

ИЗМЕНЕНИЕ ПРОТЕОМНОГО ПРОФИЛЯ *Е. СОLI* ПРИ УДАЛЕНИИ ГЕНОВ, КОДИРУЮЩИХ ГИСТОНОПОДОБНЫЙ БЕЛОК НU: ПО ДАННЫМ ДИФФЕРЕНЦИАЛЬНОГО ДВУМЕРНОГО ГЕЛЬ-ЭЛЕКТРОФОРЕЗА

© 2019 г. Д. Э. Камашев^{*, **, #}, Т. В. Ракитина^{*, ***}, Д. С. Матюшкина^{****}, Д. В. Евсютина^{****}, А. А. Ванюшкина^{****}, Ю. К. Агапова^{***}, В. Е. Анисимова^{**}, А. Л. Дробышев^{**}, И. О. Бутенко^{****}, О. В. Побегуц^{****}, Г. Ю. Фисунов^{****}

*Федеральное государственное бюджетное учреждение науки Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН,

Россия, 117997, Москва, ул. Миклухо-Маклая, 16/1

**ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М.Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет),

Россия, 119146, Москва, Большая Пироговская ул., 19с1

***ФГБУ НИЦ "Курчатовский институт",

Россия, 123098, Москва, пл. Академика Курчатова, 1

**** ФГБУ Федеральный научно-клинический центр физико-химической медицины федерального

медико-биологического агентства,

Россия, 119435, Москва, Малая Пироговская ул., д. 1а

Поступила в редакцию 05.03.2019 г.

После доработки 08.04.2019 г.

Принята к публикации 13.05.2019 г.

Гистоноподобный белок HU принадлежит к семейству белков, ассоциированных с бактериальным нуклеоидом (nucleoid associated proteins, NAPs) и является наиболее консервативным белком этого семейства. Он неспецифически связывает двуцепочечную ДНК и предпочтительно связывает ДНК, имеющую разрывы и изгибы. Белок HU пределяет архитектуру бактериального нуклеоида; его удаление ведет к потере жизнеспособности бактерий *Bacillus subtilis* и *Mycoplasma genitalium*, у которых отсутствуют другие белки семейства NAPs. Влияние белка HU на экспрессию генов известно из транскриптомных исследований, в которых были определены его регулоны. Генетическая делеция белка HU вызывает нарушение регуляции экспрессии генов в *E. coli*, при этом скорость роста бактерии в стандартных условиях почти не изменяется. Для того, чтобы понять, как бактерия противостоит беспорядочной экспрессии генов, мы предприняли сравнительный протеомный анализ клеток *E. coli* дикого типа и клеток, нокаутных по генам, кодирующим белок HU. Методом двумерного гель-электрофореза установлено, что в целом белковый профиль следует изменению профиля экспрессии генов. В то же время, обнаружено, что в некоторых случаях уровень экспрессии генов и представленность кодируемых белков меняются разнонаправленно, что указывает на необходимость дополнения транскриптомного анализа результатами протеомных исследований.

Ключевые слова: гистоноподобный белок, сравнительный протеомный анализ, дифференциальный двумерный гель-электрофорез, регуляция экспрессии

DOI: 10.1134/S0132342319050026

ВВЕДЕНИЕ

Нуклеоид-ассоциированные белки (NAPs) – это глобальные регуляторы топологии ДНК и экспрессии генов у бактерий [1–3]. Влияние NAPs на ДНК-топологию приводит к многочисленным эффектам в бактериальных клетках, включая изменения в регуляции транскрипции [1]. В кишечной палочке *Escherichia coli* известно двенадцать типов NAPs, отличающихся разной ДНК специфичностью; их гены обычно экспрессируются на высоком уровне по сравнению с другими генами, при этом уровень экспрессии зависит от фазы роста бактериальной культуры [2, 3].

Регуляторный эффект NAPs осуществляется путем модуляции компактизации ДНК, приводя-

Сокращения: HU – гистоноподобный белок; NAPs – нуклеоид-ассоциированные белки; ЦТК – цикл трикарбоновых кислот.

[#] Автор для связи: (эл. почта: dkamashev@gmail.com).

щей к обеспечению доступности свободных супервитков ДНК для транскрипционного комплекса [4, 5]. В настоящее время для *E. coli* и *Salmonella enterica* проведены несколько полногеномных исследований связывания NAPs с нуклеоидом бактерий и выявлено влияние такого связывания на транскрипцию [5–7].

Наиболее распространенный представитель семейства NAPs назвали HU от "H" - histone (гистон) и "U" – U93 по названию штамма E. coli, который в 70-х годах использовали для выделения бактериального нуклеоида [8, 9]. Основное свойство HU-белков – компактизация хроматина и регуляция суперспирализяции бактериальной хромосомы [1]. На самом деле, НU легко получить не только из штамма U93 E. coli, а также из любой бактерии. Кроме того, HU часто расшифровывают как heat unstable (неустойчивый при нагревании), тогда как, наоборот, за небольшим исключением, белки HU являются одними из самых термостабильных [10, 11]. Поэтому мы предлагаем для русской литературы другое название хроматин-упорядочивающий (ХУ) белок, которое характеризует главное свойство этого гистоноподобного белка.

Мономер HU-белка имеет молекулярную массу около 10 кДа и состоит из компактного альфаспирального домена и подвижного, в отсутствие ДНК, бета-складчатого ДНК-связывающего домена [10–12]. Белок HU способен образовывать димеры и именно в форме димера он связывает ДНК [13, 14]. В отличие от большинства ДНКсвязывающих белков *E. coli*, которые узнают определенные последовательности ДНК (например, lac-peпpeccop [15]), белок HU связывает хромосомную ДНК бактерий без специфичности к последовательности [2, 16]. Аффинность связывания белка HU существенно увеличивается при наличии в ДНК дефектов, например, одноцепочечных вставок, разрывов или мисматчей [17–21].

Хотя бы один ген белка HU присутствует в большинстве бактериальных геномов, что делает его наиболее консервативным NAP [22]. Помимо регуляции транскрипции, репликации и рекомбинации посредством связывания с ДНК, функции HU распространяются и на контроль инициации трансляции за счет взаимодействия белка и PHK [23, 24].

В *E. coli* имеются два гена, *hupA* и *hupB*, кодирующих субъединицы альфа и бета белка HU; эти субъединицы относятся к родственным кластерам HU [14, 22, 25]. В большинстве бактерий белок HU кодируется одним геном. В *E. coli* делеция только одного гена, *hupA* или *hupB*, существенно не ухудшает рост бактерии. По сравнению с ними, штамм с делецией обоих генов, *hupAB*, очень чувствителен к воздействиям окружающей сре-

БИООРГАНИЧЕСКАЯ ХИМИЯ том 45 № 5 2019

ды, таким как высокие и низкие температуры, высокая осмолярность, низкий уровень pH, облучение и т. д. [26–29].

Несмотря на почти универсальную консервативность белка HU в бактериальном царстве [22], исследования его влияния на экспрессию генов были проведены относительно недавно. Кластеризация данных микроматричного транскриптомного анализа, проведенная для трех штаммов *E. coli* с делециями генов, кодирующих белок HU: hupA, hupB и hupA/hupB (hupAB), во время экспоненциальной, переходной и стационарной фаз роста клеток, позволила идентифицировать регулоны *hupA*, *hupB и hupAB*, содержащие гены, задействованные в регуляции энергетического метаболизма, SOS-ответе и в ответах бактерии на изменения осмолярности и кислотный стресс [30]. Установив влияние белков НU на суперскрученность ДНК, авторы работы [30] тем не менее не обнаружили генов, регулирующих сверхспирализацию ДНК, в *hup*-регулонах. Более позднее микроматричное исследование штамма с двойной делецией hupA/hupB показало, что геномные локусы, кодирующие HU-белок-чувствительные гены, имеют тенденцию проявлять высокое связывание с ДНК-гиразой и, соответственно, повышенную чувствительность к сверхспирализации [31, 32]. Наконец, три регулона. определенные при исследовании трех штаммов (hupA, hupB u hupA/hupB) Salmonella имели разнородные наборы генов, дифференциально экспрессирующиеся на разных фазах роста [33].

В данной работе мы представляем результаты сравнительного протеомного профилирования клеток E. coli дикого типа и нокаутных по генам hupA и hupB, проведенного с помощью 2D-дифференциального электрофореза с последующей идентификацией белков посредством масс-спектрометрии, которые позволили выявить различия в представленности белков разных классов в *E. coli* дикого типа и *E. coli*, лишенной HU-белка. Мы демонстрируем, что изменения протеомного профиля сходны с изменением профиля экспрессии соответсвующих генов, однако изменение представленности некоторых белков не коррелирует с изменением уровня транскрипции соответствующих мРНК, что указывает на необходимость дополнения транскриптомного анализа результатами протеомных исследований.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для исследования влияния белка HU на протеомный профиль бактерии, мы использовали штамм *E. coli* C600, называемый JO2057, происходящий из Института Пастера (Pasteur Institute, Париж) и полученный на его основе штамм JO3020 с делецией двух генов, кодирующих субъединицы альфа и бета белка HU (*hupAB*–) hupA::Cm, hupB::Km [30], любезно предоставленный Жаком Оберто из университета Париж-Сакле (Dr. J. Oberto, Université Paris-Saclay). Оба этих штамма ранее были использованы в транскриптомных исследованиях [30].

Определение скорости роста клеток штаммов JO2057 и JO3020, проводимое путем измерения оптической плотности через различные промежутки времени после разбавления суспензии бактерий свежей средой, показало, что в стандартной среде LB при 37°C оба штамма имеют сходную скорость роста. Этот результат согласуется с наблюдениями других исследователей, согласно которым *E. coli* с делетироваными генами, кодирующими белок HU, имеют множественные дефекты роста только при выращивании в измененных условиях культивирования [26–29].

Протеомные исследования, направленные на идентификацию белков, количество которых заметно различалось в двух указанных штаммах, проводили с использованием метода 2D-диффеэлектрофореза. Оба штамма. ренциального JO2057 и JO3020, растили в среде LB до позднелогарифмической фазы роста. Клетки собирали центрифугированием и белки экстрагировали как описано в "Экспериментальной части". Белковые экстракты метили цианинами согласно рекомендациям фирмы-изготовителя (Amersham): экстракт клеток дикого типа — зеленым флуоресцентным красителем CyDye3-DIGE, экстракт *hupAB*— клеток — красным флуоресцентным красителем CvDve5-DIGE. Перед смешиванием образцов и проведением 2D-гель-электрофореза, интенсивности флуоресценции образцов были выравнены. Для этого для обоих образцов по-отдельности проводили одномерный гель-электрофорез, сканировали гель и определяли значение общей интенсивности флуоресценции для каждого образца. Образцы смешивали в соответствующих пропорциях, проводили двумерный гельэлекрофорез, после чего гели сканировали при длинах волны лазера 532 и 633 нм и идентифицировали пятна, имеющие зеленый или красный цвет, который свидетельствовал о превышении количества белка в клетках дикого типа или в клетках *hupAB*— соответственно.

Результат сканирования типичного геля представлен на рис. 1. Белки, представленность которых заметно различалась в клетках дикого типа и клетках *hupAB*—, идентифицировали посредством MALDI-TOF-масс-спектрометрии. Эксперимент был повторен дважды со сходными результатами.

Таким образом методом 2D-дифференциального электрофореза мы идентифицировали 27 белков, которые по сравнению с *E. coli* дикого типа, были более представлены в *hupAB*-мутанте и 61 белок, менее представленный в *hupAB*-мутанте. Списки белков, представленность которых в *hupAB*-мутанте увеличена и уменьшена, приведены в табл. 1 и 2, соответственно. Следует отметить, что большую часть белков с измененной представленностью (70%), составляют белки, представленность которых в клетках с делетированным белком HU уменьшилась.

Нами была предпринята попытка сравнения полученных результатов с ранее опубликованными данными о *hup*-зависимых транскриптомных изменениях [30]. Поскольку транскриптомное профилирование в указанной работе проводили с использованием микрочипов, не все гены E. coli были исследованы. Тем не менее, для 17 белков, у которых нами было отмечено значимое снижение представленности в нокаутных по белку НU клетках, имеются данные об изменении экспрессии соответствующих генов в той же (поздней логарифмической) фазе роста клеток ЈО3020. [30] (табл. 2). Из этих 17 генов экспрессия 13 генов значимо снижена в мутантных клетках, что показывает высокую степень корреляции результатов протеомных и транскрипционных исследований. В то же время экспрессия четырех генов повышена в мутантных бактериях, хотя анализ изменения протеома показывает снижение представленности кодируемых ими белков. Это можно объяснить регуляцией синтеза этих белков на уровне трансляции их мРНК. В других фазах роста (логарифмической и стационарной), исследованных в работе [30], профили экспрессии генов значительно отличались от поздне-логарифмической фазы роста и корреляции с результатами наших протеомных исследований не наблюдалось.

На рис. 2 представлено распределение белков, количество которых заметно меняется при отсутствии белка HU, по функциональным классам. Анализ диаграммы показывает, что при делеции генов, кодирующих гистоноподобный белок HU, представленность белков, отвечающих за регуляцию клеточного ответа на стрессовые воздействия, изменяется наиболее однонаправленно. Из 61-го белка, представленность которых снижена в *hupAB*-мутанте, семь белков (16%) отвечают за регуляцию клеточного ответа на стрессовые воздействия, тогда как более представлены только 7% (2 белка из 27). Данный факт хорошо согласуется с повышенной чувствительностью бактерий, лишенных белка HU, к стрессовым воздействиям, описанной литературе. Известно, что при воздействии повышенной температуры, высокой концентрации соли и кислоты, а также при ультрафиолетовом и гамма-облучении бактерии, ли-

E. coli C600 (green) – 3020 (red)

Рис. 1. Сравнение представленности белков у *E. coli* дикого типа и *E. coli* с делетированными генами, кодирующими белок HU, посредством двумерного электрофореза с дифференциальным окрашиванием цианинами. Флуоресцентно-меченные белковые лизаты *E. coli* дикого типа (Су3, зеленый) и *E. coli* с делетированными генами, кодирующими белок HU (Су5, красный), сравнивали путем проведения двумерного электрофореза и сканирования геля при длинах волны лазера 532 и 633 нм. Стрелками отмечены положения белков, количество которых различается в исследуемых образцах. Отмеченные стрелками районы вырезали из геля и идентифицировали находящиеся в геле белки.

шенные белка HU, выдерживают значительно меньшие дозы воздействия [26–29].

Мы также обнаружили, что в бактериях с делетированными генами, кодирующими белок HU, изменена представленность многих белков, участвующих в метаболизме углеводов. Так, среди белков, вовлеченных в цикл трикарбоновых кислот (ЦТК), 12% (семь белков из 61) менее представлены в бактериях с делетированными генами, кодирующими белок HU, и только 4% (1 белок из 27) более представлены (рис. 2). Это хорошо согласуется с исследованиями транскрипционного профиля мутантных бактерий, которые показали, что белок НU является регулятором экспрессии генов, кодирующих ферменты путей энергетического метаболизма и катаболических путей [30]. Данное наблюдение также подтверждается проведенным в работе Lazazzera et al. сравнением регулонов белка HU и белка FNR – сенсора, регулирующего метаболизм в анаэробных условиях [34].

Еще одну группу белков, представленность которых меняется в отсутствие HU белка составляют белки, ответственные за трансляцию и тРНКлигазы, представленность которых меняется как в сторону увеличения, так и в сторону снижения (рис. 2).

В заключение отметим, что, хотя влияние отсутствия HU белка на транскриптомный профиль *E. coli* хорошо изучено [30–32], исследование HU-зависимых протеомных изменений проведено в нашей работе впервые. Необходимость уточнения и дополнения транскриптомных исследований результатами протеомного анализа диктуется тем, что именно протеомный профиль определяет эффективность метаболических процессов клетки [35, 36]. При этом количество бел-

КАМАШЕВ и др.

Таблица 1. Список генов, кодирующих белки E. coli, представленность которых в бактериях с делетированным
белком HU (hupAB-) значимо увеличена по результатам 2D-дифференциального электрофореза и идентифика
ции белка посредством трипсинолиза и MALDI-TOF-масс-спектрометрии

Код гена	Ген	Название белка	Score	pI	Macca
Биосинтез аминокислот					
b3433	asd	Aspartate-semialdehyde dehydrogenase	118	5.37	39992
b2551	glyA	Serine methylase	120	6.03	45288
b0907	serC	Phosphoserine aminotransferase	199	5.37	39758
	Me	таболизм углеводов без ЦТК			
b0759	galE	UDP-galactose 4-epimerase	91	5.89	37242
b0755	gmpA	Phosphoglyceromutase	144	5.85	28539
b4034	malE	Maltodextrin-binding protein	112	5.53	43360
b0688	pgm	Phosphoglucomutase	62	5.43	58324
b1702	ppsA	Phosphoenolpyruvate synthase	162	4.93	87380
b2935	tktA	Transketolase 1	135	5.38	71189
	L	ITK, метаболизм углеводов			
b1612	fumA	Fumarate hydratase	124	6.11	60260
		Биосинтез нуклеотидов			
b2507	guaA	GMP synthase	200	5.24	58601
	Оте	ет на стрессовые воздействия			
b0957	ompA	Outer membrane protein A	134	5.59	36282
b0436	tig	Trigger factor	69	4.83	47836
Метаболизм жирных кислот					
b3846	fadB	3-Hydroxybutyryl-CoA epimerase	60	5.84	79486
b1395	paaH	3-Hydroxyadipyl-CoA dehydrogenase	58	5.64	51700
Трансляция и тРНК лигазы					
b4375	prfC	Peptide chain release	81	5.66	59536
b1866	aspS	Aspartate-tRNA ligase	117	5.37	65315
b1713	pheT	Phenylalanine-tRNA ligase	242	5.12	87377
b0026	ileS	Isoleucine-tRNA ligase	130	5.66	104215
b0642	leuS	Leucine-tRNA ligase	97	5.16	97140
b0930	asnS	Asparagine–tRNA ligase	202	5.17	52537
	Транспортеры				
b4391	yjjK	Uncharacterized ABC transporter ATP-binding protein	60	6.11	60260
	Другие пути				
b3926	glpK	Glycerol kinase	53	5.36	56195
b0565	ompT	Protease A	60	5.76	35540
b4371	rsmC	Ribosomal RNA small subunit methyltransferase C	108	6	37601
b2521	sseA	3-Mercaptopyruvate sulfurtransferase	95	4.86	26135
b3407	yhgF	Protein YhgF	98	5.92	85067

Указаны названия генов, белков, достоверность идентификации (Score), изоэлектрическая точка белка (pI), и его масса.

Код гена	Ген	Название белка	Score	pI	Macca	Эксп- рессия
		Биосинтез аминокислот				
b2310	argT	LAO-binding protein	82	5.22	26991	
b1748	astC	Succinylornithine transaminase	162	5.91	43638	
b0032	carA	Carbamoyl-phosphate synthetase	81	5.91	41405	
b2309	hisJ	Histidine-binding periplasmic protein	93	5.47	28480	
b3617	kbl	Glycine acetyltransferase	161	5.64	43090	
b3708	<i>tnaA</i>	Tryptophanase	261	5.88	52740	Down
b1260	<i>trpA</i>	Tryptophan synthase alpha chain	109	5.31	28734	
b1261	trp B	Tryptophan synthase beta chain	83	5.71	42956	
b1262	<i>trpC</i>	Tryptophan biosynthesis protein TrpC	76	5.51	49330	
	1	Метаболизм углеводов без ЦТК				
b1415	aldA	Lactaldehyde dehydrogenase	144	5.07	52240	
b2662	gabT	GABA aminotransferase	108	5.87	45718	
b1676	pykF	Pyruvate kinase I	62	5.77	50697	
b2416	ptsI	Phosphotransferase system	117	4.71	55200	
b2417	treD	Glucose-specific phosphotransferase	55	4.73	18240	
b2465	tktB	Transketolase 2	75	5.86	73025	UP
	1	ЦТК, метаболизм углеводов				
b1276	acnA	Aconitate hydratase 1	74	5.59	97616	
b0720	gltA	Citrate synthase	155	6.11	47385	Down
b0724	sdhB	Succinate dehydrogenase	155	6.16	26716	Down
b1611	fumC	Fumarase C	68	6.12	50430	
b4014	aceB	Malate synthase A	162	5.39	60236	UP
b3236	mdh	Malate dehydrogenase	152	6.22	27508	
b0729	suc D	Succinyl-CoA ligase	111	6.09	29386	Down
		Биосинтез нуклеотидов				
b2508	guaB	IMP dehydrogenase	144	6.02	51990	Down
b4005	purD	Phosphoribosylamine-glycine ligase	138	4.96	45911	
b2557	purL	Phosphoribosylformylglycinamidine synthase	165	5.23	141314	
b2476	purC	Phosphoribosylaminoimidazolesuccinocarboxamide synthase	72	5.07	26978	
b4006	purH	Phosphoribosylaminoimidazolecarboxamide formyltransferase	75	5.51	57345	
b4245	pyrB	Aspartate transcarbamylase	98	6.12	34406	Down
b2780	pyrG	CTP synthetase	117	5.63	60336	
		Ответ на стрессовые воздействия				
b4213	cpdB	2',3'-Cyclic-nucleotide 2'-phosphodiesterase	149	5.36	56179	
b0092	ddlB	D-alanine–D-alanine ligase B	131	4.77	32819	
b4383	deo B	Phosphopentomutase	77	5.11	44342	Down
b2579	yfiD	Autonomous glycyl radical cofactor	62	5.09	14275	Down
b1967	hchA	Glyoxalase III	60	5.42	31186	UP
b3619	hldD	ADP-glyceromanno-heptose 6-epimerase	189	4.8	34871	
b0473	htpG	Chaperone protein HtpG	185	5.09	71378	
b3942	katG	Catalase-peroxidase (CP)	91	5.14	79990	Down

Таблица 2. Список генов, кодирующих белки *E. coli*, представленность которых в бактериях с делетированным белком HU (*hupAB*–) значимо снижена по результатам 2D-дифференциального электрофореза и идентификации белка посредством трипсинолиза и MALDI-TOF-масс-спектрометрии

Код гена	Ген	Название белка	Score	pI	Macca	Эксп- рессия
b3229	<i>sspA</i>	Stringent starvation protein A	151	5.22	24289	
b1333	uspE	Universal stress protein E	63	5.16	35684	
Трансляция и тРНК лигазы						
b3340	fusA	Elongation factor G	229	5.24	77532	
b3339	tufA	Elongation factor Tu 1	218	5.3	43256	
b3168	infB	Translation initiation factor IF-2	158	5.8	97290	
b0911	rpsA	30S ribosomal protein S1	113	4.89	61121	
b0169	rpsB	30S ribosomal protein S2	144	6.61	26727	
b2114	metG	Methionine-tRNA ligase	161	5.38	69526	
b0194	drpA	Proline-tRNA ligase	208	5.12	63653	
b3871	typA	Tyrosine phosphorylated protein A	126	5.16	67313	
Транспортеры						
b1920	fliY	Cystine-binding periplasmic protein	74	6.21	29021	UP
b0809	glnQ	Glutamine transport ATP-binding protein	71	6.08	26714	
b1243	oppA	Periplasmic oligopeptide-binding protein	111	6.05	60861	
b3751	rbsB	D-ribose-binding periplasmic protein	138	6.85	30931	
Другие пути						
b2296	ackA	Acetate kinase	66	5.85	43263	
b0240	crl	Sigma factor-binding protein	58	5.67	15643	
b2133	dld	D-lactate dehydrogenase	98	6.15	64577	
b0356	frmA	Alcohol dehydrogenase class-III	69	5.85	39334	
b2091	gatD	Galactitol-1-phosphate 5-dehydrogenase	59	5.94	37366	
b2241	glpA	G-3-P dehydrogenase	205	6.2	58921	Down
b2242	glpB	Anaerobic G3Pdhase B	77	5.75	45328	Down
b1656	sod B	Superoxide dismutase	138	5.58	21253	Down
b2431	yfeX	Probable deferrochelatase	175	5.34	33031	Down
b3928	zap B	Cell division protein ZapB	76	4.69	9397	

Таблица 2. Окончание

* ЦТК, цикл трикарбоновых кислот.

Приведены названия белков, генов, достоверность идентификации (Score), изоэлектрическая точка белка (pI), и его масса. "UP" и "Down" указывают на увеличение и уменьшение экспрессии соответствующего гена, обнаруженное в работе [30].

ка регулируется не только на уровне транскрипции, что наглядно продемонстрировано в нашем исследовании. Результаты протеомного профилирования позволили определить функциональные классы белков, количество которых меняется в бактериях с делетированными генами, кодирующими белок HU. При этом направленность протеомных изменений в большинстве случаев совпадала с результатами транскрипционного профилирования.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Дифференциальный двумерный электрофорез

Перед постановкой двумерного электрофореза клеточный осадок (5 \times 10⁷ – 2 \times 10⁸ клеток) ресус-

пендировали в 10 мкл 50 мМ Трис-HCl-буфера, рН 8.0 и добавляли лизоцим (конечная концентрация 0.5 мг/мл). После одночасовой инкубации во льду к образцу добавляли 10 мкл смеси детергентов (30% CHAPS и 10% NP-40), 1 мкл смеси нуклеаз (Nuclease Mix, GE Healthcare) и инкубировали еще 1 ч при 4°С. Затем к образцу добавляли 100 мкл буфера для изоэлектрофокусирования (40 мМ Трис-НСІ, рН 9.5, содержащий 8 М мочевину, 2 М тиомочевину, 4% CHAPS + NP-40). После 15 мин инкубации при комнатной температуре образцы центрифугировали 15 мин при 14000 g. Супернатант отбирали и измеряли в нем концентрацию белка методом Бредфорд с помощью Quick start Bradford dye reagent (Bio-Rad). Мечение белков цианинами CyDye3-DIGE (зеле-

Рис. 2. Распределение по функциональным классам белков, представленность которых в отсутствие белка HU снижена (верхняя диаграмма) или повышена (нижняя диаграмма).

ная флуоресценция) и CyDye5-DIGE (красная флуоресценция) проводили согласно рекомендациям фирмы-изготовителя (GE Healthcare). После остановки 45-минутной реакции связывания цианинов с белком с помощью 10 мМ раствора лизина, добавляли дитиотреитол до конечной концентрации 100 мМ и амфолины 3–10 до 1%.

Перед смешиванием двух сравниваемых образцов проводили электрофоретическое разделение каждого из них путем электрофореза в 12% ПААГ в денатурирующих условиях. После проведения электрофореза гель анализировали на сканере TyphoonTrio (GE Healthcare) при длинах волны лазера 532 нм (зеленая флуоресценция) и 633 нм (красная флуоресценция) и определяли значение общей интенсивности флуоресценции для каждого образца. Учитывая эти значения, два меченных разными цианинами образца смешивали в определенной пропорции с учетом выравнивания значений общей интенсивности флуоресценции для каждого из них. Изоэлектрофокусирование проводили в стеклянных 18-см трубочках в 4% ПААГ, содержащем 8 М мочевину, 2% амфолины (pH 3–10), 4% амфолины (pH 5–8), 6% смеси двух детергентов (30% СНАРЅ и 10% NP-40), 0.1% ТЕМЕД (тетраметилэтилендиамин), 0.02% персульфат аммония.

На трубочки со шелочного конца наносили по 200 мкг тотального белка. Изоэлектрофокусирование осуществляли в следующем режиме: 100 В -200 В – 300 В – 400 В – 500 В – 600 В – по 45 мин, 700 В – 10 ч. 900 В – 1 ч. После завершения изоэлектрофокусирования гель выталкивали из трубочек и уравновешивали в течение 30 мин в буфере, содержащем 6 М мочевину, 30% глицерола, 62.5 мМ Трис-HCl, pH 6.8, 2% SDS, 20 мМ дитиотреитол. бромфеноловый синий. Затем гель переносили на поверхность градиентного полиакриламидного геля (9-16%), и закрепляли 0.9% агарозой с бромфеноловым синим. Электрофорез проводили в Трис-глициновом буфере в следующем режиме: по 20 мА на стекло 20 мин, по 40 мА на стекло 2 ч, по 35 мА на стекло 2.5 ч. В процессе электрофореза температура камеры поддерживалась при 10°С. Полученные гели анализировали на сканере TyphoonTrio (Amersham) при длинах волны лазера 532 нм (зеленая флуоресценция) и 633 нм (красная флуоресценция). Для обработки изображений гелей использовали программу PDQuest (Bio-Rad). Затем гели окрашивали серебром для последующего вырезания белковых пятен и их идентификации.

Триптические пептидные экстракты для масс-спектрометрического анализа

Триптический гидролиз белка в ПААГ проводили следующим образом: к кусочку геля объемом 1 мм³ для удаления красителя добавляли раствор 15 мМ тиосульфата натрия и 50 мМ красной кровяной соли и инкубировали в нем гель пока его окраска не становилась желтой, затем раствор отбирали и кусочек геля отмывали в воде до прозрачного состояния. После удаления воды для дегидратации геля добавляли по 100 мкл ацетонитрила. Удалив ацетонитрил и высушив кусочек геля, добавляли к нему 3 мкл раствора трипсина (20 нг/мкл) в 40 мМ NH₄HCO₃ и 10% ацетонитриле, инкубировали сначала 1 ч на льду, а затем 16 ч при 37°С. Для остановки трипсинолиза и экстракции пептидов из геля к образцу добавляли 6 мкл 0.5% раствора трифторуксусной кислоты (TFA) и тщательно перемешивали. Полученный пептидный экстракт использовали для получения MALDI-масс-спектров.

Масс-спектрометрический анализ и идентификация белков

На мишени смешивали 2 мкл образца и 0.5 мкл раствора, содержащего 10 мг/мл 2,5-дигидроксибензойной кислоты, 20% ацетонитрила и 0.5% TFA. Полученную смесь высушивали на воздухе. Масс-спектры были получены на тандемном MALDI-времяпролетно-времяпролетном массспектрометре Ultraflex II BRUKER (Германия). оснащенном УФ лазером (Nd). Масс-спектры получены в режиме положительных ионов с использованием рефлектрона; точность измеренных масс после докалибровки по пикам автолиза трипсина составляла 0.007%, точность измеренных масс фрагментов 1 Да. Идентификацию белков осуществляли при помощи программы Mascot (www.matrixscience.com). Поиск по "пептидному фингерпринту" проводили в базе данных NCBI среди белков E. coli (штамму C600) с указанной точностью с учетом возможного окисления метионинов кислородом воздуха и возможной модификации цистеинов акриламидом.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено за счет гранта Российского научного фонда (проект № 18-15-00061).

Работы с клетками *E. coli* дикого типа и нокаутными по белку HU проводили при финансовой поддержке НИЦ Курчатовский институт (приказ № 1606).

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Настоящая статья не содержит каких-либо исследований с участием людей в качестве объектов исследований.

Все применимые международные, национальные и/или институциональные принципы ухода и использования животных были соблюдены.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Dillon S.C., Dorman C.J. // Nature Reviews. Microbiology. 2010. V. 8. P. 185–195.
- Azam T.A., Ishihama A. // J. Biol. Chem. 1999. V. 274. P. 33105–33113.
- Azam T.A., Iwata A., Nishimura A., Ueda S., Ishihama A. // J. Bacteriol. 1999. V. 181. P. 6361–6370.
- 4. Dame R.T. // Mol. Microbiol. 2005. V. 56. P. 858-870.
- Travers A., Muskhelishvili G. // Curr. Opin. Genet. Dev. 2005. V. 15. P. 507–514.

- Kahramanoglou C., Seshasayee A.S.N., Prieto A.I., Ibberson D., Schmidt S., Zimmermann J., Benes V., Fraser G.M. // Nucleic Acids Res. 2012. V. 40. № 8. P. 3535.
- Luscombe N.M. // Nucleic Acids Res. 2011. V. 39. P. 2073–2091.
- 8. *Rouviere-Yaniv J., Gros F. //* Proc. Natl. Acad. Sci. U. S. A. 1975. V. 72. P. 3428–3432.
- Drlica K., Rouviere-Yaniv J. // Microbiol. Rev. 1987. V. 51. P. 301–319.
- Boyko K.M., Rakitina T.V., Korzhenevskiy D.A., Vlaskina A.V., Agapova Y.K., Kamashev D.E., Kleymenov S.Y., Popov V.O. // Sci. Rep. 2016. V. 3. P. 36366.
- Timofeev V., Altukhov A., Talyzina A., Agapova Yu., Vlaskina A., Korzhenevskiy D., Kleymenov S., Bocharov E., Rakitina T. // J. Biomol. Struct. Dyn. 2018. P. 1–13
- Altukhov D.A., Talyzina A.A., Agapova Y.K., Vlaskina A.V., Korzhenevskiy D.A., Bocharov E.V., Rakitina T.V., Timofeev V.I., Popov V.O. // J. Biomol. Struct. Dyn. 2018. V. 36. P. 45–53.
- Claret L., Rouviere-Yaniv J. // J. Mol. Biol. 1997. V. 273. P. 93–104.
- Pinson V., Takahashi M., Rouviere-Yaniv J. // J. Mol. Biol. 1999. V. 287. P. 485–497.
- 15. Kamashev D.E., Esipova N.G., Ebralidse K.K., Mirzabekov A.D. // FEBS Lett. 1995. V. 13. P. 27–30.
- Benevides J.M., Danahy J., Kawakami J., Thomas G.J. // Biochemistry. 2008. V. 47. P. 3855–3862.
- Castaing B., Zelwer C., Laval J., Boiteux S. // J. Biol. Chem. 1995. V. 270. P. 10291–10296.
- Kamashev D., Balandina A., Rouviere-Yaniv J. // EMBO J. 1999. V. 18. P. 5434–5444.
- Kamashev D., Rouviere-Yaniv J. // EMBO J. 2000. V. 19. P. 6527–6535.
- 20. Kobryn K., LavoieB.D., Chaconas G. // J. Mol. Biol. 1999. V. 289. P. 777–784.
- Kamashev D., Oberto J., Serebryakova M., Gorbachev A., Zhukova Y., Levitskii S., Mazur A.K., Govorun V. // Biochemistry. 2011. V. 50. P. 8692–8702.
- Kamashev D., Agapova Y., Rastorguev S., Talyzina A.A., Boyko K.M., Korzhenevskiy D.A., Vlaskina A., Vasilov R., Timofeev V.I., Rakitina T.V. // PLoS One. 2017. V. 12. P. e0188037.
- 23. Balandina A., Claret L., Hengge-Aronis R., Rouviere-Yaniv J. // Mol. Microbiol. 2001. V. 39. P. 1069–1079.
- 24. *Balandina A., Kamashev D., Rouviere-Yaniv J. //* J. Biol. Chem. 2002. V. 277. P. 27622–27628.
- 25. Kano Y., Wada M., Nagase T., Imamoto F. // Gene. 1986. V. 45. P. 37-44.
- Huisman O., Faelen M., Girard D., Jaffe A., Toussaint A., Rouviere-Yaniv J. // J. Bacteriol. 1989. V. 171. P. 3704– 3712.
- Boubrik F., Rouviere-Yaniv J. // Proc. Natl. Acad. Sci. U.S.A. 1995. V. 92. P. 3958–3962.
- 28. Álvarez A., Toledo H. // Helicobacter. 2017. P. e12381

БИООРГАНИЧЕСКАЯ ХИМИЯ том 45 № 5 2019

- 29. Li S., Waters R. // J. Bacteriol. 1998. V. 180. P. 3750-3756.
- Oberto J., Nabti S., Jooste V., Mignot H., Rouviere-Yaniv J. // PLoS One. 2009. V. 4. P. e4367.
- Berger M., Farcas A., Geertz M., Zhelyazkova P., Brix K., Travers A., Muskhelishvili G. // EMBO Rep. 2010. V. 11. P. 59–64.
- Prieto A.I., Kahramanoglou C., Ali R.M., Fraser G.M., Seshasayee A.S., Luscombe N.M. // Nucleic Acids Res. 2012. V. 40. P. 3524–3537.
- Mangan M.W., Lucchini S.O., Cróinín T., Fitzgerald S., Hinton J.C.D., Dorman C.J. // Microbiology. 2011. V. 157. P. 1075–1087.

- Lazazzera B.A., Beinert H., Khoroshilova N., Kennedy M.C., Kiley P.J. // J. Biol. Chem. 1996. V. 271. P. 2762–2768.
- Alexeev D., Kostrjukova E., Aliper A., Popenko A., Bazaleev N., Tyakht A., Selezneva O., Akopian T., Prichodko E., Kondratov I., Chukin M., Demina I., Galyamina M., Kamashev D., Vanyushkina A., Ladygina V., Levitskii S., Lazarev V., Govorun V.J. // Proteome Res. 2012. V. 11. P. 224–236.
- Vanyushkina A.A., Fisunov G.Y., Gorbachev A.Y., Kamashev D.E., Govorun V.M. // PLoS One. 2014. V. 9. P. e89312.

Proteome of HU-Lacking E. coli Studied by Means of 2D-Gel Electrophoresis

D. E. Kamashev^{*, **,*}, T. V. Rakitina^{*, ***}, D. V. Matyushkina^{****}, D. S. Evsyutina^{****}, A. A. Vanyushkina^{****}, Yu. K. Agapova^{***}, V. E. Anisimova^{**}, A. L. Drobyshev^{**}, I. O. Butenko^{****}, O. V. Pobeguts^{****}, and G. Y. Fisunov^{****}

#E-mail: dkamashev@gmail.com

*Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences,

ul. Mikluho-Maklaya, 16/1, Moscow, 117997 Russia

**Sechenov First Moscow State Medical University (Sechenov University),

Bol'shaya Pirogovskaya ul., 19s1, Moscow, 119146 Russia

***National Research Center "Kurchatov Institute", pl. Akademika Kurchatova, 1, Moscow, 123098 Russia

****Federal State Budgetary Institution Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, Moscow, 119435 Russia

Histone-like HU protein is dimeric nucleoid associated protein (NAP). HU is the most conserved NAP. It binds non-specifically to duplex DNA with a preference for targeting nicked and bent DNA. HU architects bacterial nucleoid and its deletion is lethal for *Bacillus subtilis* and *Mycoplasma genitalium* that do not contain other NAPs. *E. coli* lacking HU is viable while has numerous growth defects. The effects of HU protein on gene expression is known from microarray analysis and HU regulons were identified. In HU deficient *E. coli*, absence of this DNA architectural protein causes a disorder in gene regulation; in other hand, *E. coli* growth at standard conditions is almost unaltered in the absence of HU. To understand how bacterium confronts to the chromosomal disorder we performed here the proteome analysis to compare protein abundances in cells containing or not HU protein. Comparison of the proteomic profile of wild-type and HU-deficient *E. coli* shows how the altered gene expression influences the protein content. We show that proteome profile changes are very similar to the gene expression profile changes in HU-deficient *E. coli*. Several exceptions show that proteome studies are very important.

Keywords: histone-like HU protein, comparative proteome analysis, two-dimensional difference gel electrophoresis, expression regulation