

УДК 547-327:547.751:547.92

СИНТЕЗ И ЦИТОТОКСИЧНОСТЬ СЗ- И С28-МОДИФИЦИРОВАННЫХ ТРИТЕРПЕНОВЫХ КИСЛОТ

© 2019 г. Э. Ф. Хуснутдинова^{*, #}, А. В. Петрова^{*}, О. Б. Казакова^{*}, А. Е. Бармашов^{**}

*Уфимский Институт химии Уфимского федерального исследовательского центра Российской академии наук Россия, 450054, Уфа, просп. Октября, 71

**ФГБУ "Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина" Минздрава России Россия, 115478, Москва, Каширское шоссе, 24

> Поступила в редакцию 10.04.2019 г. После доработки 22.04.2019 г. Принята к публикации 08.05.2019 г.

Осуществлен синтез и скрининг противоопухолевой активности *in vitro* (цитотоксичности) серии N-, S- и Br-производных бетулиновой, олеаноловой и урсоловой кислот. Значимую цитотоксическую активность проявили *N*-метилпиперазиниламид 2-(3-пиридинилидено)урсоновой кислоты в отношении раковых клеток PC3 (IC₅₀ = 8 мкМ) и метил-2-метилиденуреидобетулонат в отношении линии HCT-116 (IC₅₀ = 5.7 мкМ).

Ключевые слова: тритерпеноиды, олеаноловая кислота, урсоловая кислота, бетулиновая кислота, синтез, цитотоксичность

DOI: 10.1134/S013234231905004X

ВВЕДЕНИЕ

Разработка новых фармакологических агентов на основе доступных тритерпеноидов, активных по отношению к широкому спектру опухолевых клеточных линий, является актуальным направлением. За последнее время получены полусинтетические тритерпеноиды, модифицированные по положениям остова С2, С3, С20 и С28, проявляющие высокую цитотоксическую активность в отношении раковых клеток [1, 2]. Так, для 2,3-секолупановых β-кетоэфиров значения IC₅₀ в отношении линий HCT 116, MS, RD и TE32 раковых клеток составляли от 3.07 до 3.61 мкМ [3], значения цитотоксичности для карбоксамидов урсоловой кислоты с фрагментами *N*-замещенных этиламинов составили меньше 1 мкМ [4], выявлена высокая селективная цитотоксичность в отношении Т-лимфобластной лейкемии С30-гидразонов бетулиновой кислоты [5]. В недавних работах нами обнаружена цитотоксичность у производных тритерпеноидов с индоло- [6, 7], аминопропокси- [8], 1,2,3-триоксалановым [9] и пропаргиламиноалкильным [10, 11] фрагментами. Продолжая исследования в этой области, в настоящей работе изучена цитотоксичность группы N-, S- и

Br-содержащих производных тритерпеновых кислот ряда лупана, олеанана и урсана.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для скрининга использовали новые ((III) и (IV), cxema 1) и синтезированные ранее ((I), (II),(V)-(XIII), рис. 1) модифицированные тритерпеноиды. Учитывая, что введение аминокислотных остатков в молекулу тритерпеноидов может увеличивать их биодоступность [12], хлорангидридным методом из 2,3-индолобетулиновой кислоты (I) взаимодействием с метиловым эфиром *L*-фенилаланина и последующим деблокированием метоксильной защитной группы синтезирован C28-конъюгат (II) с выходом 75%. Учитывая актуальность введения фрагмента *N*-метилпиперазина, а также повышение противоопухолевой активности с введением ароматических фрагментов в положение С2 [13], мы осуществили модификацию урсоновой кислоты (схема 1). По реакции Кляйзена-Шмидта взаимодействием *N*-метилпиперазиниламида урсоновой кислоты (III) с 3-пиридинкарбальдегидом синтезировали *N*-метилпиперазиниламид 2-(3-пиридинилидено)урсоновой кислоты (IV) с выходом 80%.

[#] Автор для связи: (факс: +7 (347) 235-60-66; эл. почта: ElmaH@inbox.ru).

Схема 1. Условия: *i* − a) (COCl)₂, Et₃N, CH₂Cl₂, 20°C, 2 ч; b) PheOMe · HCl, Et₃N, CH₂Cl₂, Δ, 3 ч; c) 4 M NaOH, CH₃OH-THF (1 : 1), 20°C, 6 ч. *ii* − a) C₅H₄N-*m*-CHO, 40% KOH, EtOH, rt, 8 ч.

Строение соединений (II) и (IV) установлено с использованием физико-химических методов анализа. Для соединения (II) наблюдались характерные сигналы атомов углерода и протонов амидной группы при δ 176 м.д. (¹³С-ЯМР) и δ 5.92 м.д. (¹H-ЯМР), атомов углерода и протонов ароматического фрагмента в области δ 110.3–128.3 м.д. (¹³С-ЯМР) и б 7.04–7.38 м.д. (¹Н ЯМР). В спектрах 13 С-ЯМР соединения (IV) наблюдался сдвиг сигнала карбонильной группы С3 в область сильного поля до δ 207 м.д., а в спектрах ¹Н-ЯМР сигнал винильного протона проявляется при δ 7.35 в виде синглета. Сигналы фрагмента *N*-метилпиперазина обнаруживались в виде синглета протонов метильной группы в области δ 2.21-2.27 м.д. и метиленовых групп – в виде мультиплета в области δ 2.38–2.71 м.д.

На рис. 1 представлены структуры соединений, которые были синтезированы ранее: 2,3-индоло-производные ряда лупана (I) и (V), урсана (VI) и олеанана (VII), С2-метилиденуреиды метилбетулоната (VIII) и (IX), С28-йодофенилгидразидогидразон бетулоновой кислоты (X), бисфталилоксибетулин (XI) и фталилоксибетулиновая кислота (XII), 20-оксо-30-бром-29-нор-3,28-диацетоксибетулин (XIII).

Экспериментальное исследование противоопухолевой активности *in vitro*, или цитотоксичности, производных тритерпеноидов (I), (II), (IV)–(XIII) проведено с использованием МТТтеста на клетках Т-клеточного лимфобластного лейкоза Jurkat, карциномы простаты PC-3, карциномы легкого А549, карциномы толстой кишки HCT-116, аденокарциномы молочной железы MCF-7, нейробластомы SH-SY5Y и меланомы человека линии MeWo [14]. Первоначально была определена доля погибших клеток (C, %), характеризующая цитотоксичность, при концентрации 100 мкМ (табл. 1). Соединение считали цитотоксичным, если оно вызывало гибель 50% клеток или выше хотя бы на одной клеточной линии при концентрации 100 мкМ [15]. В результате обнаружена цитотоксическая активность у десяти соединений: (I), (II), (IV), (VI)–(IX), (XI)–(XIII). Для данных соединений изучили цитотоксичность при концентрациях 100, 10 и 1 мкМ для определения IC₅₀ (концентрация вещества, вызывающая гибель 50% клеток).

Наиболее выраженную цитотоксичность проявили соединения (IV) (IC₅₀ < 10 на двух клеточных линиях) и (IX) (IC₅₀ < 10 на одной клеточной линии), что говорит о самой высокой среди изученного ряда соединений противоопухолевой активности. Хотя значение IC₅₀ для соединения (II) составляет 9.8 мкМ на клеточной линии Jurkat, но при максимальной концентрации его действие приводит к гибели опухолевых клеток меньше чем на 75%, что не позволяет отнести его к соединениям с высокой противоопухолевой активностью.

С помощью компьютерной системы PASS [16–18] для соединений (**IV**) и (**IX**) проведено прогнозирование противоопухолевой активности и ее механизмов, наличие которых имеет значение для отнесения химических соединений к потенциальным противоопухолевым препаратам. В табл. 2 представлены результаты прогнозирования биологической активности соединений (**IV**) и (**IX**) в виде высокой вероятности соединения проявлять определенную биологическую активность (Pa > 0.7) и вероятности не проявлять эту активность (Pi).

Рис. 1. Структуры соединений (I), (V)-(XIII).

Результаты компьютерного прогнозирования указывают на значительную вероятность проявления соединениями (IV) и (IX) противоопухолевой и антиметастатической активности, механизмами которых могут быть проапоптотическая активность, способность повышать активность транскрипционного фактора NF-к B.

Таким образом, в ходе скрининга серии N-, Sи Вг-производных бетулиновой, олеаноловой и урсоловой кислот выявлено два соединения, обладающих значимой цитотоксической активностью: *N*-метилпиперазиниламид 2-(3-пиридинилидено)урсоновой кислоты (линия клеток PC3, $IC_{50} = 8$ мкМ) и метил-2-метилиденуреидобетулонат (линия клеток HCT-116, $IC_{50} = 5.7$ мкМ).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления определяли на микростолике "Boetius". Оптическое поглощение измеряли на поляриметре "Perkin-Elmer 241 MC" (Германия) в трубке длиной 1 дм. ТСХ-анализ проводили на пластинках Сорбфил (ЗАО Сорбполимер, Россия), используя систему растворителей хлороформ-этилацетат, 40: 1. Вещества обнаруживали 10% раствором серной кислоты с последующим нагреванием при 100-120°C в течение 2-3 мин. Элементный анализ осуществляли на CHNS-анализаторе Euro EA-3000, основной стандарт ацетанилид. Колоночную хроматографию проводили на Al₂O₃, Silica 60 (Macherey-Nagel). Спектры ¹Н- и ¹³С-ЯМР (б, м.д.; J, Гц) зарегистрированы на импульсном спектрометре "Bruker" Avance III с рабочей частотой 500.13 (¹H) и 125.47 МГц (¹³C) с использованием 5-мм датчика с Z-градиентом PABBO при постоянной температуре образца 298 К в CDCl₃. Химические сдвиги в спектрах ¹H- и ¹³C-ЯМР измерены относительно сигнала внутреннего стандарта тетраметилсилана). Спектры ЯМР ¹H, ¹³C описанных соединений получены с использованием оборудования Центра коллективного пользования "Химия" УфИХ УФИЦ РАН.

Соединения (I) и (VII) [7], (III) [19], (V) и (VI) [6], (VIII) и (IX) [20], (X) [21], (XI) [22], (XII) [23], (XIII) [24] получали как описано ранее.

N-(Индоло[3,2-b]луп-20(29)-ен-28-оил)-*L*-фенилаланин (II). К раствору 1 ммоль (0.53 г) соединения (I) в 20 мл осушенного CH₂Cl₂ прибавляли по каплям 3 ммоль (0.26 мл) (COCl)₂ и перемешивали при комнатной температуре 2 ч. Реакционную смесь упаривали в вакууме водоструйного насоса, полученный хлорангидрид растворяли в 20 мл CH₂Cl₂ и добавляли 1.2 ммоль (0.26 г) метилового эфира *L*-фенилаланина гидрохлорида, 3 капли Et₃N и кипятили с обратным холодильником 3 ч, промывали 5% HCl (2 × 50 мл), водой (50 мл), сушили над CaCl₂. Удаление метоксильной группы осуществляли путем обработки неочищенного продукта реакции 4 М раствором NaOH в CH₃OH-THF (1: 1, v/v, 20 мл) при перемешивании при 20°С в течении 6 ч. Далее реакционную смесь выливали в 100 мл 5% раствора HCl (10 мл), выпавший осадок отфильтровывали,

СИНТЕЗ И ЦИТОТОКСИЧНОСТЬ

	Тип клеточной линии												
Соеди- нение	A549		PC3		Jurkat		HCT-116		MCF-7				
	С, %	IC ₅₀	С, %	IC ₅₀	С, %	IC ₅₀	С, %	IC ₅₀	С, %	IC ₅₀			
Ι	88	31.5	85	25	91	26	84	46.1	89	35			
II	90	60	91	43.1	92	19.5	92	32.5	91	16			
IV	92	8.7	91	8	93	22.5	88	36.5	92	17.8			
V	21	_	21	_	38	_	26	_	43	-			
VI	70	68	58	72.2	83	36.8	69	36.5	60	75.6			
VII	89	56.6	87	53.6	90	30.8	85	53.8	56	84			
VIII	91	47.2	90	42.9	93	28.2	89	60.5	92	52.8			
IX	92	52.8	89	18.2	92	48.1	91	5.7	89	46.8			
X	5	_	25	_	48	_	8	_	31	-			
XI	81	65.5	86	62.3	90	58.5	87	61.2	87	53			
XII	84	56.2	85	50.9	92	49	84	19.5	85	59			
XIII	75	70	68	76	68	9.8	71	73.4	74	69			

Таблица 1. Противоопухолевая активность in vitro* соединений (I), (II), (IV)-(XIII)

* C – цитотоксическая активность исследуемых соединений в концентрации 100 мкМ (доля погибших клеток, %); IC₅₀ – цитотоксическая концентрация вещества, вызывающая гибель 50% клеток (при концентрации \leq 100 мкМ).

Таблица 2. Результаты прогнозирования биологической активности* соединений (IV) и (IX)

Соединение (IV)				Соединение (ІХ)				
<i>Pa</i> > 0.7	Pi	Тип активности	<i>Pa</i> > 0.7	Pi	Тип активности			
0.829	0.006	Агонист апоптоза	0.915	0.001	Активатор транскрипционного фактора NF-кВ			
0.820	0.009	Антинеопластическая	0.915	0.001	Активатор транскрипционного фактора			
0.779	0.003	Активатор транскрипционного фактора NF-кВ	0.866	0.005	Антинеопластическая			
0.779	0.003	Активатор транскрипционного фактора	0.826	0.004	Антипротозойная активность (лейшманиоз)			
0.783	0.008	Противовоспалительная активность	0.798	0.003	Антинеопластическая (меланома)			
0.764	0.003	Антогонист NO-оксида	0.721	0.013	Агонист апоптоза			

* Pa — вероятность проявления активности; Pi — вероятность отсутствия активности, в соответствии с программой PASS [16—18]. Выбраны результаты прогнозирования, при которых Pa > 0.7.

промывали до нейтральной реакции промывных вод, сушили на воздухе. Выход 0.50 г (75%). Т. пл. 134–135°С. Спектр ¹Н-ЯМР: 0.85, 0.90, 0.97, 1.19, 1.28, 1.68 (18 H, 6c, 6CH₃), 1.06–3.16 (26 H, м, CH и CH₂), 4.60 и 4.73 (2 H, оба д, J 2.5, H29), 4.85 (1 H, м, H37), 5.92 (1 H, уш. с, NH), 7.04–7.38 (8H, м, H_{arom}), 7.84 (1H, уш. с, NH). Спектр ¹³С-ЯМР : 14.6, 15.9, 16.3, 19.3, 19.4, 21.4, 23.1, 25.7, 29.3, 30.7, 30.8, 33. 5, 33.6, 34.1, 37.3, 37.8, 38.0, 38.1, 38.3, 40.8, 42.5, 46.6, 49.4, 49.9, 52.8, 53.3, 55.8, 106.9 (C2), 109.5 (C29), 110.3, 117.9, 118.8, 120.8, 128.3 (все C_{arom}), 128.7 (C41), 128.7 (C43), 129.0 (C40), 129.0 (C44), 136.2 (C_{arom}), 136.4 (C41), 140.9 (C3), 150.8 (C20), 178.6 (С45), 176.0 (С28). Найдено, %: С 80.07; Н 8.65; N 4.14. С₄₅Н₅₈N₂O₃. Вычислено, %: С 80.08; Н 8.66; N 4.15. (М_г 673.01).

N-Метилпиперазиниламид 2-[3-пиридилидено]-3-оксо-12-ен-урсан-28-овой кислоты (IV). К раствору 1 ммоль (0.54 г) соединения (III) в 20 мл ЕtOH добавляли 1.5 ммоль (0.14 мл) 3-пиридилкарбальдегида и 2.5 мл 40% КОН/ЕtOH, реакционную массу перемешивали при 20°С в течение 4 ч, выливали в 50 мл 5% раствора HCl, осадок отфильтровывали, сушили на воздухе, продукт хроматографировали на колонке, элюенты – петролейный эфир и петролейный эфир- хлороформ (2: 1). Выход 0.50 г (80%). Т. пл. 142–143°С. Спектр ¹Н-ЯМР : 0.80, 0.90, 1.01, 1.11, 1.19, 1.35, 1.40 (21H, 7с, 7СН₃), 1.39–2.19 (19 H, м, СН и CH₂), 2.30 (3 H, с, N<u>CH₃</u>), 2.31–2.41 (4 H, м, 2CH₂), 2.89–2.98 (2 H, м, H1), 3.41–3.71 (4 H, м, 2CH₂), 5.21 (1 H, с, H12), 7.35 (1 H, м, Ar-CH), 7.41 (1H, с, H_{vinilic}), 7.73 (1 H, д, *J* 8), 8.52 (1H, д, *J* 4.0, Ar-CH), 8.73 (1H, с, Ar-CH). Спектр ¹³С-ЯМР: 15.5, 16.7, 17.5, 17.7, 18.5, 20.3, 21.3, 22.3, 22.7, 23.6, 24.5, 28.2, 29.7, 29.9, 30.6, 32.2, 34.2, 36.3, 38.7, 39.3, 39.6, 42.4, 44.2, 45.2, 45.3, 45.3, 46.0, 53.1, 55.1, 55.1, 123.4, 124.8 (C12), 128.3, 131.8, 133.6, 135.9 (C13), 137.1 (C2), 149.1, 151.0, 175.1 (CON), 207.4 (C3). Найдено, %: С 78.54; H 9.36; N 6.69. С₄₁H₅₉N₃O₂. Вычислено, %: С 78.67; H 9.50; N 6.71. (*M*, 625.93).

Цитотоксическую активность соединений (I), (II), (IV)–(XIII) изучали с помощью стандартного МТТ-теста [14]. Исследование проводили на клеточных линиях опухолей человека, полученных из Банка клеточных линий ФГБУ "НМИЦ онкологии им. Н.Н. Блохина" Минздрава России. Клеточные линии культивировали в среде RPMI-1640. содержашей 10% телячьей эмбриональной сыворотки, 10 мМ HEPES (Sigma, США), 2 мМ *L*-глутамин (Sigma, США), 40 нг/мл гентамицина (ICN, США), аминокислоты, пируват натрия и раствор витаминов (ПанЭко, Россия), при 37°С в атмосфере 5% СО₂. Клетки поддерживали в логарифмической фазе роста постоянным пересевом культуры через 3-4 сут. Для открепления адгезионных клеток с пластиковой поверхности культурального флакона использовали раствор Версена.

Для постановки МТТ-теста клетки раскапывали в 198 мкл полной среды RPMI-1640 в 96-луночные плоскодонные планшеты (Costar, USA). Через 1 сут в каждую лунку добавляли исследуемые соединения в концентрации от 1 до 100 мкМ и инкубировали с клетками в течение 72 ч в 5% CO_2 при 37°С. Каждое соединение ставили в триплете (в трех лунках планшета). Каждый эксперимент повторяли трижды. Соединения растворяли в DMSO так, чтобы концентрация DMSO в лунке не превышала 1%. Водорастворимые соединения растворяли в воде. В качестве контроля для соединений, растворимых в DMSO, использовали лунки с клетками с 1% DMSO в полной ростовой среде.

Через 72 ч в каждую лунку вносили по 20 мкл раствора МТТ [бромид 3-(4,5-диметилтиазолин-2)-2,5 дифенилтетразолия] (маточный раствор 5мг/мл, конечная концентрация 1мг/мл), и инкубировали 4 ч при 37°С в 5% СО₂.

После образования формазана н жидкость над осадком удаляли, осадок растворяли в 150 мкл DMSO. Далее планшеты помещали на 10 мин в термостат при температуре 37°С и затем 10 мин встряхивали на шейкере для равномерного растворения кристаллов формазана, после чего интенсивность окрашивания среды (*D*) измеряли на фотометрическом анализаторе иммунофермент-

ных реакций MultiskanEX ThermoLabSystems при λ 540 нм. Величина поглощения прямо пропорциональна числу живых клеток.

Определяли долю погибших клеток, характеризующую цитотоксичность (C, %) по формуле:

$$C = (1 - (Do/D\kappa)) \times 100, \%,$$

где *D*к и *D*о – оптическая плотность в контрольных и опытных лунках.

Концентрацию вещества, вызывающую гибель 50% клеток в концентрации ≤100 мкМ (IC₅₀), определяли согласно [15].

Прогнозирование противоопухолевой активности и ее механизмов, наличие которых имеет значение для отнесения химических соединений к потенциальным противоопухолевым препаратам, проводили с использованием компьютерной системы PASS [16–18].

ФОНДОВАЯ ПОДДЕРЖКА

Синтез соединений (I), (II), (IV)–(XIII) выполнен по теме Госзадания № АААА-А17-117011910023-2.

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Настоящая статья не содержит каких-либо исследований с участием людей и животных в качестве объектов исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Chudzik M., Korzonek-Szlacheta I., Król W. // Molecules. 2015. V. 20. P. 1610–1625.
- Hussain H., Green I.R., Shamraiz U., Saleem M., Badshah A., Abbas G., Rehman N.U., Irs M. // Expert. Opin. Ther. Pat. 2018. V. 28. № 5. P. 383–398.
- Eroshenko D.V., Krainova G.F., Konysheva A.V., Dmitriev M.V., Grishko V.V. // Bioorg. Med. Chem. Lett. 2018. V. 28. Is. 23–24. P. 3752–3760.
- 4. Kahnt M.H., Al-Harrasi L.F.N., Csuk R. // Molecules. 2018. V. 23. Is. 10. 2558.
- Pokorny J., Krajcovicova S., Hajduch M., Holoubek M., Gurska S., Dzubak P., Volna T., Popa I., Urban M. // Future Med. Chem. 2018. V. 10. Is. 5. P. 483–491.
- Хуснутдинова Э.Ф., Петрова А.В., Апрышко Г.Н., Куковинец О.С., Казакова О.Б. // Биоорган. химия. 2018. Т. 44. № 3. С. 316–324. (Khusnutdinova E.F., Petrova A.V., Apryshko G.N., Kukovinets O.S., Kazakova O.B. // Russ. J. Bioorg. Chem. 2018. V. 44. № 3. P. 322–329).
- Khusnutdinova E.F., Petrova A.V., Kukovinets O.S., Kazakova O.B. // Nat. Prod. Comm. 2018. V. 13. Is. 6. P. 665–668.
- 8. Giniyatyllina G.V., Smirnova I.E., Kazakova O.B., Yavorskaya N.P., Golubeva I.S., Zhukova O.S.,

БИООРГАНИЧЕСКАЯ ХИМИЯ том 45 № 6 2019

Pugacheva R.B., Apryshko G.N., Poroikov V.V. // Med. Chem. Res. 2015. V. 24. P. 3423–3436.

- 9. Казакова О.Б., Смирнова И.Е., Хуснутдинова Э.Ф., Жукова О.С., Фетисова Л.В., Апрышко Г.Н., Медведева Н.И., Ямансаров Э.Ю., Байкова И.П., Тханх Тра Неуен, Х. До Тхи Тху // Биоорган. химия. 2014. Т. 40. № 5. С. 608–617. (Kazakova O.B., Smirnova I.E., Khusnutdinova E.F., Zhukova O.S., Fetisova L.V., Apryshko G.N., Medvedeva N.I., Yamansarov E.Y., Baikova I.P., Nguyen T.T., Thu H.D.T. // Russ. J. Bioorg. Chem. 2014. V. 40. № 5. Р. 558–567).
- Хуснутдинова Э.Ф., Апрышко Г.Н., Петрова А.В., Куковинец О.С., Казакова О.Б. // Биоорган. химия. 2018. Т. 44. № 1. С. 104–109. (Khusnutdinova E.F., Apryshko G.N., Petrova A.V., Kukovinets O.S., Kazakova O.B. // Russ. J. Bioorg. Chem. 2018. V. 1. № 1. Р. 123–127).
- Хуснутдинова Э.Ф., Лопатина Т.В., Казакова О.Б., Ахматиина Г.Ф., Куковинец О.С. // Химия природн. соедин. 2014. Т. 50. № 5. С. 739–742. (Khusnutdinova E.F, Lopatina T.V, Kazakova O.B., Akhmatshina G.F., Kukovinets O.S. // Chem. Nat. Comp. 2014. V. 50. Is. 5. P. 853–856).
- 12. Zhou M., Zhang R.-H., Wang M., Xu G.-B., Liao S.-G. // Europ J. Med. Chem. 2017. V. 131. P. 222–236.
- Gupta N., Rath S.K., Singh J., Qayum A., Singh S., Sangwan P.L. // Europ J. Med. Chem. 2017. V. 135. P. 517-530.
- 14. *Mosmann T.* // J. Immunol. Methods. 1983. V. 65. № 1. P. 55–63.
- Миронов А.Н. // Методические рекомендации по доклиническому изучению противоопухолевой активности лекарственных средств. Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К, 2012. С. 642–656.
- Филимонов Д.А., Поройков В.В. // Рос. хим. журн. 2006. Т. 50. С. 66–75.
- Filimonov D.A., Poroikov V.V. // Chemoinformatics Approaches to Virtual Screening. / Eds. Varnek A., Tropsha A. RSC Publishing, 2008. P. 182–216.
- Филимонов Д.А., Лагунин А.А., Глориозова Т.А., Рудик А.В., Дружиловский Д.С., Погодин П.В., Поройков В.В. // Химия гетероциклич. соедин. 2014. Т. 3. С. 483–499.

- Казакова О.Б., Гиниятуллина Г.В., Толстиков Г.А., Медведева Н.И., Уткина Т.М., Карташова О.Л. // Биоорган. химия. 2010. Т. 36. № 3. С. 416–422. (Kazakova O.B., Giniyatullina G.V., Tolstikov G.A., Medvedeva N.I., Utkina T.M., Kartashova O.L. // Russ. J. Bioorg. Chem. 2010. V. 36. № 3. Р. 383–389).
- Флехтер О.Б., Бореко Е.И., Нигматуллина Л.Р., Павлова Н.И., Медведева Н.И., Николаева С.Н., Ашавина О.Ю., Савинова О.В., Балтина Л.А., Галин Ф.З., Толстиков Г.А. // Хим.-фарм. журн. 2004. Т. 38. № 7. С. 10–13. (Flekhter O.B., Boreko E.I., Nigmatullina L.R., Pavlova N.I., Medvedeva N.I., Nikolaeva S.N., Ashavina O.A., Savinova O.V., Baltina L.A., Galin F.Z., Tolstikov G.A. // Pharm. Chem. J. 2004. V. 38. Is. 7. P. 355–358).
- Флехтер О.Б., Бореко Е.И., Нигматуллина Л.Р., Павлова Н.И., Николаева С.Н., Савинова О.В., Еремин В.Ф., Балтина Л.А., Галин Ф.З., Толстиков Г.А. // Биоорган. химия. 2003. Т. 29. № 3. С. 326–332. (Flekhter O.B., Boreko E.I., Pavlova N.I., Nikolaeva S.N., Savinova O.V., Eremin V.F., Baltina L.A., Galin F.Z., Tolstikov G.A. // Russ. J. Bioorg. Chem. 2003. V. 29. Is. 3. P. 296–302).
- Флехтер О.Б., Карачурина Л.Т., Поройков В.В., Нигматуллина Л.Р., Балтина Л.А., Зарудий Ф.С., Давыдова В.А., Спирихин Л.В., Байкова И.П., Галин Ф.З., Толстиков Г.А. // Биоорган. химия. 2000. Т. 26. № 3. С. 215–223. (Flekhter O.B., Karachurina L.T., Poroikov V.V., Nigmatullina L.P., Baltina L.A., Zarudii F.S., Davydova D.A., Spirikhin L.V., Baikova I.P., Galin F.Z., Tolstikov G.A. // Russ. J. Bioorg. Chem. 2000. V. 26. Is. 3. P. 192–200).
- Boreko E.I., Pavlova N.I., Savinova O.V., Nikolaeva S.N., Flekhter O.B., Phyzhova N.S., Nikandrov V.N. // News Biomed. Sci. 2002. № 3. P. 86–91.
- Флехтер О.Б., Гиниятуллина Г.В., Галин Ф.З., Басщенко Н.Ж., Макара Н.С., Зарудий Ф.С., Бореко Е.И., Савинова О.В., Павлова Н.И., Старикова З.А., Толстиков Г.А. // Химия природн. соедин. 2005. V. 41.
 №. 6. С. 582–584. (Flekhter O.B., Giniyatullina G.V., Galin F.Z., Baschenko N.Zh., Makara N.S., Zarudii F.S., Boreko E.I., Savinova O.V., Pavlova N.I., Starikova Z.A., Tolstikov G.A. // Chem. Nat. Comp. 2005. V. 41. № 6. P. 706–709).

Synthesis and Cytotoxicity of Triterpenic Acids, Modified at C3 and C28 Positions

E. F. Khusnutdinova^{*, #}, A. V. Petrova^{*}, O. B. Kazakova^{*}, and A. E. Barmashov^{**}

[#]Fax: +7 (347) 235-60-66; e-mail: ElmaH@inbox.ru

*Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Science,

pr. Oktyabrya, 71, Ufa, 450054 Russia

**Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashiraka a horne 24, Massary 115478 Purgin

Kashirskoe shosse, 24, Moscow, 115478 Russia

The synthesis and screening of *in vitro* antitumor activity (cytotoxicity) of a series of N-, S- and Br-derivatives of betulinic, oleanolic and ursolic acids was carried out. N-Methylpiperazinylamide of 2-[3-pyridinylidene]- ursonic acid showed significant cytotoxic activity against PC3 cancer cells with IC_{50} of 8 μ M and methyl 2- methylideneureido-betulonate against HCT-116 cell line ($IC_{50} = 5.7 \mu$ M).

Keywords: triterpenoids, oleanolic, ursolic, betulinic acids, synthesis, cytotoxicity

БИООРГАНИЧЕСКАЯ ХИМИЯ том 45 № 6 2019