино Московской области, Институтская ул., 3

Сокращения: TTN – ген титина, ТЦМ – тяжелые цепи миозина, ОТ-ПЦР – полимеразная цепная реакция с обратной транскрипцией.

[10,13–15]. Таким образом, титин является интересным объектом для изучения при различных функциональных состояниях, в том числе при функциональной разгрузке.

Показано, что развитие мышечной атрофии в условиях моделируемой гравитационной разгрузки в течение семи и более суток сопровождается повышенным кальций-зависимым протеолизом молекул интактного титина, уменьшением его содержания и увеличением содержания его протеолитических фрагментов [2–5,16]. После трехсуточной функциональной разгрузки при наличии некой тенденции к снижению содержания нативного титина достоверных изменений его содержания не обнаружено [17]. Исследования изменений экспрессии гена титина (TTN) при этом не проводились. Однако известны данные об увеличении экспрессии гена *TTN* в сердечной и трех скелетных мышцах мышей после тридцатисуточного космического полета [6]. Эти результаты представляют несомненный интерес, однако следует понимать, что помимо функциональной разгрузки вклад в повышение экспрессии гена *TTN* могли внести другие факторы, в частности, такие как ионизирующая радиация в условиях космического полета и двенадцатичасовое послеполетное пребывание животных в условиях земной гравитации. Таким образом, вопросы о том, происходят ли изменения экспрессии гена TTN в условиях функциональной разгрузки, когда они начинаются и могут ли наряду с повышенным протеолизом титина вносить вклад в снижение содержания этого белка, остаются открытыми. Поэтому актуальность исследования экспрессии гена *TTN* в условиях моделируемой гравитационной разгрузки не вызывает сомнений. Понимание молекулярных механизмов протеолиза и синтеза титина при функциональной разгрузке мышц важно для разработки средств/методов профилактики мышечной атрофии.

Ген титина у млекопитающих содержит 364 экзона, из которых 363 являются кодирующими [18-20] и способны потенциально кодировать белок с молекулярной массой 4,2 МДа, в состав которого могут входить: 152 иммуноглобулин-подобных домена (Ig), 132 фибронектин IIIподобных домена (FnIII), протеинкиназный домен, 31 домен PEVK, 7 Z-повторов и 33 неидентифицированных домена (по базе UniProt). Альтернативный сплайсинг пре-мРНК титина является основой разнообразия изоформ этого белка. Молекулярные массы известных изоформ титина составляют ~ 3,0-3,9 МДа в поперечно-полосатых мышцах и ~ 2 МДа в гладких мышцах млекопитающих и человека [18-21]. Обнаружено, что в скелетной мышце m. soleus, состоящей преимущественно из волокон, содержащих «медленную» изоформу I тяжелых цепей миозина (ТЦМ), экспрессируется вариант N2A-изоформы с молекулярной массой 3,7 МДа [18,22–24]. В других скелетных мышцах, состоящих преимущественно из волокон, содержащих «быстрые» изоформы II ТЦМ, экспрессируются N2A-изоварианты титина с более короткой последовательностью из Ig-доменов (молекулярная масса 3,3–3,6 МДа) [18,22–24].

Показано, что одним из ключевых событий, происходящих в разгруженной мышце, является изменение экспрессии генов ТЦМ, сопровождающееся изменением содержания их мРНК [25,26]. Эти изменения наблюдаются уже после первых суток функциональной разгрузки.

В нашей работе исследована динамика экспрессии гена титина, а также состав экзонов в диапазоне от 50-го до 111-го экзона в *m. soleus* крысы после трехсуточной функциональной разгрузки.

МАТЕРИАЛЫ И МЕТОДЫ

Моделирование функциональной разгрузки. В эксперименте использовали самцов крыс линии Wistar массой 200-220 г. Животные были разделены на две группы – контрольная группа («С», n = 7) и группа трехсуточного вывешивания («HS», n = 6). Моделирование функциональной разгрузки проводили по стандартной методике Ильина-Новикова в модификации Morey-Holton [27,28]. После завершения эксперимента животных взвешивали и выводили из эксперимента путем эвтаназии сверхдозой авертина (5 мл/кг). Камбаловидную мышцу изолировали, взвешивали, замораживали в жидком азоте и хранили при -85°С. Все процедуры с участием животных соответствовали этическим стандартам учреждения для таких исследований.

Выделение мРНК и проведение ПЦР с обратной транскрипцией и ПЦР с обратной транскрипцией в реальном времени. Суммарную РНК экстрагировали из 4-6 мг замороженной *m. soleus* при помощи набора RNeasyMicroKit (QIAGEN, Германия) по протоколу изготовителя. Определение концентрации РНК проводили на спектрофотометре UV 2450 (SHIMADZU, Япония). Показания снимали в диапазоне от 200 до 320 нм. Пробу перед измерением разводили в 21 раз в ТЕ-буфере (10 мМ трис, 1 мМ ЭДТА, рН 8,0). Измерение каждой пробы проводили не менее трех раз в кювете для микрообъемов. Чистоту образцов оценивали исходя из соотношений показателей поглощения при различных длинах волн. Соотношение А₂₆₀/А₂₃₀ экспериментальных образцов было > 2.0, это vказывало на то, что они являлись достаточно чистыми от углеводов, пептидов, фенолов или ароматических соединений [29].

Для проведения ПЦР с обратной транскрипцией (ОТ-ПЦР) использовали компоненты фир-

БИОФИЗИКА том 64 № 5 2019

Праймер	Нуклеотидная последовательность	Размер продукта, п.н.
TTN F TTN R	CAGCAGCCAAGAAAGCCGCT CACCACTCTGATACTCTGAGGCTCTG	71
<i>GAPDH</i> F <i>GAPDH</i> R	GCAAGAGAGAGGCCCTCAG TGTGAGGGAGATGCTCAGTG	74

Таблица 1. Пары праймеров для проведения ОТ-ПЦР в режиме реального времени

Примечание. F – прямой праймер, R – обратный праймер.

мы «Синтол» (Россия). Для синтеза кДНК водный раствор, содержащий 1 мкг суммарной РНК, 30 мкМ случайных гексануклеотидов и 17,4 мкМ олиго-d(T)₁₅, инкубировали в течение трех минут при 70°С и немедленно переносили на лед. Далее к смеси добавляли 11,5 мкл мастер-микса (1,3 мМ dNTP, 0,02 ед./мкл ингибитора РНКазы, 6 ед./мкл М-MLV-ревертазы, 4 мкл 5×-буфера для M-MLV-ревертазы). После этого пробы помещали в амплификатор (iQ5 Multicolor Real-Time PCRDetectionSystem, Bio-Rad Laboratories, США) для проведения обратной транскрипции: 10 мин при 25°С, 60 мин при 37°С, 5 мин при 95°С, 30 мин при 4°С.

Полученную кДНК использовали для проведения ПЦР в реальном времени с праймерами, специфичными к генам исследуемых белков (титину и GAPDH – референсному гену) (табл. 1).

Подбор праймеров проводили с помощью программы Vector NTI Advance 11. Праймеры были синтезированы фирмой «Евроген» (Россия). ОТ-ПЦР в реальном времени проводили на амплификаторе ДТ-322 («ДНК-Технология», Россия) с использованием ДНК полимеразы Tersus («Евроген», Россия) и SYBR Green I (Invitrogen, США) в качестве флуоресцентного красителя.

Рис. 1. Экспрессия гена титина в *m. soleus* крыс: С – контроль, HS – трехсуточное вывешивание; * $p \le 0.01$, n = 6.

Режим ПЦР был следующим: 1) «горячий старт» – 95°С, 5 мин; 2) денатурация – 92°С, 10 с; 3) отжиг праймеров – 60°С, 30 с; 4) элонгация – 68°С, 1 мин. Этапы 2–4 повторяли 30 раз. Изменение экспрессии генов рассчитывали по методу $2^{-\Delta\Delta Ct}$ согласно [30]. Значения $\Delta\Delta C_t$ рассчитывались по формуле $\Delta\Delta C_t = \Delta C_t$ (контроль) – ΔC_t (опыт), каждое значение ΔC_t рассчитывали по формуле $\Delta C_t = C_t$ (ген белка) – C_t (референсный ген).

При исследовании изменений альтернативного сплайсинга (проверки наличия или отсутствия экзонов в диапазоне от 50-го до 111-го экзона включительно) проводили ПЦР с праймерами [31], синтезированными фирмой «Евроген» (Россия) (табл. 2). Проведение ПЦР с данными праймерами позволяет выявлять наличие или отсутствие в мРНК титина экзонов (в диапазоне от 50-го до 111-го), кодирующих самый вариабельный участок молекулы скелетного титина в І-зоне саркомера. ПЦР проводили на амплификаторе SimplyAmp с использованием готовой смеси для ПЦР qPCRmix-HS SYBR («Евроген», Россия). Режим ПЦР был следующим: 1) денатурация – 95°С, 8 с; 2) отжиг праймеров – 57°С, 12 с; 3) элонгация – 72°С, 80 с. Этапы 1–3 повторяли 35 раз.

Продукты ОТ-ПЦР и ОТ-ПЦР в реальном времени были анализированы в 1%-м агарозном геле. Ампликоны выделяли из геля согласно протоколу Cleanup Standard («Евроген», Россия). Фрагменты ДНК были секвенированы в ЗАО «Евроген».

Статистическую обработку данных по экспрессии гена титина проводили с использованием непараметрического *U*-критерия Манна– Уитни.

РЕЗУЛЬТАТЫ

В результате проведенных экспериментов было обнаружено достоверное увеличение (в 1,81 раза, $p \leq 0,01$) экспрессии гена титина в *m. soleus* крыс группы HS (рис. 1).

При этом, однако, не выявлено изменений в альтернативном сплайсинге пре-мРНК титина в *m. soleus* обеих исследуемых групп крыс (рис. 2).

БИОФИЗИКА том 64 № 5 2019

Праймер	Нуклеотидная последовательность	Праймер	Нуклеотидная последовательность
50F1	AGTGGTTCAAAGCTGGCAGAGAG	80F1	AGTTGCCAAGCAGGGAGAATC
51R1	CTGTTCAGGACAGGGGTGTT	80R1	GCATTCCAGTTGGATGGATT
52F1	CCTCCATTGCAAGCTGAAAG	82F1	AACTGGGAAGTCCAGAAGCA
52R1	AGTATGTGCCGCTGTCATCA	82R1	GGACAGTCAGGAGTGCCGAAC
53F1	AACTCTTGAGCCTGCACACA	84F1	AAGCTTAAGGACACGACTGCCAC
53R1	TGTGTGCAGGCTCAAGAGTT	84R1	AGTCAGAGTGCAGACGTTATCCG
54F1	CTGTTACCTTACAAGCTGCCGTG	86F1	CACGTACTCTGGCACACCAC
54R1	TCGTTTTCAGCTAGGCACGTGTA	86R1	TGGTGATGCCACAGTTAGGA
55R1	AAAATTTCAGCTGGGCAATG	88F1	CTCGGAACCTCTTCAGGTGT
56F1	GAGACATCGCTCCACTATTCACC	88R1	AGAGGTTCCGAGCCATTGAT
56R1	CCTTAAACCAGGAAACCCTCATG	90R1	CATTGCGAGCCTCACAGGTATAG
58F1	GAAAGGAGATGCCACTCAGCT	90F1	ATAGGCGGGTCTCCAGAAAT
58R1	CACTGCCAGCCTCGTTTTGA	92F1	CCAATGCTGGGAAATACACC
60F1	GAGGTACAGCTGCCTTCCAG	92R1	GCAGGTGTATTTCCCAGCAT
60R1	TTTCCCATCATGCTTGACTTC	94F1	ACAACACCTGTGCCCTAACC
62F1	AGCTGGAAGGCACAGACAGT	94R1	TAGGGCACAGGTGTTGTCTG
62R1	GTGCCTTCCAGCTGACTGAT	96F1	AATTCTGAGCAGCACTGTTGAGG
64F1	GGAGATACGGCATTTCTTTGTG	96R1	TGCCAGAAGCGTTTTCAATGTAG
64R1	AGCTTCACAGACGTAAGTCCCAC	98F	GCACTGTTACGAACCCCATC
66F1	GAAAATGTCACCACCGTCTTG	98R	CAAAAACCACTGGCAATCCT
66R1	CACTCCTGACTCATTCTTGGC	100F	CTGCGAGATCACGTTCAAGA
68F1	CATTCCTCCATCGTTCACCAA	100R	CAGCAGAGCGTTGTTCTTGA
68R1	TCTCCTGCTACATTGGACACC	102F	CGCTGTGGATGGAAAACTCT
70R1	ATCTGCATGACTGCCACTGAG	102R	TGAGGCTCTGACACGAAGAA
70F1	TCAGTGGCAGTCATGCAGAT	104F	GCATGTATGGAATCACCGACT
72F1	GGTCAGAGAGAGCGAGAACG	104R	TTCAGCAGCTCAAATGCTTG
72R1	CGTTCTCGCTCTCTCTGACC	106F	AGCTGGAGCCCAGTAACAAA
74F1	TTCTCTGGACTCATCGGACA	106R	CCAGCTTCTCAGTCCCTTTG
74R1	CCACATTAGCAGCCACACAT	108F	CCATCGTCACCTGGTACAAA
76F1	TTGTCACCACGGAGAAAACA	108R	GGCATCGTCAAAGGACACTT
76R1	GGTCAGAATCTCCAGGATGC	110F	AAACTTGAGATGAAGCCTCCTG
78F1	GGCTTACCAGTTACCCTCAC	110 R	CAGGAGGCTTCATCTCAAGTTT
78R1	CGTAGAAGATGCTGTGCCAAGTG	112 R	TTCAATTCGTTTTGCTGGTG

Таблица 2. Пары праймеров для проведения ОТ-ПЦР

Примечание. F – прямой праймер, R – обратный праймер.

В частности, результаты ПЦР-анализа показали наличие всех экзонов (в диапазоне от 50-го до 111-го), кодирующих самый вариабельный участок скелетной N2A-изоформы титина в I-зоне саркомера.

ОБСУЖДЕНИЕ

Увеличение экспрессии гена *TTN* обнаружено ранее в сердечной и трех скелетных мышцах мышей после 30-суточного космического полета [6]. Наши результаты показали увеличение экспрес-

БИОФИЗИКА том 64 № 5 2019

сии гена титина в *m. soleus* крысы после моделируемой в течение трех суток гравитационной разгрузки. Известно, что атрофия, вызванная функциональной разгрузкой, сопровождается снижением содержания интактных изоформ титина и увеличением содержания его протеолитических фрагментов [2–6,16]. Эти изменения являются следствием повышенного протеолиза титина кальпаинами — кальций-зависимыми протеазами, активность которых возрастает в мышце уже в течение первых суток функциональной разгрузки [32]. Известны данные, что полу-

Рис. 2. Анализ альтернативного сплайсинга пре-мРНК титина: С – контроль, HS – трехсуточное вывешивание. Обозначения: 50-52, 51-53 и т.д. – экзоны; М – маркер (п.о.).

период жизни титина составляет трое суток [33]. Учитывая это, можно ожидать уменьшения содержания титина на третьи сутки функциональной разгрузки, однако ранее мы этого не обнаружили [17]. Вполне вероятно, что увеличение экспрессии гена *TTN* (рис. 1) вносит компенсационный вклад в поддержание содержания титина в первые трое суток функциональной разгрузки.

Изменений альтернативного сплайсинга премРНК титина в *m. soleus* вывешенных крыс не обнаружено. У млекопитающих в мышце soleus, содержащей преимущественно «медленную» изоформу І ТЦМ, транскрипты мРНК титина содержат весь набор экзонов в диапазоне с 50-го по 111-й [23]. Трансляция таких транскриптов мРНК сопровождается синтезом N2A-изоформы титина с молекулярной массой 3,7 МДа. В мышце psoas, содержащей «быстрые» изоформы ТЦМ, транскрипты мРНК не содержат экзоны в диапазоне с 53-го по 69-й [23]. Трансляция таких транскриптов мРНК сопровождается синтезом N2A-изоформы титина с молекулярной массой ~3,4 МДа [23]. Показано, что в разгруженной мышце происходят изменения в изоформном составе ТЦМ, направленные на уменьшение доли «медленной» изоформы І ТЦМ и увеличение доли «быстрых» изоформ этого белка [16,25,26]. При этом обнаружено, что существенные изменения на уровне мРНК этих изоформ наблюдаются уже через 24 ч функциональной разгрузки, и еще больше увеличиваются к третьим суткам [25,26]. Учитывая это, мы ожидали обнаружить в *m. soleus* вывешенных крыс появление транскриптов мРНК, которые содержат не все экзоны в исследуемом нами диапазоне (с 50-го по 111-й). Однако таковых изменений обнаружено не было. В частности, ПЦР-анализ подтвердил наличие всех экзонов в исследуемом диапазоне мРНК в *m. soleus* исследованных групп крыс.

выводы

Впервые обнаружено, что трехсуточная функциональная разгрузка сопровождается увеличением экспрессии гена *TTN*. При этом не выявлено изменений в альтернативном сплайсинге пре-мРНК титина в диапазоне экзонов с 50-го по 111-й. Таким образом, в сравнении с общей экспрессией гена титина, альтернативный сплайсинг его пре-мРНК является более консервативным процессом. Вполне вероятно, что на более поздних сроках разгрузки будут происходить изменения не только экспрессии гена *TTN*, но и альтернативного сплайсинга пре-мРНК титина.

БИОФИЗИКА том 64 № 5 2019

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования коллективного пользования ИТЭБ РАН и ГНЦ РФ – ИМБП РАН.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (грант №18-15-00062).

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Проведение опытов на животных было одобрено комиссией по биомедицинской этике ГНЦ РФ – ИМБП РАН (Москва).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликтов интересов.

СПИСОК ЛИТЕРАТУРЫ

- T. M. Mirzoev and B. S. Shenkman, Biochemistry (Moscow) 83 (11), 1299 (2018). DOI: 10.1134/ S0006297918110020.
- T. Toursel, L. Stevens, H. Granzier, and Y. Mounier, J. Appl. Physiol. (1985), **92** (4), (2002). 1465. DOI: 10.1152/japplphysiol.00621.2001.
- 3. B. S. Shenkman, T. L. Nemirovskaya, IN Belozerova, et al., J. Gravit. Physiol. 9 (1), P139 (2002).
- J. Udaka, S. Ohmori, T. Terui, et al., J. Gen. Physiol. 131 (1), 33 (2008). DOI: 10.1085/jgp.200709888.
- 5. I. M. Vikhlyantsev and Z. A. Podlubnaya, Biophysics **53** (6), 592 (2008).
- A. Ulanova, Y. Gritsyna, I. Vikhlyantsev, et al., Biomed. Res. Int. 2015, 104735 (2015). DOI: 10.1155/2015/104735.
- 7. L. Tskhovrebova and J. Trinick, J. Mol. Biol. **265** (2), 100 (1997). DOI: 10.1006/jmbi.1996.0717.
- D. O. Fürst, M. Osborn, R. Nave, and K. Weber, J. Cell Biol. 106 (5), 563 (1988).
- A. Houmeida, J. Holt, L. Tskhovrebova, and J. Trinick, J. Cell Biol. 131 (6, Pt 1), 1471 (1995).
- J. K. Freundt and W.A. Linke, J. Appl. Physiol. **126** (5), 1474 (1985), (2018). DOI: 10.1152/japplphysiol.00865.2018.
- 11. P. F. van der Ven, J. W. Bartsch, M. Gautel, et al., J. Cell Sci. **113** (Pt 8), 1405 (2000).
- R. Horowits, E. S. Kempner, M. E. Bisher, and R. J. Podolsky, Nature **323** (6084), 160 (1986). DOI: 10.1038/323160a0.
- H. L. Granzier and S. Labeit, Exerc. Sport Sci. Rev. 34 (2), 50 (2006).
- T. Voelkel and W. A. Linke, Pflugers Arch. 462 (1), 143 (2011). DOI: 10.1007/s00424-011-0938-1.

- 15. M. Gautel, Pflugers Arch. **462** (1), 119 (2011). DOI: 10.1007/s00424-011-0946-1.
- 16. B. S. Shenkman, Z. A. Podlubnaya, I. M. Vikhlyantsev, et al., Biophysics **49** (5), 807 (2004).
- E. V. Ponomareva, V. V. Kravtsova, E. V. Kachaeva, et al., Biophysics 53 (6), 615 (2008). DOI: 10.1134/ S0006350908060274.
- M. L. Bang, T. Centner, F. Fornoff, et al., Circ. Res. 89 (11), 1065 (2001).
- 19. W. Guo and M. Sun, Biophys. Rev. **10** (1), 15, (2018). DOI: 10.1007/s12551-017-0267-5.
- Z. Chen, R. Maimaiti, C. Zhu, et al., J. Cell Biochem. 119 (12), 9986 (2018). DOI: 10.1002/jcb.27328.
- S. Labeit, S. Lahmers, C. Burkart, et al., J. Mol. Biol. 362 (4), 664 (2006). DOI: 10.1016/j.jmb.2006.07.077.
- 22. A. Freiburg, K. Trombitas, W. Hell, et al., Circ. Res. **86** (11), 1114 (2000).
- W. Guo, S. J. Bharmal, K. Esbona, and M. L. Greaser, J. Biomed. Biotechnol. 2010, 753675 (2010). DOI: 10.1155/2010/753675.
- 24. C. Neagoe, C. A. Opitz, I. Makarenko, and W. A. Linke, J. Muscle Res. Cell Motil. **24** (2–3), 175 (2003).

- J. M. Giger, P. W. Bodell, M. Zeng, et al., J. Appl. Physiol. **107** (4), 1204 (2009). DOI: 10.1152/japplphysiol.00344.2009.
- N. A. Vilchinskaya, E. P. Mochalova, T. L. Nemirovskaya, et al., J. Physiol. 595 (23), 7123 (2017). DOI: 10.1113/JP275184.
- V. E. Novikov and E. A. Ilyin, Aviat. Space Environ. Med. 52 (9), 551 (1981).
- R. K. Globus and E. Morey-Holton, J. Appl. Physiol. 120 (10), 1196 (2016). DOI: 10.1152/japplphysiol.00997.2015.
- G. J. Viljoen, L. H. Nel, and J. R. Crowther, *Molecular diagnostic PCR handbook* (Springer, The Netherlands, 2005).
- K. J. Livak and T. D. Schmittgen, Methods 25, 402 (2001). DOI: 10.1006/meth.2001.1262.
- S. Li, W. Guo, C. N. Dewey, and M. L. Greaser, Nucl. Acids Res. 41 (4), 2659 (2013). DOI: 10.1093/nar/gks1362.
- D. L. Enns, T. Raastad, I. Ugelstad, and A. N. Belcastro, Eur. J. Appl. Physiol. **100** (4), 445 (2007). DOI: 10.1007/s00421-007-0445-4.
- W. B. Isaacs, I. S. Kim, A. Struve, and A. B. Fulton, J. Cell Biol. **109** (5), 2189 (1989).

Three-Day Functional Unloading is Accompanied by an Increase in the *TTN* Gene Expression in Rat Soleus Muscle without Changes in Alternative Splicing from Exon 50 to Exon 111

A.D. Ulanova*, Yu.V. Gritsyna*, V.K. Zhalimov**, L.G. Bobyleva*, S.P. Belova***, T.L. Nemirovskaya***, B.S. Shenkman***, and I.M. Vikhlyantsev* ****

*Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya ul. 3, Pushchino, Moscow Region, 142290 Russia

**Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya ul. 3, Pushchino, Moscow Region, 142290 Russia

***State Scientific Center – Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse 76a, Moscow, 123007 Russia

****Pushchino State Institute of Natural Sciences, Prosp. Nauki 3, Pushchino, Moscow Region, 142290 Russia

Changes in the expression of a titin gene and alternative splicing of titin pre-mRNA from exon 50 to exon 111 in rat soleus muscle were analyzed following three-day functional unloading (the HS group). Using real-time RT-PCR, it was found that the expression level of the titin gene in rat soleus muscle from the HS group was higher by 1.81 times ($p \le 0.01$, n = 6) than the control one (n = 7). It was shown that all studied exons of titin mRNA are present in rats soleus muscle from the two groups. Our results demonstrate that three-day functional unloading is accompanied by an increase in the expression of the titin gene in rat soleus without changes in alternative splicing from exon 50 to exon 111.

Keywords: functional unloading, titin gene, alternative splicing, m. soleus