

УДК 547.587.51.057

ИССЛЕДОВАНИЕ РАСТИТЕЛЬНЫХ КУМАРИНОВ. 18. КОНЪЮГАТЫ КУМАРИНОВ С ЛУПАНОВЫМИ ТРИТЕРПЕНОИДАМИ И 1,2,3-ТРИАЗОЛАМИ: СИНТЕЗ И ПРОТИВОВОСПАЛИТЕЛЬНАЯ АКТИВНОСТЬ^{1, 2}

© 2020 г. А. В. Липеева*, М. П. Долгих*, Т. Г. Толстикова**, Э. Э. Шульц*, **, #

*Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения РАН, Россия, 630090, Новосибирск, пр. Лаврентьева, 9

**Новосибирский государственный университет, Россия, 630090, Россия, Новосибирск, ул. Пирогова, 1

Поступила в редакцию 18.07.2019 г. После доработки 23.08.2019 г. Принята к публикации 19.09.2019 г.

Реакцией кумарина пеурутеницина с α, ω-дибромалканами синтезированы соответствующие 7-(ωбромалкилокси)кумарины, взаимодействием которых с азидом натрия получены 7-(ω-азидоалкил)-замещенные производные пеурутеницина, проявившие высокую активность в Cu(I)-катализируемой реакции Хьюзгена с пропаргиловым эфиром бетулоновой кислоты. В результате реакции синтезированы 28-*O*-(хроменоалкил-триазолилметил)лупеноны. Взаимодействие пропаргилата бетулоновой кислоты с 2-азидоореозелонами в присутствии водного сульфата меди и аскорбата натрия приводит к соответствующим (фурохромен-триазолил)-20(29)-лупеноатам. У вновь синтезированного гибридного соединения тритерпеноидфурокумарина, содержащего триазольный линкер, выявлены противовоспалительные свойства на модели гистаминового воспаления.

Ключевые слова: тритерпеноиды, бетулин, кумарины, фурокумарины, азиды, 1,3-диполярное циклоприсоединение роц. 10.21857 (501202020010104

DOI: 10.31857/S0132342320010194

введение

Бетулин (I) и бетулоновая кислота (II), получаемая из бетулина, обладают комплексом важных биологических свойств и представляют интерес для создания фармакологически перспективных агентов [2, 3]. Так, химические модификации бетулина и бетулоновой кислоты по положению С28 привели к получению противовоспалительных, гепатопротекторных, антипаразитарных, противовирусных и противоопухолевых агентов [3-7]. Существенный интерес для создания селективных лекарственных агентов представляет синтез гибридных соединений, объединяющих в своей структуре две или более фармакофорные субъединицы. При этом биологически активные фрагменты комбинируются, образуя соединение лидер, имеющее более высокий аффинитет.

Недавние исследования показали, что введение в состав гибридных молекул фрагмента бетулоновой кислоты, приводит к созданию эффективных агентов, обладающих минимальными побочными эффектами. Так, в качестве перспективных противовоспалительных агентов известны тритерпеноиды лупанового ряда, содержащие фрагменты 1,3,4-оксадиазолов и оксадиазол-2-оксидов. [7]. Описана интересная библиотека анти-ВИЧ-агентов, включающих фрагменты бетулина (или бетулиновой кислоты), соединенные триазольным линкером с 3-азидо-26,3'-дезокситимидином (AZT) [8]. Синтезированы конъюгаты лупановых тритерпеноидов с аскорбиновой кислотой, обладающие противовирусной активностью в отношении вируса гриппа H1N1 [9]. Реакцией азид-алкинового циклоприсоединения алкиниламидов бетулоновой кислоты с алифатическими и ароматическими азидами синтезированы производные, проявляющие антиоксидантную и противовоспалительную активности [10]. Описаны триазолы 28-О-пропаргилового эфира бетулина, для которых выявлена противоопухолевая и антимикробная активность [11, 12].

Потенциал Си-катализируемой реакции азидалкинового циклоприсоединения (CuAAC-реак-

¹ Сообщение 17 см. [1].

² Сокращения: АZT – 3-азидо-26,3'-дезокситимидин.

[#] Автор для связи: (тел.: +7 (383) 330-85-33; факс: +7 (383) 330-97-52; эл. почта: schultz@nioch.nsc.ru).

ции) с участием производных лупановых тритерпеноидов в качестве одного из фармакофорных фрагментов обсужден в обзорах [13, 14]. Следует отметить, что гибридные соединения типа кумарин-тритерпеноид ранее не были синтезированы. Однако синтез таких соединений весьма перспективен, поскольку описанные нами ранее 7-триазолилзамешенные кумарины и 2-триазолилфурокумарины, проявляют антикоагулянтную [15], противоопухолевую [16] и антибактериальную [17] активности. Известны также противовоспалительные агенты, содержащие 1,2,3-триазольный фрагмент в качестве линкера [18, 19]. Целью настоящей работы является синтез гибридных соединений, сочетающих фрагменты бетулоновой кислоты и кумаринов (фурокумаринов), конъюгированные через алкилтриазольный линкер, а также оценка противовоспалительной активности тритерпеновых производных новых типов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В качестве исходного соединения использовали пропаргиловый эфир бетулоновой кислоты (III). синтезированный по методике [20]. Новые производные кумаринов — 7-(*ω*- азидоалкилокси)-6метоксикабронилкумарины (IVа-в) получали из растительного кумарина пеурутеницина (V) [21]. Взаимодействие (V) с дибромалканами (VIa-в) в присутствии K₂CO₃ в DMF гладко приводило к соответствующим 7-(ω-бромалкилокси)кумаринам (VIIа-в) (выход 75–92%). Реакцией кумаринов (VIIа-в) с азидом натрия синтезировали азиды (**IVа-в**) (выход 86-88%) (схема 1). Реакцию терминального алкина (III) с азидами (IVа-в) проводили в присутствии CuSO₄ (5 мол. %) и аскорбата натрия (15 мол. %) в системе CH₂Cl₂-вода, 1:1 (в условиях работы [22]). После перекристаллизации выделяли соответствующие 1,4-дизамещенные 1,2,3-триазолы (VIIIa-b) (выход 72-75%).

Схема 1. Синтез гибридных соединений (VIIIа-в).

Для получения тритерпеноид-фурокумариновых гибридов изучили взаимодействие пропаргилового эфира бетулоновой кислоты (III) с 2-азидоореозелоном (IXa) и 2-азидо-9-(N-метилпиперазинометил)ореозелоном (IX6) (схема 2), синтез которых описан нами ранее [16]. Полная конверсия исходных соединений достигалась при проведении CuAAC-реакции при нагревании в течение 12 ч. Выход гибридных соединений (**Ха,б**) составляет 78–82%.

Состав и строение новых соединений устанавливали по данным спектроскопии ИК, ЯМР¹Н и ¹³С и элементного анализа. Спектры ЯМР¹Н и ¹³С синтезированных гибридных соединений (VIIIа-в), (Ха,б) содержат характерный набор сигналов тритерпенового, кумаринового фрагментов и триазольного цикла. Протону 1,2,3-триазольного цикла в спектрах ЯМР ¹Н отвечает синглет, расположенный в области 7.88-7.99 м.д. Атомам углерода этого гетероцикла в спектрах ЯМР¹³С соответствуют сигналы при 122.26-125.49 (дублет атома C5 в спектрах записанных в режиме J-MOD) и 139.01-143.06 м.д. (синглет атома С4). Эти данные подтверждают образование 1,4-дизамещенных 1*H*-1,2,3-триазолов в результате CuAAC-реакции [23]. Характерной особенностью спектров ЯМР ¹Н и ¹³С соединений (**Ха,б**) является удвоение сигналов метильных групп изопропильной

группы в положении C-2' фурокумаринового заместителя, что свидетельствует об образовании гибридных соединений в виде смеси 2(R)- и 2(S)диастереомеров.

ПРОТИВОВОСПАЛИТЕЛЬНАЯ АКТИВНОСТЬ

Изучение противовоспалительной активности гибридных соединений (VIIIа–в), (Xa,б), бетулоновой кислоты (II), пеурутеницина (III) и препарата сравнения индометацина проводили на белых беспородных мышах массой 18–20 г (56 особей обоего пола) на гистаминовой модели воспаления. Результаты исследования приведены в табл. 1. Значительной противовоспалительной активностью обладало соединение (Xa) – конъюгат лупанового тритерпеноида с фурокумарином ореозелоном. Указанное соединение статисти-

Соединение	Доза, мг/кг	Индекс отека*, %	Размер отека относительно контроля, %	ПВ-активность, %
Контроль (H ₂ O + гистамин)	_	37.9 ± 0.27	100	0
(II)	50	32.1 ± 0.12	84	16
(III)	50	$31.8\pm0.08^{\mathrm{a}}$	83	17
(VIIIa)	50	$31.4\pm0.05^{\mathrm{a}}$	82	18
(VIIIб)	50	36.8 ± 0.28	97	3
(VIIIB)	50	35.7 ± 0.12	94	6
(Xa)	50	$24.5\pm0.013^{\text{b}}$	64	36
(Хб)	50	35.9 ± 0.67	95	5
Индометацин	20	$22.4\pm0.72^{\rm c}$	59	41

Таблица 1. Сравнительная противовоспалительная (ПВ) активность соединений (**VIIIа–в**), (**Ха,б**), бетулоновой кислоты (**II**), пеурутеницина (**III**) и препарата индометацина

 $^{a}_{P} P < 0.05;$

^b P < 0.005 относительно препарата сравнения;

^с P < 0.05 относительно контроля.

* Индекс отека — это процент воспаления по отношению к здоровой лапе (см. экспериментальную часть). 100% -ный отек: Это отек лапы в группе животных без введения препарата (вводятся физ. раствор, затем гистамин).

Рис. 1. Структуры лупановых тритерпеноидов.

чески значимо снижало отек лапы, вызванный введением гистамина. Введение дополнительного заместителя в положение С9 фурокумарина ореозелона приводило к потере противовоспалительной активности [соединение (**X6**)]. Из гибридов бетулоновой кислоты с кумарином пеурутеницином слабый противовоспалительный эффект проявило соединение (**VIIIa**), содержащее линкерный алкилтриазольный фрагмент, с короткой трехзвенной алкильной цепочкой. Это соединение статистически значимо снижало отек, вызванный гистамином; его эффект был вдвое меньше эффекта конъюгата (**Xa**). Удлинение алкильной цепи линкера приводило к потере противовоспалительной активности [соединения **VIII6,в**]].

ЗАКЛЮЧЕНИЕ

Таким образом, Cu(I)-катализируемой реакцией азид-алкинового циклоприсоединения азидов кумаринов с пропаргиловым эфиром бетулоновой кислоты синтезированы гибридные соединения, сочетающие фрагменты бетулоновой кислоты и кумаринов или фурокумаринов, соединенные триазольным ланкером с дополнительной алифатической цепочкой. Для конъюгата бетулоновой кислоты с растительным фурокумарином ореозелоном, выявлена достоверная противовоспалительная активность, сравнимая с эффектом нестероидного противовоспалительного препарата индометацина на модели гистаминового воспаления.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С растворов соединений в CDCl₃ зарегистрированы на спектрометрах Bruker AV-400 (400 и 100 МГц соответственно). Химические сдвиги (δ , м.д.) приведены с использованием в качестве внутреннего стандарта сигналов хлороформа (H – δ 7.24, C – δ 76.90 м.д.). Отнесение сигналов в спектрах соединений выполнено на основе анализа спектров ЯМР ¹Н и ¹³С (JMOD) с привлечением литературных данных для бетулоновой кислоты (II) [24]. Массспектры высокого разрешения записаны на массспектрометре DFS ThermoScientific, США (температура испарителя 200°С, ионизация ЭУ, 70 эВ). Величины удельного вращения $[\alpha]_D$ измерены на поляриметре PolAAr 3005 (Великобритания).

Температура плавления измерена в термосистеме Mettler Toledo FP900 (США). ИК-спектры (v, см⁻¹) сняты на Фурье-спектрометре Vector-22 в таблетках с КВг. УФ-спектры поглощения ($\lambda_{\text{макс}}$, нм (lgɛ)) получены на спектрометре HP 8453 UV-Vis в растворе EtOH. Элементный анализ проведен на приборе Elemental Analyzer EA3000 (Германия). Контроль за ходом реакций осуществлен методом TCX на пластинах Silufol UV-254 с использованием систем: хлороформ, хлороформ этанол, 10 : 1. Проявление в йодной камере и в УФ-свете.

Анализ чистоты веществ (**Xa**,**б**) проведен методом ВЭЖХ на приборе NexeraX2 (неподвижная фаза – сорбент Nucleosil 100-C18, 3 мкм, длина колонки 250 мм, внутренний диаметр – 2.1 мм; детекция пиков с помощью диодно-матричного детектора с диапазоном 190–700 нм). Бетулоновая кислота (**II**) [24], пропаргиловый эфир бетулоновой кислоты (**III**) [20], пеурутеницин (**V**) [21] и 2-азидоореозелоны (**IXa**,**б**) [16] синтезированы по известным методикам. Используемые в работе реагенты: аскорбат натрия, дибромалканы (**IVa**–**B**), азид натрия, медный купорос приобретены у фирмы "Alfa Aesar". Растворители (хлористый метилен, DMF) очищены по стандартным методикам.

Химический синтез и характеристика соединений

Метил-7-(ω -бромалкилокси)-2-оксо-2*H*-хромен-6-карбоксилатов (VIIа—в). К раствору 0.5 г (2.27 ммоль) пеурутеницина (V) в 50 мл DMF добавили 1.1 экв (2.5 ммоль) соответствующего дибромалкана (IVа—в) и 0.46 г (3.3 ммоль, 1.5 экв) K₂CO₃. Реакционную смесь перемешивали 12 ч при комнатной температуре. По окончании реакции отфильтровали осадок, раствор вылили на чашку Петри для свободного испарения. Сухой остаток кипятили в хлористом метилене (20 мл) в течение 20 мин, нерастворившийся осадок отфильтровали, раствор упарили в вакууме и высушили с азотной ловушкой.

Метил-7-(3-бромпропокси)-2-оксо-2*H*-хромен-6-карбоксилат (VIIa). Получен из 0.5 г пеурутеницина (V), 0.25 мл 1,3-дибромпропана и 0.46 г К₂₋ СО₃. Выход 0.58 г (75%). Желтое масло. Найдено, %: С 49.76; Н 4.04; Br 23.55. С₁₄Н₁₃BrO₅. Вычислено. %: С 49.29: Н 3.84: Br 23.42. ¹Н-ЯМР: 2.34 (м. 2H, H2'), 3.64 (м, 2H, H3'), 3.84 (с, 3H, OCH₃), 4.17 (м, 2Н, Н1'), 6.22 (д, 1Н, Ј 9.8, Н3), 6.80 (с, 1Н, H8), 7.59 (д, 1H, J 9.8, H4), 7.95 (с, 1H, H5). ¹³С-ЯМР: 29.23, 29.62 (С2',С3'), 52.12 (ОСН₃), 68.35 (C1'), 100.80 (C8), 111.52 (C4a), 111.65 (C3), 113.97 (C6), 132.02 (C5), 142.91 (C4), 157.98 (C8a), 160.14 (С2), 161.47 (С7), 165.10 (С=О). ИК-спектр: 3074, 3056, 2946, 2921, 2852, 1739, 1699, 1623, 1444, 1382, 1282, 1257, 1228, 1216, 1207, 1155, 1132, 1076, 829, 750. УФ-спектр: 213 (4.36), 242 (4.2), 270 (3.79), 322 (4.12).

Метил-7-(4-бромбутокси)-2-оксо-2Н-хромен-6-карбоксилат (VIIб). Получен из 0.5 г пеурутеницина, 0.3 мл 1,4-дибромбутана и 0.46 г K₂CO₃. Выход 0.72 г (90%). Т. пл. 103-104°С (эфир). Найдено, %: С 50.74; Н 4.16; Вг 22.87. С₁₅Н₁₅ВгО₅. Вычислено, %: C 50.72 ; H 4.26; Br 22.50. Macc спектр: *m/z* 354.00972 [*M*]⁺. Рассчитана *M* 354.0097 (C₁₅H₁₅BrO₅). ¹H-ЯМР: 2.00–2.10 (м, 4H, H2', H3'), 3.49 (м, 2H, H4'), 3.86 (с, 3H, OCH₃), 4.08 (м, 2H, Н1'), 6.23 (д. 1Н, J 9.8, Н3), 6.77 (с. 1Н, Н8), 7.60 (д, 1H, J9.8, H4), 7.95 (с, 1H, H5). ¹³С-ЯМР: 27.37, 29.23, 33.15 (C2',C3',C4'), 52.12 (OCH₃), 68.35 (C1'), 100.65 (C8), 111.65 (C4a), 111.68 (C3), 113.97 (C6), 132.02 (C5), 142.91 (C4), 157.79 (C8a), 160.07 (С2), 161.23 (С7), 165.10 (С=О). ИК-спектр: 3457, 3083, 3062, 2950, 2927, 2852, 1733, 1702, 1621, 1444, 1380, 1288, 1280, 1220, 1205, 1153, 1132, 1106, 1076, 823, 750. УФ-спектр: 212 (4.35), 243 (4.18), 268 (3.8), 323(4.12).

Метил-7-(6-бромгексилокси)-2-оксо-2*H***-хромен-6-карбоксилат (VIIв)**. Получен из 0.5 г пеурутеницина, 0.375 мл 1,6-дибромгексана и 0.46 г К₂СО₃. Выход 0.79 г (92%). Т. пл. 114–115°С (эфир). Найдено, %: С 53.12; Н 4.94; Вг 20.88. С₁₇Н₁₉ВгО₅. Вычислено, %: С 53.28; Н 5.00; Вг 20.85. ¹Н-ЯМР: 1.52–1.85 (м, 8Н, Н2', Н3', Н4', Н5', 4 × × CH₂), 3.39 (м, 2H, H6'), 3.86 (с, 3H, OCH₃), 4.04 (м, 2H, H1'), 6.23 (д, 1H, *J* 9.8, H3), 6.78 (с, 1H, H8), 7.60 (д, 1H, *J* 9.8, H4), 7.94 (с, 1H, H5). ¹³С-ЯМР: 27.21, 27.65, 28.56, 32.52, 33.50 (C2',3',4',5',6'), 52.07 (OCH₃), 69.18 (C1'), 100.68 (C8), 111.53 (C4a), 111.62 (C3), 113.88 (C6), 131.96 (C5), 142.94 (C4), 157.83 (C8a), 160.13 (C2), 161.49 (C7), 165.13 (C=O). ИК-спектр: 3118, 3081, 2929, 2854, 1741, 1702, 1623,

БИООРГАНИЧЕСКАЯ ХИМИЯ том 46 № 2 2020

1442, 1500, 1382, 1288, 1278, 1222, 1207, 1155, 1132, 1108, 825, 750. УФ-спектр: 213 (4.35), 243 (4.18), 268 (3.78), 323 (4.13).

Метил-7-(ω-азидоалкилокси)-2-оксо-2H-хромен-6-карбоксилатов (IVa-в).

К раствору 1 ммоль бромида (VIIа–в) в 50 мл DMF добавили 1.1 экв. азида натрия. Смесь нагревали при 70°С 10 ч, затем вылили на чашку Петри для свободного испарения. Сухой остаток растворили в 20 мл CH₂Cl₂, промыли насыщенным раствором соли, высушили над MgSO₄ и упарили. После перекристаллизации из эфира получили азиды (IVа–в).

Метил-7-(3-азидопропокси)-2-оксо-2*H***-хромен-6-карбоксилат (IVa).** Выход 86% (0.59 г). Т. пл. 62– 65°С (эфир). Найдено, %: С 55.72; Н 4.12; N 13.77. С₁₄Н₁₃N₃O₅. Вычислено, %: С 55.45; Н 4.32; N 13.86. ¹Н-ЯМР: 2.02 (м, 2H, H2'), 3.52 (м, 2H, H3'), 3.78 (с, 3H, OCH₃), 4.06 (м, 2H, H1'), 6.16 (д, 1H, *J* 9.8, H3), 6.73 (с, 1H, H8), 7.55 (д, 1H, *J* 9.8, H4), 7.89 (с, 1H, H5). ¹³С-ЯМР: 29.16 (C2'), 51.58 (C3'), 68.28 (C1'), 52.04 (OCH₃), 101.16 (C8), 111.44 (C4a), 111.59 (C3), 113.82 (C6), 131.87 (C5), 142.83 (C4), 157.91 (C8a), 160.05 (C2), 161.40 (C7), 165.02 (C=O). ИК-спектр: 2948, 2929, 2850, 2100, 1726, 1666, 1621, 1442, 1380, 1286, 1257, 1218, 1207, 1153, 1105, 1076, 825, 750.

Метил-7-(4-азидобутокси)-2-оксо-2*H***-хромен-6-карбоксилат (IV6).** Выход 0.63 г (88%). Т. пл. 98– 99°С (эфир). Найдено, %: С 56.87; Н 4.85; N 13.12. C₁₅H₁₅N₃O₅. Вычислено, %: С 56.78; Н 4.77; N 13.24. ¹H-ЯМР: 1.79-1.91 (м, 4H, H2', H3'), 3.34 (м, 2H, H4'), 3.82 (с, 3H, OCH₃), 4.04 (м, 2H, H1'), 6.19 (д, 1H, *J* 9.8 H3), 6.74 (с, 1H, H8), 7.57 (д, 1H, *J* 9.8, H4), 7.91 (с, 1H, H5). ¹³C-ЯМР: 27.63, 29.49 (C2',3'), 50.15 (C4'), 52.37 (OCH₃), 68.61 (C1') 100.91 (C8), 111.91 (C4a), 114.23 (C3), 117.52 (C6), 132.28 (C5), 143.16 (C4), 158.41 (C8a), 160.32 (C2), 161.13 (C7), 165.07 (C=O). ИК-спектр: 3087, 2946, 2867, 2100, 1724, 1621, 1467, 1375, 1282, 1201, 1153, 1132, 1106, 1076, 825, 750.

Метил-7-(6-азидогексилокси)-2-оксо-2*H*-хромен-6-карбоксилат (IVв). Выход 0.67 г (86%). Т. пл. 104—105°С (эфир). Найдено, %: С 58.76; Н 5.32; N 12.19. С₁₇Н₁₉N₃O₅. Вычислено, %: С 59.12; Н 5.55; N 12.17. ¹H-ЯМР: 1.52-1.92 (м, 8H, H2', H3', H4', H5', 4 × CH₂), 3.35 (м, 2H, H6'), 3.95 (с, 3H, OCH₃), 4.12 (м, 2H, H1'), 6.30 (д, 1H, *J* 9.8, H3), 6.85 (с, 1H, H8), 7.71 (д, 1H, *J* 9.8, H4), 8.01 (с, 1H, H5). ¹³C-ЯМР: 24.97, 25.84, 28.25 (C2',3',4',5'), 50.78 (C6'), 68.77 (C1'), 51.70 (OCH₃), 100.16 (C8), 111.10 (C4a), 113.17 (C3), 116.73 (C6), 131.65 (C5), 143.01 (C4), 157.31 (C8a), 160.16 (C2), 161.11 (C7), 164.85 (C=O). ИК-спектр: 3066, 2939, 2860, 2096, 1731, 1702, 1621, 1456, 1444, 1380, 1288, 1278, 1218, 1205, 1153, 1132, 1105, 825, 750.

(1-{3-[6-(Метоксикарбонил)-2-оксо-2*H*-хромен-7-илокси]алкил}-1Н-1,2,3-триазол-4-илметил)-3-оксо-луп-20(29)ен-28-оаты (VIIIа-в). K раствору 0.8 ммоль азида (ІVа-в) в 10 мл хлористого метилена прибавили предварительно растворенные в 10 мл воды 15 мол. % аскорбата натрия и 5 мол. % $CuSO_4 \cdot 5H_2O$. В последнюю очередь добавили 0.4 г (0.8 ммоль) пропаргилата бетулоновой кислоты (III). Реакционную смесь перемешивали 3 ч при 20°С и 1 ч при 40°С. Смесь обработали 10 мл воды, слои разделили, дополнительно продукт извлекли хлористым метиленом $(4 \times 5 \text{ мл})$, объединенные экстракты промыли водой, сушили MgSO₄, осушитель отфильтровали, растворитель упарили. После обработки эфиром выделили соединения (VIIIа-в).

(1-{3-[6-(Метоксикарбонил)-2-оксо-2*H*-хромен-7-илокси]пропил}-1Н-1,2,3-триазол-4-илметил)-3-оксо-луп-20(29)ен-28-оат (VIIIа) получен из 250 мг (0.8 ммоль) азида (IVa), 400 мг (0.8 ммоль) пропаргилата бетулоновой кислоты (III) в присутствии 25 мг (0.12 ммоль, 15 мол. %) аскорбата натрия, 10 мг (5 мол. %, 0.04 ммоль) CuSO₄ · 5H₂O. Выход 0.46 г (72%). Т. пл. 174-175°С (диэтиловый эфир). [α]_D + 13.6 (*c* 1.00, CHCl₃). Найдено, %: С 70.68; H 7.46; N 5.03. C₄₇H₆₁N₃O₈. Вычислено, %: С 70.92; H 7.72; N 5.28. ¹H-*ЯМР*: 0.88, 0.93, 0.95, 0.98, 1.03 (BCe c, 15H, H25, H24, H26, H27, H23, 5 × CH₃), 1.10–1.13 (м, 2H, H5, H9), 1.22–1.38 (м, 15Н, СН, СН₂), 1.65 (с, 3Н, Н30), 1.69 (1Н, м, Н12), 1.80-1.89 (4Н, м, Н1, Н21, Н22, Н16), 2.25 (м, 1Н, Н13), 2.37 (м, 2Н, Н2'''), 2.42–2.46 (2Н, м, Н2, Н19), 3.69 (м, 2Н, Н3"), 3.87 (с, 3Н, ОСН₃), 4.21 (м, 2Н, Н1"), 4.59 (уш.с, 1Н, Н29), 4.65 (м, 2Н, Н6"), 4.70 (уш.с, 1Н, Н29), 6.26 (д, 1Н, Ј 9.4, НЗ'), 6.84 (с, 1Н, Н8'), 7.62 (д, 1Н, Ј 9.4, Н4'), 7.96 (c, 1H, H5'), 7.99 (c, 1H, H5"). ¹³C-ЯМР: 14.56 (C27), 15.87 (C26), 15.90 (C25), 19.31 (C30), 19.34 (C6), 20.95 (C24), 21.31 (C11), 25.43 (C12), 26.54 (C23), 29.61 (C21), 29.63 (C2"), 30.65 (C15), 31.72 (C3"), 31.74 (C16), 34.06 (C7), 36.82 (C2), 36.83 (C22), 38.24 (C10), 39.57 (C13), 40.66 (C1), 42.38 (C8), 42.43 (C14), 46.73 (C19), 46.90 (C4), 49.32 (C9), 49.83 (C18), 51.28 (C6"), 52.16 (OCH₃), 54.85 (C5), 56.46 (C17), 66.44 (C1"'), 100.83 (C8'), 109.68 (C29), 111.80 (C4'a), 114.15 (C3'), 116.98 (C6'), 125.26 (C5"), 132.20 (C5'), 141.42 (C4"), 142.94 (C4'), 150.26 (C20), 157.96 (C8'a), 160.25 (C2'), 161.54 (C7'), 165.17 (С=0), 175.07 (С28), 211.11 (С3). ИК-спектр: 3077, 2948, 2931, 2869, 1729, 1621, 1461, 1454, 1444, 1378, 1286, 1257, 1207, 1153, 1132, 1105, 1076, 825, 786, 750. УФ-спектр: 242 (4.39), 268 (3.94), 322 (4.31).

(1-{3-[6-(Метоксикарбонил)-2-оксо-2*H*-хромен-7-илокси]бутил}-1*H*-1,2,3-триазол-4-илметил)-3-оксо-луп-20(29)ен-28-оат (VIIIб) получен из 255 мг (0.8 ммоль) азида (IVб) и 400 мг (0.8 ммоль) (III) в присутствии 25 мг аскорбата натрия и 10 мг CuSO₄ · 5H₂O. Выход 0.5 г (77%). Т. пл. 181–182°С (эфир). [α]_{*p*} + 14.4 (*c* 1.00, CHCl₃). Найдено, %: С 71.26; Н 8.17; N 5.25. С₄₈Н₆₃N₃O₈. Вычислено, %: С 71.17; Н 7.84; N 5.19. ¹Н-ЯМР: 0.89, 0.93, 0.95, 0.99, 1.04 (BCe c, 15H, H25, H24, H26, H27, H23, 5 ×CH₃), 1.09–1.13 (м, 2H, H5, H9), 1.22–1.45 (м, 15Н, СН, СН₂), 1.59 (1Н, м, Н12), 1.66 (с, 3Н, Н30), 1.78–1.91 (4Н, м, Н1, Н21, Н22, Н16), 2.03 (м, 2Н, Н3""), 2.15 (м, 2Н, Н2""), 2.25 (м, 1Н, Н13), 2.38-2.46 (2Н, м, Н2, Н19), 3.48-3.53 (м, 2H, H4'''), 3.89 (с, 3H, OCH₃), 4.10 (м, 2H, Н1""), 4.59 (уш.с, 1Н, Н29), 4.65 (м, 2Н, Н6"), 4.71 (уш.с, 1Н, Н29), 6.27 (д, 1Н, Ј9.4, Н3'), 6.81 (с, 1Н, Н8'), 7.62 (д, 1Н, Ј 9.4, Н4'), 7.96 (с, 1Н, Н5'), 7.98 (с. 1Н, Н5"). ¹³С-ЯМР: 14.68 (С27), 15.75 (С26), 15.80 (C25), 19.49 (C30), 19.57 (C6), 20.96 (C24), 21.33 (C11), 25.45 (C12), 26.55 (C23), 27.37, 29.25 (C2",3"), 29.28 (C21), 30.40 (C15), 31.81 (C16), 33.30 (C4"), 34.09 (C7), 36.70 (C2), 36.84 (C22), 38.26 (C10), 39.56 (C13), 40.66 (C1), 42.38 (C8), 42.40 (C14), 46.75 (C19), 47.28 (C4), 49.33 (C9), 49.83 (С18), 51.31 (С6"), 52.26 (ОСН₃ОССР3Щ3), 54.87 (C5), 56.48 (C17), 68.27 (C1"'), 100.65 (C8'), 109.68 (C29), 111.67 (C4'a), 112.95 (C3'), 114.05 (C6'), 122.26 (C5"), 132.16 (C5'), 141.11 (C4"), 143.02 (C4'), 150.29 (C20), 157.84 (C8'a), 160.24 (C2'), 161.21 (С7'), 165.17 (С=О), 175.10 (С28), 218.25 (С3). ИКспектр: 3143, 3075, 2947, 2868, 1728, 1620, 1579, 1455, 1444, 1378, 1287, 1256, 1219, 1205, 1152, 1130, 1105, 1075, 964, 823, 784, 749. УФ-спектр: 242 (4.45), 302 (4.31), 323 (4.39).

(1-{3-[6-(Метоксикарбонил)-2-оксо-2Н-хромен-7-илокси]гексил}-1H-1,2,3-триазол-4-илметил)-3-оксо-луп-20(29)ен-28-оат (VIIIв) получен из 250 мг (0.72 ммоль) азида (IVв) и 350 г (0.72 ммоль) (III) в присутствии 21 мг аскорбата натрия (15 мол. %) и 9 мг (5 мол%) CuSO₄ · 5H₂O. Выход 0.45 г (75%). Т.пл. 188–189°С (эфир). [α]_D + 23.02 (с 1.00, CHCl₃). Найдено, %: С 71.31; Н 8.30; N 5.12. С₅₀Н₆₇N₃O₈. Вычислено, %: С 71.66; Н 8.06; N 5.01. ¹Н-ЯМР: 0.89, 0.93, 0.95, 0.99, 1.04 (все с, 15Н, H25, H24, H26, H27, H23, 5×CH₃), 1.09-1.13 (м, 2Н, Н5, Н9), 1.22–1.42 (м, 15Н, СН, СН₂), 1.53 (м, 4Н, Н3", Н4""), 1.60–1.63 (1Н, м, Н12), 1.66 (с, 3Н, Н30), 1.79–1.93 (8Н, м, Н1, Н21, Н22, Н16, 2 Н2", 2 Н5""), 2.21-2.27 (м, 1Н, Н13), 2.37-2.48 (2Н, м, Н2, Н19), 3.39-3.45 (м, 2Н, Н6"), 3.88 (с, 3Н, ОСН₃), 4.06 (м, 2Н, Н1""), 4.58 (уш.с, 1Н, Н29), 4.65 (м, 2Н, Н6"), 4.71 (уш.с, 1Н, Н29), 6.25 (д, 1Н, J 9.8, H3'), 6.81 (с, 1H, H8'), 7.61 (д, 1H, J 9.8, H4'), 7.94 (c, 1H, H5'), 7.97 (c, 1H, H5"). ¹³C-*AMP*: 15.68 (C27), 15.91 (C26), 15.93 (C25), 19.34 (C30), 19.38 (C6), 20.98 (C24), 21.34 (C11), 25.05 (C12), 26.11 (C23), 27.53, 27.70 (C3", 4"), 28.59 (C5"), 28.86 (C21), 30.12 (C15), 31.82 (C16), 32.54 (C2"), 33.64 (C6"), 34.09 (C7), 36.83 (C2), 36.85 (C22), 38.26 (C10), 39.69 (C13), 40.69 (C1), 42.33 (C8), 42.38(C14), 47.25 (C19), 47.28 (C4), 49.35 (C9), 49.50

БИООРГАНИЧЕСКАЯ ХИМИЯ том 46 № 2 2020

(C18), 51.31 (C6"), 52.07 (OCH₃), 54.89 (C5), 56.49 (C17), 69.16 (C1"'), 100.67 (C8'), 109.72 (C29), 113.91 (C4'a), 113.94 (C3'), 117.21 (C6'), 125.49 (C5"), 132.07 (C5"), 139.01 (C4"), 143.03 (C4'), 150.26 (C20), 157.96 (C8'a), 160.25 (C2'), 161.54 (C7'), 165.17 (C=O), 175.07 (C28), 211.11 (C3). ИК-спектр: 3147, 3081, 2928, 1731, 1620, 1579, 1461, 1456, 1378, 1287, 1256, 1218, 1205, 1151, 1129, 1105, 1075, 1012, 967, 824, 785, 749. УФ спектр, $\lambda_{\text{макс}}$, HM (Igε): 242 (4.32), 268 (3.91), 323 (4.27).

{[1-(2-Изопропил-3,7-диоксо-3,7-дигидро-2*H*фуро[3,2-g]хромен-2-ил)-1H-1,2,3-триазол-4-ил]метил}-3-оксо-20(29)-лупен-28-оат (Ха). Смесь 350 мг (1 ммоль) 2-азидоореозелона (**IXa**), 492 мг (1 ммоль) пропаргилата бетулоновой кислоты (III), 13 мг (0.5 ммоль) CuSO₄ · 5H₂O и 40 мг (2 ммоль) аскорбата натрия в растворе CH₂Cl₂/H₂O (в соотношении 2:1) перемешивали при 40°С 12 ч. Реакционную смесь охлаждали и разбавляли небольшим количеством H_2O , продукт экстрагировали CH_2Cl_2 (4 × 10 мл). Объединеный экстракт сушили над MgSO₄, растворитель удаляли в вакууме, полученное вещество полвергали сушке в вакууме масляного насоса. Выход: 0.647 г (82%). Чистота по ВЭЖХ 95%. Т. пл. 245-246°С (эфир). Найдено, %: С 72.21; Н 7.87; N 5.21. С₄₇Н₅₉N₃O₇. Вычислено, %: С 72.56; Н 7.64; N 5.40. ¹Н-ЯМР: 0.71, 0.85, 0.90, 0.97, 0.99 (все с, 15H, 5 × CH₃), 0.86 (м, 1H, CH5), 0.99, 1.01 (оба д, 6H, J 7.0, 2 × C<u>H</u>₃, *i*-Pr), 1.02–1.05 (м, 1Н, СН9), 1.19–1.39 (м, 15Н, СН, СН₂), 1.51– 1.55 (2Н. м. Н1.Н12), 1.62 (с. 3Н. Н30), 1.77–1.89 (3Н. м. Н21, Н22, Н16), 2.14-2.21 (м, 1Н, Н13), 2.30-2.48 (2Н, м, Н2, Н19), 3.17 (м, 1Н, Н-*i*Pr), 4.55 (уш.с, 1Н, Н29), 4.65 (уш.с, 2Н, Н6"), 4.72 (уш.с, 1Н, Н29), 6.39 (д, 1Н, Ј9.7, Нб'), 7.09 (с, 1Н, Н9'), 7.70 (д, 1Н, J 9.7, Н5'), 7.80 (с, 1Н, Н4'), 7.88 (c, 1H, H5"). ¹³C ЯМР: 14.50 (C27), 15.36 (C26), 15.51, 15.68 (2 × <u>C</u>H₃, *i*-Pr), 15.90 (C25), 19.21 (C11), 19.50 (C6), 20.99 (C24), 21.02 (C6), 25.33 (CH), 25.37 (C12), 25.89 (C23), 29.44 (C21), 30.33 (C15), 31.76 (C16), 33.93 (C7), 36.78 (C2), 37.25 (C22), 39.02 (C10), 39.52 (C13), 40.47 (C1), 42.33 (C8), 42.36 (C14), 46.80 (C19), 47.25 (C4), 49.13 (C9), 49.76 (C18), 51.32 (C6"), 54.87 (C-5), 56.45 (C17), 98.43 (C2'), 101.17 (C9'), 109.73 (C29), 115.70 (C3'a), 115.79 (C4'a), 116.45 (C6'), 123.87 (C5"), 125.74 (C4'), 142.83 (C5'), 143.06 (C4"), 150.13 (C20), 158.53 (C9'a), 161.78 (C8'a), 171.58 (C7'), 175.99 (C28), 191.42 (C3'), 217.87 (C3), ИК спектр. v. см⁻¹: 3083, 3060, 3023, 2956, 2925, 2869, 2854, 1733, 1675, 1629, 1579, 1490, 1444, 1432, 1394, 1342, 1299, 1236, 1213, 1141, 1108, 1076, 948. УФ спектр, $\lambda_{\text{макс}}$, нм (lge): 220 (4.11), 225 (4.09), 245 (4.31), 287 (3.97), 305 (3.92), 323 (4.01).

2-[1-(2-Изопропил-9-[(4-метилпиперазин-1ил)метил]-3,7-диоксо-3,7-дигидро-2*H*-фуро[3,2*g*]хромен-2-ил}-1*H*-1,2,3-триазол-4-ил)метил]- 3-оксо-20(29)-лупен-28-оат (X6). Смесь 350 мг (0.9 ммоль) 2-азидо-9-замещенного ореозелона (ІХб), 443 мг (0.9 ммоль) пропаргилата бетулоновой кислоты (III), 11 мг (0.045 моль) CuSO₄ · · 5H₂O и 2.7 мг (0.14 моль) аскорбата натрия в смеси CH₂Cl₂-H₂O (2 : 1, v/v) перемешивали при 40°С 12 ч. Реакционную смесь охлаждали и разбавляли небольшим количеством H₂O, продукт экстрагировали CH_2Cl_2 (4 × 10 мл). Экстракт сушили над MgSO₄, растворитель удаляли в вакууме, полученное вещество подвергали сушке в вакууме масляного насоса. Выход: 0.54 г (78%). Чистота по ВЭЖХ 94%. Т. пл. 184-185°С (эфир). Найдено, %: С 71.11; Н 8.94; N 7.92. С₅₃Н₇₁N₅O₇. Вычислено, %: С 71.51; Н 8.04; N 7.87. ¹Н-ЯМР: 0.88, 0.90, 0.92, 0.96, 0.98 (BCe c, 15H, 5CH₃), 0.84-0.93 (м, 1Н, Н5), 1.15, 1.09 (оба д, 6Н, *J* 7.0, 2 × CH₃, *i*-Pr), 1.04–1.10 (м, 1Н, Н9), 1.28–1.45 (м, 15Н, СН, СН₂), 1.53–1.69 (2H, м, H1, H12), 1.65 (с, 3H, H30), 1.75–1.92 (м, 7Н, 3Н, СН₂-16,21,22 и 4Н, пиперазино), 2.21 (с, 3H, CH₃), 2.16–2.41 (м, 5H, H13 и 4Н, пиперазино), 2.32-2.49 (м, 2Н, Н2, Н19), 3.26–3.36 (м, 1Н, СН), 4.57 (уш.с, 1Н, Н29), 4.61 (уш.с, 2H, H6"), 4.66 (уш.с, 2H, CH₂-при C9'), 4.70 (уш.с, 1Н, Н29), 6.65 (уш.д, 1Н, Ј 9.7, Нб'), 7.61 (уш.д, 1H, J 9.7, H5'), 7.72 (с, 1H, H4'), 7.99 (с, 1H, Н5"). ¹³С-ЯМР: 14.44 (С27), 15.30 (С26), 15.85 (CH₃), 15.88 (CH₃), 15.91 (C25), 19.42 (C30), 19.44 (C6), 20.93 (C24), 21.20 (C11), 25.31 (CH), 25.40 (C12), 26.14 (C23), 29.38 (C21), 30.27 (C15), 31.70 (C16), 33.87 (C7), 36.73 (C2), 37.28 (C22), 39.18 (C10), 39.46 (C13), 40.42 (C1), 42.12 (C8), 42.27, 46.07 (4С, пиперазино), 42.36 (С14), 46.68 (С19), 47.23 (С4), 47.38 (СН₂ при С9'), 49.07 (С9), 49.70 (C18), 51.21 (C6"), 54.17 (NMe), 54.65 (C5), 56.39 (C17), 98.43 (C2'), 101.11 (C9'), 110.42 (C29), 115.64 (C3'a), 116.32 (C4'a), 116.39 (C6'), 125.14 (C5"), 125.26 (C4'), 142.77 (C5'), 143.00 (C4"), 150.07 (C20), 158.47 (C9'a), 161.72 (C8'a), 169.50 (C7'), 175.00 (С28), 193.03 (СЗ'), 216.68 (СЗ). ИК-спектр: 3103, 3060, 3013, 2946, 2908, 2875, 2814, 1733, 1677, 1629, 1576, 1487, 1442, 1419, 1394, 1342, 1218, 1206, 1203, 1141, 1105, 1006, 945. УФ-спектр: 220 (4.30), 255 (4.18), 294 (3.99), 306 (3.85).

Изучение противовоспалительной активности

Животные. Животных (белых беспородных мышей) для исследования, полученных из вивария ФИЦ института цитотологии и генетики СО РАН, содержали в стандартных условиях со свободным доступом к пище и воде.

Противовоспалительную активность изучали на модели гистаминового отека [25]. Животных делили на группы по 8 особей в каждой. Исследуемые соединения вводили однократно в желудок в водно-твиновой суспензии. Через 1 ч после введения исследуемых веществ вводили 0.1% раствор гистамина (0.05 мл) под апоневроз левой задней лапы. По прошествии 5 ч после введения флогогена животных умерщвляли, отрезали задние лапы по линии запястного сустава и измеряли их массу. Противовоспалительную активность представляли в виде среднего для каждой группы значения процента воспаления. Процент воспаления (индекс отека) рассчитывали для каждой мыши по следующей формуле: ИО = [($M_{\rm BЛ} - M_{\rm KЛ}$) : $M_{\rm KЛ}$ – масса воспаленной лапы, $M_{\rm KЛ}$ – масса не воспаленной лапы [25].

БЛАГОДАРНОСТИ

Авторы благодарят Химический Сервисный Центр коллективного пользования СО РАН за спектральные и аналитические исследования.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при финансовой поддержке грантов Российского научного фонда (проекты № 17-73-10099, 18-13-00361).

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Все эксперименты проводили в соответствии с Европейской Конвенцией защиты позвоночных животных, используемых в экспериментальных и других научных целях "European Convention for the Protection of Vertebrate Animals Used for Experimental and other Scientific Purposes", 1986).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Захаров Д.О., Липеева А.В., Гатилов Ю.В., Макаров А.Г., Шульц Э.Э. // Журнал орган. химии. 2019. Т. 55. Вып. 10. С. 1567–1576.
- Толстиков Г.А., Флехтер О.Б., Шульц Э.Э., Балтина Л.А., Толстиков А.Г. // Химия в интересах устойчивого развития. 2005. Т. 13. С. 1–30.
- Шинтяпина А.В., Шульц Э.Э., Петренко Н.И., Узенкова Н.В., Толстиков Г.А., Пронкина Н.В., Кожевников В.С., Покровский А.Г. // Биоорганическая химия. 2007. Т. 33. Вып. 6. С. 579–583.
- Антимонова А.Н., Петренко Н.И., Шульц Э.Э., Полиенко Ю.Ф., Шакиров М.М., Иртегова И.Г., Покровский М.А., Шерман К.М., Григорьев И.А., Покровский А.Г., Толстиков Г.А. // Биоорганическая химия. 2013. Т. 39. Вып. 2. С. 206–211.
- Сорокина И.В., Баев Д.С., Жукова Н.А., Толстикова Т.Г., Антимонова А.Н., Петренко Н.И., Шульц Э.Э., Григорьев И.А. // Биоорганическая химия. 2013. Т. 39. Вып. 6. С. 749–752. [Russ. J. Bioorg. Chem. 2013. V. 39. Р. 668–670].

- Eignerova B., Tichy M., Krasulova J., Kvasnica M., Rarova L., Christova R., Urban M., Bednarczyk-Cwynar B., Hajduch M., Sarek J. // Eur. J. Med. Chem. 2017. V. 140. P. 403–420.
- Popov S.A., Semenova M.D., Baev D.S., Sorokina I.V., Zhukova N.A., Frolova T.S., Tolstikova T.G., Shults E.E., Turks M. // Steroids. 2019 (принята в печать) https://doi.org/10.1016/j.steroids.2019.108443
- Bori I.D., Hung H.-Y., Qian K., Chen C.-H., Morris-Natschke S.L., Lee K.-H. // Tetrahedron Lett. 2012. V. 53. P. 1987–1989.
- Wang H., Xu R., Shi Y., Si L., Jiao P., Fan Z., Han X., Wu X., Zhou X., Yu F., Zhang Y., Zhang L., Zhang L., Zhou D., Xiao S. // Eur. J. Med. Chem. 2016. V. 110. P. 376–388.
- Vasilevsky S.F., Govdi A.I., Sorokina I.V., Tolstikova T.G., Baev D.S., Tolstikov G.A., Mamatuyk V.I., Alabugin I.V.// Bioorg. Med. Chem. Lett. 2011. V. 21. P. 62–65.
- Khan I., Guru S.K., Rath S.K., Chinthakindi P.K., Singh B., Koul S., Bhushan S., Sangwan P.L. // Eur. J. Med. Chem. 2016. V. 108. P. 104–116
- Bebenek E., Jastrzebska M., Kadela-Tomanek M., Chrobak E., Orzechowska B., Zwolińska R., Latocha M., Mertas A., Czuba Z., Boryczka S. // Molecules. 2017. V. 22. P. 1876/1–1876/16.
- Kacprzak K., Skiera I., Piasecka M., Paryzek Z. // Chem. Rev. 2016. V. 116. P. 5689–5743.
- Czuk R., Deigner H.-P. // Bioorg. Med. Chem. Lett. 2019. V. 29. P. 949–958.
- Lipeeva A.V., Khvostov M.V., Baev D.S., Shakirov M.M., Tolstikova T.G., Shults E.E. // Med. Chem. 2016. V. 12. P. 674–683.
- Lipeeva A.V., Pokrovsky M.A., Baev D.S., Shakirov M.M., Bagryanskaya I.Y., Tolstikova T.G., Pokrovsky A.G., Shults E.E. // Eur. J. Med. Chem. 2015. V. 100. P. 119–128.
- Lipeeva A.V., Zakharov D.O., Burova L.G., Frolova T.S., Baev D.S., Shirokikh I.V., Evstropov A.N., Sinitsyna O.I., Tolstikova T.G., Shults E.E. // Molecules. 2019. V. 24. P. 21261–212623.
- Haider S., Alam M.S., Hamid H., Shafi S., Nargotra A., Mahajan P., Nazreen S., Kalle A.M., Kharbanda C., Ali Y., Alam A., Panda A.K. // Eur. J. Med. Chem. 2013. V. 70. P. 579–588.
- Reddy A.L.V.K., Kathale N.E. // Orient. J. Chem. 2017. V. 33. P. 2930–2936.
- Govdi A.I., Vasilevsky S.F., Sokolova N.V., Sorokina I.V., Tolstikova T.G., Nenajdenko V.G. // Mendeleev Commun. 2013. V. 23. P. 260–261.
- Осадчий С.А., Шульц Э.Э., Шакиров М.М., Толстиков Г.А. // Изв. РАН. Серия хим. 2006. С. 362–366. [Osadchii S.A., Shul'ts E.E.,; Shakirov M.M., Tolstikov G.A. // Russ. Chem. Bull. (Int. Ed.), 2006, 55, 375–379].
- Lipeeva A.V., Shults E.E. // Chem. Heterocycl. Compd. 2017. V. 53. P. 1302-1309.
- Creary X., Anderson A., Brophy C., Crowell F., Funk Z. // J. Org. Chem. 2012. V. 77. P. 8756–8759.
- 24. 24. Petrenko N.I., Elantseva N.V., Petukhova V.Z., Shakirov M.M., Shul'ts E.E., Tolstikov G.A. // Chem. Nat. Compd. 2002. V. 38. P. 331–339.
- 25. Winter C.A., Risley E.A., Nuss G.W. // J. Pharmacol. Exp. Ther. 1963. V. 141. P. 369–376.

БИООРГАНИЧЕСКАЯ ХИМИЯ том 46 № 2 2020

Study of Plant Coumarins. 18. Coumarin Conjugates with Lupane Triterpenoids and 1,2,3-triazoles: Synthesis and Anti-inflammatory Activity

A. V. Lipeeva*, M. P. Dolgikh*, T. G. Tolstikova**, and E. E. Shults*, **, #

 *Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrent'ev Avenue 9, Novosibirsk, 630090, Russian Federation
**Novosibirsk State University, ul. Pirogova, 1, Novosibirsk, 630090, Russian Federation
*Phone: +7 (383) 330-85-33; fax: +7 (383) 330-97-52; e-mail: schultz@nioch.nsc.ru

The reaction of peuruthenicin with α,ω -dibromoalkanes afforded 7-(ω -bromoalkyloxy)coumarins by treatment of which with sodium azide yielded 7-(ω -azidoalkyl)substituted derivatives of peuruthenicin, which showed high activity in CuAAC reaction with betulonic acid propargyl ether. As a results of the reaction, 28-O-(chromenoalkyl-triazolylmethyl)-20(29)-lupen-3-ones were synthesized. The interaction of betulonic acid propargyl ether with 2-azidooreoselones in the presence of aq. copper sulfate and sodium ascorbate in DMF led to the corresponding (furocoumarin-triazolyl)-20(29)-lupen-3-ones. The newly synthesized hybrid compound (**Xa**) possessed anti-inflammatory properties in a histamine inflammation model.

Keywords: Triterpenoids, Betulin, Coumarin, Furocoumarin, Azides, CuAAC-reaction