= МОЛЕКУЛЯРНАЯ БИОФИЗИКА ===

УДК 578.23

ПАПАИНОПОДОБНАЯ ПРОТЕАЗА PLpro КОРОНАВИРУСА SARS-COV-2 КАК ПРОТИВОВИРУСНАЯ МИШЕНЬ ДЛЯ ИНГИБИТОРОВ АКТИВНОГО ЦЕНТРА И БЕЛОК-БЕЛКОВЫХ ВЗАИМОДЕЙСТВИЙ

© 2022 г. П.В. Ершов^{*, #}, Е.О. Яблоков^{*}, Ю.В. Мезенцев^{*}, Г.Н. Чуев^{**}, М.В. Федотова^{***}, С.Е. Кручинин^{***}, А.С. Иванов^{*}

*Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича, Погодинская ул., 10/8, Москва, 119121, Россия

**Институт теоретической и экспериментальной биофизики РАН, Институтская ул., 3, Пущино Московской области, 142290, Россия

***Институт химии растворов им. Г. А. Крестова РАН, Иваново, Академическая ул., 1, 153045, Россия

[#]E-mail: pavel79@inbox.ru

Поступила в редакцию 05.06.2022 г. После доработки 09.08.2022 г. Принята к публикации 12.08.2022 г.

Папаиноподобная протеаза PLpro короновируса SARS-CoV-2 является мультифункциональным ферментом, который катализирует протеолитический процессинг двух вирусных полипротеинов ppla и pplab. PLpro также расщепляет пептидные связи между белками клеток хозяина и убиквитином (или убиквитино-подобными белками), что связывают с нарушением иммунных процессов. Были приотеризированы девять структур наиболее действенных ингибиторов активного центра PLpro по параметрам биохимических (IC50) и клеточных тестов для оценки подавления вирусной репликации (EC₅₀) и цитотоксичности (CC₅₀). Литературный поиск показал, что PLpro может взаимодействовать с не менее чем 60 потенциальными белковыми партнерами в клетках, 23 из которых являются мишенями для других вирусных белков (вирус папилломы человека, вирус Эпштейна-Барр). Анализ белок-белковых взаимодействий показал, что белки USP3, UBE2J1, RCHY1 и FAF2, вовлеченные в процессы де- и убиквитинилирования, содержат наибольшее число связей с другими белками, а взаимодействие с ними вирусных белков может отражаться на архитектуре всей сети белок-белковых взаимодействий. На примере пространственной модели комплекса PLpro/убиквитин и набора из 154 соединений природного происхождения с известной противовирусной активностью были предсказаны 13 соединений (молекулярные массы в диапазоне 454—954 Да) в качестве потенциальных ингибиторов PLpro. Эти соединения связываются с «горячими» аминокислотными остатками протеазы в положениях Gly163, Asp164, Arg166, Glu167 и Туг264, участвующими во взаимодействии с убиквитином. Таким образом, фармакологическое воздействие на периферические сайты PLpro, играющие важные роли в связывании белковых субстратов, может быть дополнительной мишень-ориентированной противовирусной стратегией.

Ключевые слова: SARS-CoV-2, папаиноподобная протеаза, PLpro, белок-белковые взаимодействия, вирус-хозяин, поверхностный плазмонный резонанс, ингибиторы.

DOI: 10.31857/S0006302922060084, EDN: LJZOBK

Всемирная организация здравоохранения 11 марта 2020 г. объявила о начале пандемии заболевания COVID-19, которое было вызвано короновирусом SARS-CoV-2. Заболевание оказало серьезную нагрузку на национальные системы здравоохранения и привело к смерти нескольких миллионов человек во всем мире [1]. Еще до начала волны штамма омикрон (В.1.1.529) к середине ноября 2021 года более 40% населения мира заразилось COVID-19 хотя бы один раз [2]. Появление и быстрое распространение новых штаммов SARS-CoV-2 стимулирует разработку лекарственных средств, блокирующих разные стадии жизненного цикла вируса. Это достигается также че-

Сокращения: PLpro — папаиноподобная протеаза SARS-CoV-2, Мрго — главная протеаза SARS-CoV-2, ББВ белок-белковые взаимодействия, SPR — поверхностный плазмонный резонанс (Surface Plasmon Resonance), а.к.о. аминокислотные остатки.

Рис. 1. Кристаллографическая структурная модель PLpro SARS-CoV-2 (PDB ID 7cmd [6]). Римскими цифрами на рисунке обозначены: I – Zn-связывающий домен (один ион цинка координируют четыре остатка цистеина (Cys189, Cys192, Cys224, Cys226)), II – домен Palm, III – каталитическая триада (Cys111–His272–Asp286), IV – домен «большой палец», V – убиквитино-подобный домен.

рез ингибирование ключевых ферментов вирусного аппарата репликации [3].

Папаиноподобная протеаза (PLpro) и главная протеаза (Mpro) SARS-CoV-2 осуществляют протеолитическое расщепление двух вирусных полипротеинов pp1a и pp1ab, что важно для созревания 16 белков, вовлеченных в репликацию и сборку вирусных частиц [4]. PLpro является мономерным белком с мультидоменной структурой (рис. 1) и «каталитической триадой» (аминокислоты Cys112, His273, Asp287) в активном центре, которая распознает и расщепляет мотив Leu-X-Gly-Gly полипротеина (где X — любой аминокислотный остаток) с образованием вирусных белков nsp1, nsp2 и nsp3 [5].

На сегодняшний день пока отсутствуют разрешенные для клинического применения ингибиторы PLpro. По данным портала Clinical Trials проводятся клинические исследования двух кандидатных ингибиторов PLpro – изотретиноина (NCT04361422) и эбселена (NCT04484025). Подавляющее большинство научных разработок посвящено идентификации обратимых и необратимых ингибиторов, нацеленных именно на активный центр вирусного фермента. Параллельно с генерацией большого объема информации о новых ингибиторах PLpro нельзя не заметить, что число предсказанных *in silico* биоинформационных гипотез [7–11] примерно на порядок может превышать число экспериментально верифицированных ингибиторов. Данный факт порождает очевидную проблему, состоящую в том, что далеко не все гипотезы бывают продуктивны [12, 13]. В этом контексте использование мультиметодического инструментария (биохимические тесты, оценка связывающей способности, клеточные тесты) является эталонным вариантом приоритезации новых ингибиторов PLpro SARS-CoV-2 [14–16]. Однако уместно заметить, что фармакологическое воздействие на активный центр PLpro имеет некоторые биологические ограничения. Во-первых, возникновение аминокислотных замен в активном центре вследствие высокой мутационной изменчивости разных штаммов вируса может быстро формировать резистентность к конкурентным ингибиторам. Во-вторых, широкая представленность остатков Cys в составе активных центров клеточных ферментов увеличивает вероятность неселективного действия ингибиторов, образующих ковалентные связи с Cys.

Особенность PLpro взаимодействовать с клеточными белками подчеркивает мультифункциональный аспект фермента. Было установлено, что это явление сопровождается расщеплением пептидных связей между белками-метками (убиквитин, ISG15 – интерферон-стимулируемый ген 15 и убиквитино-подобный белок Nedd8) и целевыми белками [16–18]. Так, PLpro, снижая уровень

убиквитинилирования белков TRAF3, TBK1, ІККε, STING и IRF3, косвенно влияет на экспрессию гена интерферона (IFN) [19], тем самым нарушая протекание иммунных процессов, а возможность PLpro участвовать в белок-белковых взаимодействиях (ББВ) [20] позволяет в целом рассматривать ее как экзогенный модулятор клеточных сигнальных путей через изменение спектра ББВ. Как будет показано далее, в ББВ PLpro и клеточных белков, по-видимому, вовлечена консервативная область, смежная с активным центром вирусного фермента, поэтому альтернативная стратегия снижения токсического действия PLpro на организм человека, могла бы реализоваться в фармакологической блокаде ББВ в координатах вирус-хозяин.

Одной из целей данной работы является обзор наиболее перспективных и экспериментально верифицированных кандидатных ингибиторов PLpro SARS-CoV-2, обнаруженных к настоящему времени. Второй целью являются систематизация данных по интерактомике PLpro и обсуждение возможностей блокирования ББВ с участием PLpro низкомолекулярными соединениями с известной противовирусной активностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ВЕРИФИКАЦИЯ ПРЕДСКАЗАННЫХ *IN SILICO* ИНГИБИТОРОВ

Поверхностный плазмонный резонанс (SPR, от англ. Surface Plasmon Resonance,) является одним из способов экспериментальной верификации предсказанных in silico потенциальных ингибиторов PLpro. SPR-анализ позволяет определить кинетические, равновесные и термодинамические константы межмолекулярного взаимодействия. В работах, где использовали SPR-биосенсор, рекомбинантный полноразмерный препарат PLpro был ковалентно иммобилизован на оптическом чипе СМ5 за свободные аминогруппы белка [14] или за аффинный полигистидиновый таг [15]. Целевой уровень иммобилизации PLpro составил 12-13 тысяч RU (resonance unit). В качестве позитивного контроля связывания с PLpro был использован контрольный ингибитор GRL0617.

В биохимических тестах изучают кинетику ферментативной реакции PLpro в отсутствии (контроль) и присутствии разных концентраций потенциальных ингибиторов для определения значений IC_{50} . Композиция параметров биохимического теста (pH и ионная сила буферного раствора, соотношение концентраций фермента и ингибитора, время инкубации, температурный режим, присутствие добавок) существенно отличалась, что следует из анализа литературных источников [15, 21–24]. Для регистрации протеаз-

БИОФИЗИКА том 67 № 6 2022

ной активности был использован спектральный метод, основанный на флуоресцентном резонансном переносе энергии (FRET, от англ. fluorescence resonance energy transfer) с флуоресцентно меченными пептидами, мотивы которых соответствуют сайтам узнавания PLpro, например, Z-RLRGG-AMC (где АМС - это 7-амидо-4-метилкумарин) или Ac-LRGG-ACC (где ACC – это 7-амино-4-карбамоилметилкумарин). Так, при протеолитическом расщеплении субстрата наблюдалось значительное возрастание интенсивности флуоресценции AMC ($\lambda_{ex} = 360$ nm; $\lambda_{em} = 460$ nm) или ACC ($\lambda_{ex} = 355$ nm, $\lambda_{em} = 460$ nm), а начальная скорость реакции (V_0) была пропорциональна активности PLpro. Для регистрации деубиквитиназной активности PLpro использовали флуоресцентно меченные белковые субстраты на основе убиквитина и ISG-15. Буферные растворы содержали 20-50 мМ трис-HCl (pH 6.8-8.0) с добавлением NaCl до финальной концентрации 150 мМ. Время преинкубации ингибитора с PLpro перед добавлением субстрата составляло от 10 до 30 мин при комнатной температуре или при 37°С. Финальные концентрации PLpro и субстрата в реакционной смеси составляли 10-100 нМ и 10-50 мкМ соответственно, в среднем молярное соотношение фермент : субстрат было равно 1:500. Содержание добавок для улучшения растворимости низкомолекулярных соединений в буферных растворах, таких как Тритон Х-100 и диметилсульфоксид, составляло 0.01-0.05% (v/v) и 0-2% соответственно. Добавление в реакционную смесь дитиотреитола до финальной концентрации 3-5 мМ необходимо для ограничения неспецифического влияния низкомолекулярных соединений на остаток цистеина в активном центре PLpro [25]. Так, шесть серосодержащих соединений, не показавших ранее торможения вирусной репликации, но ингибировавших ряд цистеиновых протеаз в биохимическом тесте в отсутствии дитиотреитола, не снижали ферментативную активность протеаз в его присутствии. Так же, как и в SPR-анализе, в качестве позитивного контроля использовали контрольный ингибитор GRL0617 (*IC*₅₀ = 0.6 и *K_i* = 0.5 мкМ). Для изучения механизма ингибирования разные концентрации целевого соединения инкубировали в течение 30 мин в присутствии разных концентраций PLpro (25-150 нМ) в объеме 90 мкл. Затем реакцию запускали добавлением 10 мкл субстрата PLpro до конечной концентрации 30 мкМ. Данные в координатах начальных скоростей и концентраций PLpro обрабатывали при помощи регрессионного анализа [21].

Мы выполнили поиск соединений, которые были описаны в литературе одновременно как ингибиторы ферментативной активности PLpro по известным параметрам *IC*₅₀, так и ингибиторы

Рис. 2. Цифрами обозначены следующие соединения: (а) – XR8-23, (б) – YM155, (в) – проантоцианидин, (г) – Jun9-75-4, (д) – соединение 29, (е) – соединение 6, (ж) – дигидротаншинон I, (з) – тропифексор, (и) – соединение 7. Лекарствоподобные (от англ. drug-likeness) свойства были предсказаны для соединений (б), (г), (д), (е), (ж) и (и), согласно данным ресурса SwissADME [36].

репликации SARS-CoV-2 по параметрам цитотоксичности (CC_{50}) и полумаксимальной эффективной концентрации (EC_{50}). Определение параметров CC_{50} и EC_{50} можно считать более «стандартизованными» ввиду использования одинаковых методик и клеточных моделей (Vero E6, A549, Caco2, Calu3). Что касается значений IC_{50} , то их достаточно сложно сравнивать между собой из разных работ вследствие применения разных субстратов и композиции биохимических тестов. На рис. 2 представлена выборка низкомолекулярных соединений непептидной природы, показавших наиболее благоприятный профиль ингибирования по параметрам IC_{50} , CC_{50} , EC_{50} : XR8-23 (рис. 1а) [15], YM155 (рис. 1б) [26], проантоцианидин (рис. 1в) [27], Jun9-75-4 (рис. 1г) [28], соединение 29 (рис. 1д) [23], соединение 6 (рис. 1е) [29], дигидротаншинон I (рис. 1ж) [30], тропифексор (рис. 1з) [31], соединение 7 (рис. 1и)

[32]. Важной характеристикой ингибиторов вирусных ферментов является их побочное действие в отношении клеточных мишеней. Предсказание спектра «нецелевых» клеточных мишеней было выполнено для шести лекарствоподобных соединений (рис. 26,г,д,е,ж,и) на вебсерверах SwissTargetPrediction [33], BindingDB [34] и TargetNet (ECFP2, ECFP4, ECFP6, MACCS с AUC=0.95) [35] с отбором гипотез при значении параметра probability score 1. Так, гликогенфосфорилаза была предсказана как потенциальная мишень для соединений, представленных на рис. 2в,е,и; арахидонат-15-липоксигеназа – для соединений, представленных на рис. 2г,е; кальпаин-1 и неприлизин – для соединений, представленных на рис. 2д,и; печеночная карбоксиэстраза 1 – для соединений, представленных на рис. 2е,ж; форболин-1 — для соединений, представленных на рис. 2е,и. Другие белковые мишени были предсказаны в качестве уникальных для каждого из шести соединений, а среднее число мишеней в расчете на одно соединение составило 12 (интервал от 3 до 21). Только три «нецелевых» белковых мишени были предсказаны для соединения, представленного на рис. 2б.

РЕПОЗИЦИОНИРОВАНИЕ ФАРМАКОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ В КАЧЕСТВЕ ИНГИБИТОРОВ PLpro

Авторы работы [37] изучали ингибиторный потенциал в отношении PLpro SARS-CoV-2 библиотеки из 70 известных ингибиторов деубиквитиназ и цистеиновых протеаз. Было установлено, что соединения SJB2-043 (ингибитор убиквитин-специфичной протеазы 1), TCID (ингибитор убиквитин-С-терминальной гидролазы L3) и PR-619 (неселективный ингибитор деубиквитиназ) характеризовались значениями IC_{50} , равными 0.6, 6.4 и 6.1 мкМ соответственно. При использовании меченного АМС убиквитина в качестве субстрата PLpro значение IC₅₀ составляло 0.09 мкМ в случае SJB2-043, который связывается в периферическом сайте PLpro [37]. Противоопухолевый препарат тарлокситиниб, необратимый ингибитор рецепторных тирозинкиназ EG-FR и HER2, продемонстрировал активность в отношении PLpro SARS-CoV-2 ($IC_{50} = 0.3$ мкМ и $K_{\rm i} = 0.2 \,\,{\rm MkM}$) по типу конкурентного ингибирования. На клеточной модели гепатокарциномы HUH7 тарлокситиниб снижал на 25% репликацию SARS-CoV-2 в концентрации 10 мкМ, не проявляя значимого цитотоксического эффекта [38]. Лозартан, антагонист рецептора ангиотензина второго типа, подавлял на 50% репликацию SARS-CoV-2 (*EC*₅₀ ~ 14 мкМ), однако, ингибирование ферментативной активности PLpro дости-

БИОФИЗИКА том 67 № 6 2022

галось в концентрациях порядка $10^{-4}-10^{-3}$ M [39]. В работе [30] было установлено, что соединения с антипролиферативной активностью CAS No. 331253-86-2, CAS No. 265312-55-8 и CAS No. 37854-59-4 ингибировали PLpro со значениями IC_{50} , равными 0.26, 0.39 и 0.53 мкМ соответственно. Тем не менее, только соединение CAS No. 37854-59-4 показало приемлемый уровень подавления вирусной репликации ($EC_{50} = 20$ мкМ) [30].

АМИНОКИСЛОТНЫЕ ОСТАТКИ ЦИСТЕИНА PLpro В КАЧЕСТВЕ МИШЕНЕЙ ДЛЯ СЕЛЕКТИВНЫХ ИНГИБИТОРОВ

Цинк-связывающий домен PLpro SARS-CoV-2 (рис. 1) представлен "цистеиновой тетрадой" (Cys189–X–X–Cys192–Xn–Cys224–X–Cys226), координирующей ион цинка. Принято считать, что серосодержащие лекарства активные в отношении PLpro, такие как каптоприл или 6-тиогуанин, могут неселективно "выталкивать" ионы цинка не только из PLpro, но и из клеточных белков [40]. Одно из удачных решений было реализовано в пептидомиметиках, нацеленных на остатки цистеина активного центра PLpro. Примерами были необратимые ингибиторы VIR250 и VIR251, которые образуют ковалентную тиоэфирную связь с остатком цистеина PLpro в положении 111 [41].

ИНГИБИТОРЫ ДВОЙНОГО ДЕЙСТВИЯ, НАЦЕЛЕННЫЕ НА PLpro И Mpro

Анализ работ в поисках соединений, способных ингибировать сразу обе протеазы SARS-CoV-2, выявил целый ряд кандидатных соединений с определенным фармакологическим потенциалом. Одно из производных халкона (соединение 6, рис. 2e) ингибировало Мрго и PLpro co значениями IC_{50} , равными 11 и 1 мкМ соответственно [22]. Гинкголовая и анакардиновая кислоты, подавляющие репликацию SARS-CoV-2, были идентифицированы в качестве необратимых ингибиторов Мрго и PLpro с *IC*₅₀ 2 и 16 мкМ соответственно, причем при добавлении дитиотреитола значения IC₅₀ не изменялись [21]. Соединение 29, подавляющее репликацию вируса (ЕС₅₀ около 1 мкМ), ингибировало обе протеазы SARS-CoV-2 с IC₅₀ 0.67-1.72 мкМ и К_D выше 25 мкМ. Молекулярный докинг показал два возможных варианта связывания соединения 29 в активном центре: нековалентное и ковалентное, которое в последнем случае указывает на механизм необратимого ингибирования [23]. Двадцать три производных эбселена, который обладает противовоспалительной, антиоксидантной и цитопротекторной активностью, показали дифференциальный спектр ингибирования PLpro и Мрго SARS-Cov-2 в диапазоне от 10^{-8} до 10^{-6} M [24].

ИНГИБИТОРЫ PLpro ПЕПТИДНОЙ ПРИРОДЫ

Фармакологически активные агенты пептидной природы, нацеленные на белки репликационного аппарата SARS-CoV-2, представляют немалый интерес для разработки противовирусных лекарств, прежде всего, с точки зрения удобства органического синтеза [42]. В литературе описаны результаты доклинических исследований профилактического вакцинного препарата для интраназального введения с непродолжительным сроком действия на основе липопептида, механизм действия которого заключается в блокаде взаимодействия SARS-CoV-2 с восприимчивыми клетками [43]. Стоит сказать, что сообщения по пептидным ингибиторам PLpro SARS-CoV-2 встречаются значительно реже по сравнению с низкомолекулярными соединениями непептидной природы. Помимо чисто биоинформационного предсказания подобных пептидов [44, 45], есть работы с экспериментальной верификацией компьютерных предсказаний. Так, авторы работы [46] создали конструкции на основе LRGG мотива узнавания PLpro, сшитого посредством химического линкера с ингибитором GRL0617 (*IC*₅₀ порядка 10⁻⁶ М). В работе [47] было показано, что димерные модифицированные производные пептидов на основе мотива ботропс-токсина I (ККҮRҮHLКРFСКК) подавляли репликацию SARS-CoV-2 ($EC_{50} = 28-65$ мкМ) и более специфично ингибировали PLpro ($IC_{50} = 1.0 - 3.5$ мкМ) в сравнении с Мрго. Результаты компьютерного моделирования позволили создать модели связывания пептидных ингибиторов с PLpro в области BL2 петли (265-TGNYQCG-271), которая критична для узнавания субстрата и связывания известных низкомолекулярных ингибиторов [47].

БЕЛОК-БЕЛКОВЫЕ ВЗАИМОДЕЙСТВИЯ С УЧАСТИЕМ PLpro В КАЧЕСТВЕ МИШЕНЕЙ ДЛЯ ФАРМАКОЛОГИЧЕСКОГО ВОЗДЕЙСТВИЯ

Взаимодействие вирусных белков с клеточными белками играет значимую роль в патогенезе заболевания, поскольку может перепрограммировать естественные процессы для поддержания жизненного цикла вируса. На данный момент имеется достаточно много результатов интерактомного профилирования потенциальных белковых партнеров вирусных белков SARS-CoV-2. Анализ восьми статей [20, 48–54] позволил нам извлечь 472 клеточных белковых партнера PLpro. Однако в целевую группу мы включили 61 белок,

который встречался в двух и более статьях. Функциональный анализ всего спектра потенциальных белковых партнеров PLpro приведен в табл. 1. Большинство белков расположено в цитоплазме и в мембранах эндоплазматического ретикулума. Они выполняют как структурные (например, связывание с микротрубочками, макромолекулами и фосфолипидами), так и ферментативные функции (например, проявление лигазной активности). Далее была проверена биоинформационная гипотеза о том, являются ли клеточные белки, связывающиеся с PLpro короновирусов SARS-CoV-2 и SARS-CoV, мишенями для экзогенных белков, появляющихся в клетках при инфицировании/репликации другими вирусами. Поиск таких интерактомных данных и визуализация сети ББВ были выполнены с использованием ре-Virhostome (http://interactome.dfci.harcypca vard.edu/V hostome/) [55] на примере вируса папилломы человека, вируса Эпштейна-Барр и аденовируса (рис. 3). Из рис. 3 следует, что по крайней мере около трети клеточных белков (23 из 61 белка), взаимодействующих с PLpro, являются мишенями для белков других вирусов, что может указывать на «универсальность» выбора клеточных мишеней среди этих трех вирусов и короновирусов SARS-CoV-2 и SARS-CoV. Это следует из того, что несколько разных вирусных белков, в том числе и PLpro, взаимодействуют с одной клеточной мишенью (например, МВОАТ7, рис. 3). С другой стороны, вирусный белок НРV6В-Е5А взаимодействует с шестью разными клеточными белками (FAF2, VMP1, AUP1, SNX19, TMEM43, ARL6IP5) (рис. 3) Таким образом, можно предположить, что если область контакта вирусного белка с клеточными белками представлена одним и тем же структурным элементом, то ее можно рассматривать как мишень для нацеливания фармакологически активных ингибиторов ББВ.

Одиннадцать потенциальных белковых партнеров (MKRN2, MKRN3, RCHY1, FAF2, AUP1, TRIM13, UBE2J1, UFSP2, UFL1, USP3, ZER1), взаимодействующих с PLpro SARS-CoV-2 и SARS-CoV, вовлечены в процессы убиквитинилирования и деубиквитинилирования. Это хорошо согласуется с кристаллографическими данными о связывании PLpro с убиквитином и белком ISG15 [56–58] и наличием деубиквитиназной активности PLpro. Сеть ББВ с участием 61 вершин (клеточных белковых мишеней PLpro) была смоделирована в программе NetworkAnalyst v. 3.0 [59] (https://www.networkanalyst.ca/) с использованием в качестве источников данных IMEx (Interna-Molecular Exchange Consortium) tional И STRINGdb (Search Tool for the Retrieval of Interacting proteins database). Для каждой из 11 вершин (целевых белков) в сети ББВ (табл. 2) приведены данные по числу связей конкретной вершины с

Группа генной онтологии, <i>p</i> < 0.05	%*	Белки представленные в группе
GO:0005783 ~ субклеточная локализация в эндоплазматическом ретикулуме	57	ANKLE2, ATL1, FAF2, STX18, UFSP2, AUP1, UBE2J1, UFL1, SMPD4, TMEM43, DDRGK1, ARL6IP5, CLCC1, SEC63, WLS, OSBPL8, CAMLG, MBOAT7, SURF4, CDKAL1, ACSL3, VRK2, TEX2, VMP1, RINT1, LSG1, STIM1, TMEM214, SOAT1, STIM2, REEP4, TRIM13, ESYT2, DHCR7, SLC27A4
GO:0005737 ~ субклеточная локализация в цитоплазме	85	VEZT, ANKLE2, FMR1, FAF2, UFSP2, AUP1, UFL1, SMPD4, TMEM43, GPBP1, ARL6IP5, CLCC1, SEC63, WLS, CAMLG, AKTIP, USP3, CDKAL1, ACSL3, VRK2, FNDC3A, TEX2, RINT1, LSG1, STIM1, TMEM214, ESPL1, SOAT1, STIM2, TRIM13, SLC27A4, SNAP47, ATL1, STX18, RCHY1, UBE2J1, FXR1, CCNB2, FXR2, DDRGK1, SNX25, OSBPL8, MBOAT7, SURF4, HOOK3, VMP1, TMEM199, SNX19, REEP4, SNX14, ESYT2, DHCR7
GO:0010256 ~ субклеточная локализация в мембранах органелл	20	VMP1, OSBPL8, CCNB2, ANKLE2, TMEM43, REEP4, AKTIP, ATL1, SURF4, STX18, ACSL3, HOOK3
GO:0016874 ~ лигазная активность	11	UFL1, MKRN2, TRIM13, MKRN3, ACSL3, RCHY1, SLC27A4
GO:0035091 ~ участие в связывании с фосфатидилинозитолом	8	OSBPL8, SNX19, SNX25, SNX14, ESYT2
GO:0019787 ~ убиквитино-подобная трансферазная активность	10	UFL1, ZER1, AKTIP, TRIM13, RCHY1, UBE2J1
GO:0005515 ~ участие в связывании с белками	75	VEZT, SNAP47, ANKLE2, GRAMD1A, TEX264, FMR1, ATL1, FAF2, STX18, UFSP2, AUP1, RCHY1, UBE2J1, FXR1, UFL1, CCNB2, FXR2, TMEM43, DDRGK1, SNX25, GPBP1, ARL6IP5, SEC63, WLS, CAMLG, AKTIP, MBOAT7, USP3, SURF4, CDKAL1, ACSL3, VRK2, HOOK3, VMP1, TMEM199, RINT1, SNX19, STIM1, ESPL1, SOAT1, STIM2, REEP4, TRIM13, MKRN2, MKRN3, ESYT2
GO:0008289 ~ участие в связывании липидов	11	OSBPL8, SNX19, SOAT1, SNX25, SNX14, ESYT2, TEX2
GO:0005543 ~ участие в связывании фосфолипидов	8	OSBPL8, SNX19, SNX25, SNX14, ESYT2
GO:0008017 ~ участие в связывании с микротрубочками	6	STIM1, REEP4, FMR1, HOOK3

Таблица 1.	. Анализ г	групп к	клеточных	потенциальных	х белковых	мишеней	PLpro	SARS-CoV-2,	представл	іенных
терминами	и генной о	онтолог	тии (от англ	1. gene ontology)						

Примечание. * – Процент белков в группе от общего числа потенциальных белковых мишеней PLpro (61 белок).

другими вершинами в сети и «степени посредничества» (от англ. *betweenness centrality*), который указывает на число кратчайших путей, проходящих через вершину [60]. Из табл. 2 можно видеть, что убиквитин-протеинлигазы RCHY1 и FAF2, а также деубиквитиназы USP3 и UBE2J1, являются белками с наибольшем числом связей в сети ББВ, следовательно, взаимодействие с ними вирусных белков может приводить к изменениям архитектуры значительной части сети ББВ. Пока отсутствуют кристаллографические модели взаимодействия PLpro с клеточными белками, за исключением убиквитина и белка ISG-15, поэтому концепцию модуляции ББВ с участием PLpro низкомолекулярными соединениями мы рассмотрим далее именно на этих двух белках. Хотя аминокислотные последовательности PLpro SARS-CoV и SARS-CoV-2 обладают высокой гомологичностью, анализ областей контакта PLpro с убиквитином или ISG-15 выполняли для обеих

Рис. 3. Репертуар перекрестных белок-белковых взаимодействий с участием клеточных белков, которые могут взаимодействовать с PLpro SARS-CoV (голубой цвет), с белками вируса папилломы человека (HPV), вируса Эпштейна-Барр (EBV) и аденовируса (ADENO) по данным ресурса Virhostome. В качестве поискового запроса был использован список из 61 потенциальной белковой мишени PLpro.

вирусных протеаз. Из табл. 3 следует, что большая часть водородных связей и солевых мостиков в области контакта образуется консервативными аминокислотными остатками (а.к.о.) 163-170 и 265-273 PLpro. Виртуальный скрининг потенциальных ингибиторов ББВ, способных связываться в области контакта между PLpro и убиквитином (или ISG-15), был выполнен на платформе для компьютерного дизайна лекарств ezCADD среди 154 низкомолекулярных соединений природного происхождения с установленной противовирусной активностью (Catalog No. BCL0032, BioCrick Co., Ltd, KHP) [61]. Наилучшие модели связывания PLpro с 13 соединениями (455-954 Да) были предсказаны в боксе 20×25×20 с координатами центра (X = 0, Y = 72, Z = 40) и отобраны по значениям «score» меньше -8.0. Водородные связи между соединениями и а.к.о. PLpro SARS-CoV-2 приведены в табл. 4. Частота встречаемости а.к.о. PLpro, значимых для ее взаимодействия с низкомолекулярными соединениями, составила 92% (ТҮР273), 69% (ASP164 и ARG166), 54% (LEU162 и LYS157) и 31% (GLY163, GLU167, ТҮR264, GLY266 и ТҮR268). При этом GLY163, ASP164, ARG166, GLU167 и TYR264 PLpro SARS-CoV-2 были вовлечены во взаимодействие с убиквитином и ISG-15 (табл. 3). Результаты компьютерного моделирования в одной из работ указали на то, что соединение (-)-эпигаллокатехингалат образует водородные связи с остатками ASP164 и TYR273 PLpro, что сопоставимо с данными докинга (табл. 3 и 4), а при концентрации 100 мкМ это соединение незначительно (на 13%) снижает активность PLpro [62]. Однако было установлено, что (-)эпигаллокатехингалат связывается также и с Мрго ($K_D = 6$ мкМ), при этом с более выраженным ингибиторным эффектом ($IC_{50} = 0.8$ мкМ) [63].

Связывание низкомолекулярных соединений с а.к.о. PLpro в области контакта с убиквитином должно затруднять доступ субстрата в активный

Источник данных		IMEX*	STRINGdb**		
Белки	Число связей	«Степень посредничества»	Число связей	«Степень посредничества»	
MKRN2	3	436	1	0	
UFSP2	3	1249	5	2	
ZER1	5	1579	8	6055	
TRIM13	13	4819	0	0	
UFL1	13	3207	7	871	
USP3	26	14776	25	20083	
UBE2J1	28	10830	16	6028	
AUP1	36	14442	13	2280	
MKRN3	50	24427	0	0	
RCHY1	60	31175	23	20688	
FAF2	69	33358	49	38202	

Таблица 2. Положение потенциальных белковых партнеров PLpro SARS-CoV и SARS-CoV-2 в сети белокбелковых взаимодействий

Примечание. * – International Molecular Exchange Consortium (www.imexconsortium.org); ** – Search Tool for the Retrieval of Interacting proteins database (https://string-db.org/).

центр и подавлять деубиквитинилирование клеточных белков. Пример модели связывания с таким соединением (корилагином) представлен на рис. 4. Как видно из рисунка, корилагин связывается с активным центром PLpro непосредственно в зоне контакта протеазы с убиквитином, при этом значение «score» равно –10.0 (по данным ezCADD) и энергия взаимодействия равна – 7.58 ккал/моль (по данным SwissDock) [64]. Также из табл. 3 и 4 можно видеть, что корилагин (согласно модели связывания) в этом положении может образовывать водородные связи с консервативными а.к.о. Gly163, Asp164 и Glu167 PLpro, которые вовлечены в связывание убиквитина. Таким образом, данное низкомолекулярное соединение может ингибировать деубиквитиназную активность PLpro путем создания стерических затруднений для связывания убиквитина и доступа полипептидной цепи к активному центру PLpro. Интересно отметить, что ранее корилагин был идентифицирован как блокатор взаимодействия белка «шипа» SARS-CoV-2 с ACE2 рецептором на поверхности клеток [65]. Воздействие фармакологически активными соединениями на область

Таблица 3. Параметры обл	асти контакта PLpro коро	онавирусов SARS-CoV и	SARS-CoV-2 с клеточными	белками
--------------------------	--------------------------	-----------------------	-------------------------	---------

Параметр/PD B ID*	Площадь, Å ²	Н+-связи	Солевые мостики	S-S-связи	А.к.о. PLpro, вовлеченные в связывание с клеточными белками
4m0w	999	17	4	0	Leu163**, Gly164, Asp165, Glu168,
5tl7	817	12	5	0	Tyr268
бхаа	945	17	7	0	Gly163, Asp164, Arg166, Glu167, Tyr264,
6xa9	804	11	4	0	<u>Giy2/1</u> , Giu161, Leu162, Ser170, Giu203, Met208, Thr225, Tyr268, Tyr269

Примечание. * — Параметры области контакта кристаллографических моделей определяли на сервере PDBePISA (https://www.ebi.ac.uk/pdbe/pisa/). 3D-модели: 4m0w и 5tl7 — SARS-CoV PLpro/убиквитин и PLpro/ISG-15 соответственно; бхаа и 6ха9 — SARS-CoV-2 PLpro/убиквитин и PLpro/ISG-15 соответственно; ** — Консервативные а.к.о. выделены подчеркиванием.

N⁰	Название соединения	M _r	CAS No	Аминокислотные остатки
1	(-)-Epigallocatechin gallate	458	989515	ASP164, GLY266, TYR268, TYR273
2	Calceolarioside B	478	105471985	LYS157, LEU162, ASP164, ALA246, GLY266, TYR273
3	Chebulagic acid	954	23094715	GLY163, ASP164, ARG166, GLU167, GLY266, TYR268, TYR 273
4	Corilagin	634	23094691	LYS157, GLY163, ASP164, GLU167, TYR273
5	Forsythoside A	624	79916771	LYS157, ASP164, ARG166, GLU167, TYR264, GLY266, TYR273
6	Ganoderiol F	454	114567474	LYS157, ASP164, ARG166, TYR264, ASN267, ASP302
7	Glycyrrhizic acid	819	-	LEU162, ASP164, ARG166, GLU167, TYR264, TYR268, TYR273
8	Hinokiflavone	538	19202369	LEU162, ARG166, TYR273
9	Mulberrofuran G	562	87085005	LEU162, ARG166, TYR273
10	Mulberroside C	458	102841430	LYS157, LEU162, GLY163, ARG166, TYR273
11	Myriceric acid B	634	55497795	LYS157, ARG166, TYR273
12	Procyanidin B1	578	29106512	GLY163, ASP164, ARG166, GLY266, TYR264, TYR273
13	Sennoside A	862	81276	LYS157, LEU162, ASP164, TYR268, TYR273

Таблица 4. Предсказание аминокислотных остатков PLpro коронавирусов SARS-CoV-2, вовлеченных в связывание соединений природного происхождения

контакта PLpro с убиквитином и ISG-15 может быть дополнительной антивирусной стратегией, блокируя возможность вируса нарушать есте-

ственную реакцию клетки на его присутствие. Ингибиторы белкового комплексообразования, связывающиеся вне области активного центра

Рис. 4. (а) — Визуализация 3D-модели комплекса PLpro SARS-CoV-2 и убиквитина (PDB ID 6хаа [56], разрешение 2.70 Å, 8.5 кДа). (б) — Модель докинга низкомолекулярного соединения корилагина (630 Да) в область контакта PLpro SARS-CoV-2 и убиквитина (PDB ID: 6wrh [5], разрешение 1.60 Å). Сплошной и пунктирной рамками выделены области активного центра и Zn-связывающего домена соответственно.

PLpro, опосредованно влияют на протеолитическую активность [66]. Последнее актуально также в свете работы [31], в которой на *in silico* моделях связывания PLpro SARS-CoV-2 с тремя соединениями EACC, KY-226 и тропифексором (*IC*₅₀ по-

рядка 10^{-5} - 10^{-6} М) в U-образном кармане протеазы (также сайт связывания контрольного ингибитора GRL0617) была показана вовлеченность а.к.о. Gln269, Asp164, Tyr268, Lys157 в комплексообразование. Итак, PLpro SARS-CoV-2, может участвовать во взаимодействии как минимум с 61 клеточными белками, что следует из систематизации интерактомной информации по данным нескольких публикаций, однако, на сегодняшний день кристаллографические модели существуют только для двух комплексов PLpro/убиквитин и PLpro/ISG-15. Следовательно, пока остается неизученным вопрос, является ли сайт связывания этих двух белков на PLpro уникальным или характерным для позиционирования других потенциальных белковых партнеров. Далее, какое преимущество даст блокирование сайта связывания убиквитина низкомолекулярными соединениями с противовирусной активностью широкого спектра, например, корилагином, и подавление деубиквитиназной активности PLpro? Известно, что вирусные деубиквитиназы нацелены на несколько клеточных процессов, в основном на различные молекулы, вовлеченные в сигнальный путь врожденного иммунитета, тем самым опосредовано подавляя его и стимулируя репликацию вирусов [67, 68]. В основе этих событий лежат несколько причин: деубиквитинилирование белков TRAF3 и TRAF6 (факторы, ассоциированные с рецептором TNF) с последующими нарушениями интерферонового сигнального пути и выработкой провоспалительных цитокинов; инактивация пути с участием Toll-подобных рецепторов и универсального транскрипционного фактора NF-kB, который регулирует экспрессию генов иммунного ответа, в том числе гена интерферона-бета; РСЛА (ядерный антиген пролиферирующих клеток)-ассоциированная блокада рекрутирования ДНК-полимеразы Nu к сайтам повреждения ДНК и некоторые другие причины [67, 68].

ЗАКЛЮЧЕНИЕ

Открытие новых специфичных ингибиторов вирусных протеаз Mpro и PLpro SARS-CoV-2 является крайне динамичным и высококонкурентным направлением разработок среди многих научных групп в мире. Большинство экспериментально верифицированных ингибиторов нацелены на активный центр протеаз SARS-CoV-2. В данной работе мы проанализировали ряд перспективных ингибиторов PLpro и выделили, по крайней мере, шесть соединений с благоприят-

БИОФИЗИКА том 67 № 6 2022

ным фармакокинетическим профилем и высоким потенциалом ингибирования согласно значениям IC_{50} и EC_{50} , которые могут быть использованы в качестве базовых структур для создания более специфичных и действенных кандидатных противовирусных лекарственных средств. Но как справедливо отмечают авторы работы [69], несмотря на обнадеживающий прогресс в идентификации по меньшей мере 70 структур ингибиторов PLpro за последние два года, предстоит еще долгий путь для внедрения ингибиторов в клиническую практику. До сих пор не было показано, что рационально разработанные ингибиторы PLpro обладают противовирусной эффективностью in vivo против инфекции SARS-CoV-2 на животных моделях.

Систематизация данных по интерактомному профилированию белок-белковых взаимодействий с участием PLpro и клеточных белков позволила выявить 11 клеточных белков, принимающих участие в процессах убиквитинилирования и деубиквитинилирования. Мы полагаем, что селекция фармакологически активных агентов, нацеленных на периферические сайты PLpro, таких как область контакта PLpro и клеточных белков, может быть альтернативным вариантом противовирусного воздействия на SARS-CoV-2.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа была выполнена в рамках Программы фундаментальных научных исследований в Российской Федерации на долгосрочный период (2021–2030 годы), тема № 122030100168-2.

конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Статья не содержит описания исследований, выполненных кем-либо из авторов, с участием людей или использованием животных в качестве объектов.

СПИСОК ЛИТЕРАТУРЫ

- R. Ganesh, K. Mahalingam, N. Kandaswamy, et al., Ind. J. Public Health, 65 (4), 375 (2021).
- 2. R. M. Barber, R. J. D. Sorensen, D. M. Pigott, et al., Lancet, S0140 (2022).
- 3. M. Mei and X. Tan, Front. Mol. Biosci., **8**, 671263 (2021).
- 4. Y. M. Báez-Santos, S. E. St John, and A. D. Mesecar, Antiviral Res., **115**, 21 (2015).

- J. Osipiuk, S.-A. Azizi, S. Dvorkin, et al., Nat. Commun., 12 (1), 743 (2021).
- X. Gao, B. Qin, P. Chen, et al., Acta Pharm. Sin. B, 11 (1), 237 (2021).
- 7. A. Stasiulewicz, A. W. Maksymiuk, M. L. Nguyen, et al., Int. J. Mol. Sci., **22** (8), 3957 (2021).
- D. Li, J. Luan, and L. Zhang, Biochem. Biophys. Res. Commun., 538, 72 (2021).
- 9. S. Rajpoot, M. Alagumuthu, and M. S. Baig, Curr. Res. Struct. Biol., **3**, 9 (2021).
- C. Wu, Y. Liu, Y. Yang, et al., Acta Pharm. Sin. B, 10 (5), 766 (2020).
- P. Delre, F. Caporuscio, M. Saviano, et al., Front. Chem., 8, 594009 (2020).
- M. Loffredo, H. Lucero, D.-Y. Chen, et al., Sci. Rep., 11 (1), 5433 (2021).
- 13. C. Ma and J. Wang, ACS Pharmacol. Transl. Sci., 5 (2), 102 (2022).
- 14. H. Shan, J. Liu, J. Shen, et al., Cell Chem. Biol., **28** (6), 855 (2021).
- Z. Shen, K. Ratia, L. Cooper, et al., J. Med. Chem., 65 (4), 2940 (2022).
- D. Shin, R. Mukherjee, D. Grewe, et al., Nature, 587 (7835), 657 (2020).
- N. Barretto, D. Jukneliene, K. Ratia, et al., J. Virol., 79 (24), 15189 (2005).
- S. G. Devaraj, N. Wang, Z. Chen, et al., J. Biol. Chem., 282 (44), 32208 (2007).
- X. Chen, X. Yang, Y. Zheng, et al., Prot. Cell, 5 (5), 369 (2014).
- A. Stukalov, V. Girault, V. Grass, et al., Nature, 594 (7862), 246 (2021).
- Z. Chen, Q. Cui, L. Cooper, et al., Cell Biosci., 11 (1), 45 (2021).
- 22. J.-Y. Park, J.-A. Ko, D. W. Kim, et al., J. Enzyme Inhib. Med. Chem., **31** (1), 23 (2016).
- 23. V. Di Sarno, G. Lauro, S. Musella, et al., Eur. J. Med. Chem., **226**, 113863 (2021).
- 24. M. Zmudzinski, W. Rut, K. Olech, et al., bioRxiv (2020). DOI:10.1101/2020.08.30.273979
- C. Ma, Y. Hu, J. A. Townsend, et al., ACS Pharmacol. Transl. Sci., 3 (6), 1265 (2020).
- Y. Zhao, X. Du, Y. Duan, et al., Prot. Cell, 12 (11), 877 (2021).
- 27. C.-J. Kuo, T.-L. Chao, H.-C. Kao, et al., Antimicrob. Agents Chemother., **65** (4), e02577 (2021).
- Z. Xia, M. D. Sacco, C. Ma, et al., BioRxiv (2021). DOI:10.1101/2021.03.15.435551
- B. T. Freitas, I. A. Durie, J. Murray, et al., ACS Infect. Dis., 6 (8), 2099 (2020).
- C. T. Lim, K. W. Tan, M. Wu, et al., Biochem. J., 478 (13), 2517 (2021).
- C. Ma, Y. Hu, Y. Wang, et al., ACS Infect. Dis., 8 (5), 1022 (2022).

- 32. B. Sanders, S. Pohkrel, A. Labbe, et al., Res. Square (2021). DOI: 10.21203/rs.3.rs-906621/v1
- D. Gfeller, A. Grosdidier, M. Wirth, et al., Nucl. Acids Res., 42 (Web Server issue), W32 (2014).
- M. K. Gilson, T. Liu, M. Baitaluk, et al., Nucl. Acids Res., 44 (D1), D1045 (2016).
- Z.-J. Yao, J. Dong, Y.-J. Che, et al., J. Comput. Aided Mol. Des., **30** (5), 413 (2016).
- A. Daina, O. Michielin, and V. Zoete, Sci. Rep., 7, 42717 (2017).
- 37. C.-C. Cho, S. G. Li, T. J. Lalonde, et al., ChemMed-Chem, **17** (1), e202100455 (2022).
- M. A. Redhead, C. D. Owen, L. Brewitz, et al., Sci. Rep., 11 (1), 13208 (2021).
- 39. R. Nejat, A. S. Sadr, B. Freitas, et al., J. Pharm. Pharm. Sci., **24**, 390 (2021).
- 40. B. K. Maiti, ACS Pharmacol. Transl. Sci., **3** (5), 1017 (2020).
- 41. W. Rut, Z. Lv, M. Zmudzinski, et al., Sci. Adv., 6 (42), eabd4596 (2020).
- 42. A. S. Skwarecki, M. G. Nowak, and M. J. Milewska, ChemMedChem, **16** (20), 3106 (2021).
- 43. R. D. de Vries, K. S. Schmitz, F. T. Bovier, et al., Science, **371** (6536), 1379 (2021).
- 44. M. Moradi, R. Golmohammadi, A. Najafi, et al., Int. J. Pept. Res. Ther., **28** (1), 24 (2022).
- 45. S. Sasidharan, C. Selvaraj, S. K. Singh, et al., J. Biomol. Struct. Dyn., **39** (15), 5706 (2021).
- 46. N. Liu, Y. Zhang, Y. Lei, et al., J. Med. Chem., **65** (1), 876 (2022).
- 47. M. C. L. C. Freire, G. D. Noske, N. V. Bitencourt, et al., Molecules, **26** (16), 4896 (2021).
- 48. J. Li, M. Guo, X. Tian, et al., Med. (NY), **2** (1), 99 (2021).
- 49. E. M. N. Laurent, Y. Sofianatos, A. Komarova, et al., bioRxiv (2020). DOI:10.1101/2020.08.28.272955
- 50. P. Samavarchi-Tehrani, H. Abdouni, J. D. R. Knight, et al., bioRxiv (2020). DOI:10.1101/2020.09.03.282103
- 51. J. R. St-Germain, A. Astori, P. Samavarchi-Tehrani, et al., bioRxiv (2020). DOI:10.1101/2020.08.28.269175
- 52. D.-K. Kim, B. Weller, C.-W. Lin, et al., bioRxiv (2021). DOI:10.1101/2021.03.15.433877
- 53. S. Pfefferle, J. Schöpf, M. Kögl, et al., PLoS Pathog., 7 (10), e1002331 (2011).
- 54. Z. Chen, C. Wang, X. Feng, et al., EMBO J., **40** (17), e107776 (2021).
- 55. O. Rozenblatt-Rosen, R. C. Deo, M. Padi, et al., Nature, **487** (7408), 491 (2012).
- T. Klemm, G. Ebert, D. J. Calleja, et al., EMBO J., 39 (18), e106275 (2020).
- 57. C.-Y. Chou, H.-Y. Lai, H.-Y. Chen, et al., Acta Crystallogr. D. Biol. Crystallogr., **70** (Pt 2), 572 (2014).
- 58. C. M. Daczkowski, J. V. Dzimianski, J. R. Clasman, et al., J. Mol. Biol., **429** (11), 1661 (2017).

- G. Zhou, O. Soufan, J. Ewald, et al., Nucl. Acids Res., 47 (W1), W234 (2019).
- 60. J. K. Das, S. Roy, and P. H. Guzzi, Infect. Genet. Evol., **93**, 104921 (2021).
- 61. A. Tao, Y. Huang, Y. Shinohara, et al., J. Chem. Inf. Model., **59** (1), 18 (2019).
- 62. E. Pitsillou, J. Liang, K. Ververis, et al., J. Mol. Graph. Model., **104**, 107851 (2021).
- 63. A. Du, R. Zheng, C. Disoma, et al., Int. J. Biol. Macromol., **176**, 1 (2021).
- 64. A. Grosdidier, V. Zoete, and O. Michielin, Nucl. Acids Res., **39** (Web Server issue), W270 (2011).

- 65. L. J. Yang, R. H. Chen, S. Hamdoun, et al., Phytomedicine, **87**, 153591 (2021).
- H. Lee, H. Lei, B. D. Santarsiero, et al., ACS Chem. Biol., 10 (6), 1456 (2015).
- 67. Q. Zhang, Q. Jia, W. Gao, et al., Front. Microbiol., 13, 839624 (2022).
- 68. S. M. Soh, Y.J. Kim, H.H. Kim, et al., Int. J. Mol. Sci., 23 (1), 492 (2022).
- 69. H. Tan, Y Hu, P. Jadhav, et al., J. Med. Chem., 65 (11), 7561 (2022).

SARS-COV-2 Coronavirus Papain-like Protease PLpro as an Antiviral Drug Target for Inhibitors of Active Site and Protein-Protein Interactions

P.V. Ershov*, E.O. Yablokov*, Yu.V. Mezentsev*, G.N. Chuev**, M.V. Fedotova***, S.E. Kruchinin***, and A.S. Ivanov*

*V.N. Orekhovich Research Institute of Biomedical Chemistry, Pogodinskaya ul. 10/8, Moscow, 119121 Russia

**Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya ul. 3, Pushchino, Moscow Region, 142290 Russia

***G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo, 153045 Russia

The SARS-CoV-2 papain-like protease PLpro is a multifunctional enzyme that catalyzes the proteolytic processing of two viral polyproteins such as pp1a and pp1ab. PLpro also cleaves peptide bonds between host cell proteins and ubiquitin (or ubiquitin-like proteins), probably because of an impaired immune system. Nine structures of the most effective inhibitors for PLpro active site were prioritized based on biochemical (IC_{50}) and cellular data to estimate viral replication suppression (EC_{50}) and cytotoxicity (CC_{50}). The literature review demonstrated that PLpro can interact with no less than 60 potential cellular protein partners, 23 of which are targets for other viral proteins (human papillomaviruses and Epstein-Barr virus). Analysis of protein—protein interactions revealed that USP3, UBE2J1, RCHY1, and FAF2, involved in deubiquitination/ubiquitination process, have the greatest number of bonds with other proteins, and the interaction of viral proteins with these enzymes can impact the architecture of the entire network. Thirteen compounds (molecular weights of 454–954 Da) were predicted using a spatial model of the PLpro/ubiquitin complex and a panel of 154 naturally occurring compounds with known antiviral activity. These compounds bind to the "hot spot" amino acid residues of protease at the positions (Gly163, Asp164, Arg166, Glu167, Tyr264) which are involved in the interaction with ubiquitin. Thus, the pharmacological effect on the peripheral sites of PLpro which play important roles in the binding of protein substrates can be an additional target-based antiviral strategy.

Keywords: SARS-CoV-2, papain-like protease, PLpro, protein-protein interactions, host virus, surface plasmon resonance, inhibitors