

УДК 547.917:579.22

ХАРАКТЕРИСТИКА СТРУКТУРЫ И ГЕНОВ БИОСИНТЕЗА O-АНТИГЕНОВ Azospirillum zeae N7(T), Azospirillum melinis TMCY 0552(T) И Azospirillum palustre B2(T)

© 2022 г. Е. Н. Сигида^{*, **, #}, В. С. Гринёв^{*}, Э. Л. Здоровенко^{**}, А. С. Дмитренок^{**}, Г. Л. Бурыгин^{*}, Н. К. Кондюрина^{***}, С. А. Коннова^{*, ***}, Ю. П. Федоненко^{*}

*Институт биохимии и физиологии растений и микроорганизмов, ФИЦ Саратовский научный центр РАН, Россия, 410049 Саратов, просп. Энтузиастов, 13

**Институт органической химии им. Н.Д. Зелинского РАН, Россия, 119991 Москва, Ленинский просп., 47

***Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского,

Россия, 410012 Саратов, ул. Астраханская, 83

Поступила в редакцию 09.11.2021 г. После доработки 01.12.2021 г.

Принята к публикации 13.12.2021 г.

Впервые выделены и исследованы О-специфические полисахариды из липополисахаридов типовых штаммов трех видов бактерий: *Azospirillum zeae* N7, *Azospirillum melinis* TMCY 0552 и *Azospirillum palustre* B2. На основании результатов моносахаридного анализа, включающего определение абсолютной конфигурации моносахаридов, одномерной и двумерной спектроскопии ¹H- и ¹³C-ЯМР установлено, что выделенные полисахариды состоят из разветвленных тетрасахаридных повторяющихся звеньев следующей структуры: \rightarrow 3)- α -L-Rhap2OAc-(1 \rightarrow 2)-[β -D-Glcp-(1 \rightarrow 3)]- α -L-Rhap-(1 \rightarrow 3)- α -L-Rh

Ключевые слова: Azospirillum, липополисахарид, О-специфический полисахарид, структура бактериальных полисахаридов, кластер генов О-антигена

DOI: 10.31857/S0132342322030174

ВВЕДЕНИЕ

Грамотрицательные альфа-протеобактерии рода Azospirillum широко распространены в ассоциациях с дикими и культурными злаками в различных климатических зонах [1]. Впервые азоспириллы были описаны в 1925 г., но получили широкую известность только после повторного "открытия" в 1970-х гг. в Бразилии [2], которое стало краеугольным камнем в изучении феномена ассоциативности и дало толчок развитию этой отрасли науки. За 40 лет исследований растительно-микробных ассоциаций с участием азоспирилл представления об их рост-стимулирующем действии эволюционировали от аддитивной гипотезы, заключающейся в способности фиксировать азот и продуцировать фитогормоны, до гипотезы множественных механизмов, включающей также улучшение минерального питания,

снижение биотических и абиотических стрессов, биоконтроль патогенов [1, 3]. На сегодняшний день род *Azospirillum* включает 22 вида [4], большинство из которых ризосферные, однако в последнее время все чаще сообщается о выделении новых видов из нехарактерных для азоспирилл экологических ниш, к примеру, сульфидных и термальных источников, отработанного дорожного покрытия, торфяных болот [5]. Высокий адаптационный потенциал этих бактерий объясняется избыточностью и пластичностью их генома и высокой долей генов, привнесенных путем горизонтального переноса [6].

Как наиболее изученные среди бактерий, стимулирующих рост и развитие растений, азоспириллы входят в состав биоудобрений и широко используются в ряде стран Южной Америки, приводя к значимому увеличению урожайности злаков – на 5–30% в 60–70% случаев полевых экспериментов [3, 7]. Для минимизации нежелательных эффектов при инокуляции азоспириллами необходимо учитывать ряд факторов, в их числе состояние аборигенной микрофлоры, уровень

Сокращения: ЛПБК – липополисахарид-белковый комплекс; ЛПС – липополисахарид; ОПС – О-специфический полисахарид.

[#] Автор для связи: (тел.: +7 (8452) 97-04-44; эл. почта: si elena@ mail.ru).

минерального питания почвы, вариабельность сортов растений и характеристик используемых штаммов-иннокулятов с точки зрения оказываемого на растения рост-стимулирующего эффекта [8]. Расширение фундаментальных знаний о молекулярных механизмах ассоциативного взаимодействия растений и азоспирилл, с учетом штаммовой вариабельности, необходимо для повышения эффективности их использования в сельском хозяйстве.

Известно, что начальные стадии формирования ассоциаций, такие как прикрепление клеток, адсорбция и образование биопленок на поверхности корней, реализуются с участием гликополимеров, формирующих поверхность бактериальных клеток, - капсульных полисахаридов и липополисахаридов (ЛПС) [9]. ЛПС – основной структурный компонент внешней мембраны грамотрицательных бактерий, также он обнаруживается в составе экстраклеточных полимерных субстанций. В среде культивирования азоспирилл ЛПС находится в виде липополисахарид-белкового комплекса (ЛПБК) [9] и может использоваться бактериями в качестве источника углерода в условиях голодания [10]. Показана способность ЛПС азоспирилл к индукции деформации корневых волосков [10]. повышению пероксилазной активности и продукции пероксида водорода, увеличению длины и массы корней у проростков пшеницы [11], а также их положительное влияние на морфогенность каллусов и выход растенийэксплантов [12].

ЛПС – амфифильная макромолекула, состоящая из трех доменов, связанных друг с другом ковалентными связями: гидрофобного липида А и гидрофильного полисахарида, включающего коровый олигосахарид и О-специфический полисахарид (ОПС) (О-антиген). Разнообразие природы моносахаридов, входящих в состав ОПС, в сочетании с различными типами связей между ними, предоставляет практически безграничные возможности структурного многообразия этих биополимеров, обусловливая серологическую вариабельность штаммов одного вида. В последние годы установлено более 20 типов повторяющихся звеньев ОПС для представителей семи видов азоспирилл: A. brasilense, A. lipoferum [13], A. halopraeferens [14], A. dobereinerae [15], A. fermentarium [16], A. formosense [17] и A. rugosum [18]. Большая часть ОПС – разветвленные гетерополисахариды, за исключением A. baldaniorum Sp245 и серологически родственной ему группы штаммов, а также типовых штаммов A. doebereinerae и A. fermentariит. Регулярность строения ОПС ряда штаммов азоспирилл маскируется наличием нескольких типов повторяющихся звеньев, а также нерегулярным метилированием и ацетилированием моносахаридных остатков, что затрудняет применение данных о строении ОПС для построения хемотипических классификационных схем. В большинстве случаев типовые штаммы азоспирилл характеризуются наличием уникального по структре ОПС, за исключением штамма *A. baldaniorum* Sp245(T), для которого показано структурное родство ОПС с рядом штаммов *A. lipoferum* и *A. brasilense* [13], а также штамма *A. rugosum* DSM 19657(T), имеющего в составе ОПС два полисахарида, обнаруженных ранее у *A. brasilense* Jm125A2 [18].

Биосинтез О-антигенов подробно изучен на примере энтеробактерий, у которых гены синтеза нуклеотидных предшественников моносахаридов, гены гликозилтрансфераз и гены трансмембранного переноса и полимеризации О-единиц, ответственные за синтез ОПС, обычно сгруппированы вместе в кластер, расположенный на хромосоме [19]. Сборка и синтез ОПС осуществляется по трем известным путям: Wzx/Wzy-зависимому пути, посредством ABC-транспортера или синтазы [19]. Для азоспирилл до сих пор не сообщалось о структуре кластера генов, ответственного за биосинтез О-антигена.

Цель настоящей работы — получение сведений о строении О-антигенов типовых штаммов ранее не изученных видов *А. zeae* N7(T) [20], *А. melinis* TMCY 0552(T) [21] и *А. palustre* B2(T) [5] и анализ генов, вовлеченных в биосинтез их ОПС.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В результате скрининга серологической специфичности экстрактов ЛПС ранее не изученных видов азоспирилл из Коллекции микробных культур ИБФРМ РАН были отобраны штаммы *A. zeae* N7(T), *A. melinis* TMCY 0552(T) и *A. palustre* B2(T), демонстрировавшие иммунохимический перекрест с антисыворотками к ЛПБК штамма *A. lipoferum* Sp59b. Наличие в составе поверхностных гликополимеров указанных штаммов эпитопов, обусловливающих серологический перекрест со штаммом *A. lipoferum* Sp59b, позволило отнести их к серогруппе III, представители которой характеризуются присутствием фрагмента \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 3 в составе ОПС [13].

Детальный иммунохимический анализ был проведен с использованием препаратов ЛПС, выделенных водно-фенольной экстракцией из сухой биомассы исследуемых бактерий. В тесте двойной радиальной иммунодиффузии было детектировано слияние полос преципитации антител к ЛПБК штамма *A. lipoferum* Sp59b с гомологичными и исследуемыми антигенами (рис. 1*a*) и отсутствие взаимодействия с ЛПС *A. baldaniorum* Sp245 и *A. brasilense* Sp7, *A. brasilense* Jm6B2, *A. brasilense* SR80. В ИФА наблюдались межштаммовые различия в интенсивности взаимодействия антиген—антитело, однако тенденция взаимодействия

(a) 3

Рис. 1. (a) – Результат двойной радиальной иммунодиффузии препаратов липополисахаридов A. palustre B2 (1), A. melinis TMCY 0552 (2), A. zeae N7 (3) и A. lipoferum Sp59b (4) с антителами к липополисахарид-белковому комплексу А. lipoferum Sp59b (5); (б) – результат иммуноферментного анализа препаратов липополисахаридов исследуемых штаммов с антителами к липополисахарид-белковому комплексу A. lipoferum Sp59b.

ЛПС изучаемых штаммов с антителами была сходна гомологичному антигену (рис. 1δ).

Электрофоретический анализ выделенных препаратов ЛПС в SDS-ПААГ с последующим окрашиванием нитратом серебра демонстрировал превалирование ОПС-содержащих фракций, визуализирующихся в верхней части трека, а также наличие в нижней части трека высокоподвижных фракций, содержащих кор и липид А (рис. 2). В отличие от ЛПС гамма-протеобактерии Pseudomonas putida TSh-18, представлявшего собой смесь молекул в широком диапазоне молекулярной массы, отличающихся на одно повторяющееся звено, у ЛПС азоспирилл наблюдалось преобладание фракций ЛПС в диапазоне молекулярных масс 20-25 кДа. Высокомолекулярная природа ЛПС исследуемых штаммов свидетельствует о доминировании S-форм молекул, следовательно, идентичные или сходные антигенные детерминанты, обусловливающие перекрест со штаммом Sp59b, могут быть локализованы в составе их ОПС.

Выполнен анализ состава и физико-химических свойств ЛПС и структуры ОПС исследуемых штаммов для выявления химической природы серологического перекреста. Анализ состава жирных кислот ЛПС методом ГЖХ после получения соответствующих метиловых эфиров выявил преобладание во всех препаратах 3-гидрокситетрадекановой и 3-гидроксигексадекановой кислот, суммарное содержание которых превышало 70% от суммы всех идентифицированных производных, а также присутствие гексадекановой, гексадеценовой и октадеценовой кислот. Учитывая

консервативность строения липида А в пределах бактериального рода, профиль жирных кислот исследуемых штаммов согласовывался с данны-

Рис. 2. Электрофореграмма препаратов липополисахаридов в 13.5%-ном ПААГ в присутствии додецилсульфата натрия: A. palustre B2 (1), A. zeae N7 (2), A. melinis TMCY 0552 (3), P. putida TSh-18 (4).

304

IIITOMA		Показатели	динамического рас	сеяния света	
ШТамм	<i>I</i> , kcps	<i>d</i> _m , нм	ζ-потенциал, мВ	$N_{ m oth}, \%$	$C_{ m oth},\%$
A. zeae N7(T)	644 ± 4	27.5 ± 0.9	-9.02 ± 0.24	100.0 ± 17.9	100.0 ± 8.7
A. palustre B2(T)	951 ± 7	41.0 ± 2.6	-5.50 ± 0.10	10.6 ± 3.4	37.1 ± 6.7

Таблица 1. Данные динамического рассеяния света для водных растворов липополисахаридов *A. palustre* B2 и *A. zeae* N7

ми, полученными ранее для ЛПС представителей других видов азоспирилл [15–18].

В силу амфифильной природы в водных растворах препараты ЛПС могут формировать надмолекулярные комплексы (мицеллы). Основная движущая сила самоагрегации ЛПС – гидрофобное взаимодействие между ацильными цепями липила А. Размер минелл опрелеляется строением липида А и ОПС и соотношением этих компонентов в препарате ЛПС [22], таким образом, при схожести строения отдельных структурных компонентов ЛПС могут существенно отличаться по функциональной активности, т.к. различным образом агрегируют в водных растворах. Измерение методом динамического рассеяния света размера и ζ-потенциала мицелл (табл. 1), образованных из молекул ЛПС A. zeae N7(T) и A. palustre B2(T), выявило, что оба препарата в концентрации 2 мг/мл при температуре 37°С в водной среде образовывали отрицательно заряженные мицеллы размером 27.5 и 41.0 нм соответственно. Интенсивность рассеяния света (І) раствора ЛПС А. ра*lustre* была в 1.5 раза выше таковой для ЛПС *A. zeae*. Поскольку электрофоретический анализ не выявил значительных отличий в степени полимеризации ОПС исследуемых штаммов, наблюдаемые отличия в размере мицелл их ЛПС могут быть обусловлены микрогетерогенностью строения липида А (соотношением форм с различной степенью ацилирования). Определение относительной численной концентрации ($N_{\text{отн}}$) и относительной массово-объемной концентрации (Сотн) по формулам, описанным нами ранее [23], показало, что в исследованных условиях количество мицелл, образованных ЛПС A. palustre B2(T), и количество ЛПС, участвующего в мицеллообразовании, существенно ниже, чем ЛПС А. zeae N7(T).

ОПС исследуемых штаммов были получены мягким кислотным гидролизом ЛПС с последующей гель-фильтрацией. Анализ моносахаридного состава методом ГЖХ ацетатов полиолов, полученных после полного кислотного гидролиза всех препаратов ОПС, позволил идентифицировать в их составе наличие Rha и Glc в соотношении $\sim 3:1$ (отклик детектора). В результате анализа ГЖХ ацетилированных (*S*)-2-октилгликозидов была установлена D-конфигурация Glc и L-конфигурация остатков Rha.

Структура ОПС изучаемых штаммов была установлена с применением 1D и 2D ¹H- и ¹³С-ЯМР-спектроскопии. Спектры ¹H- и ¹³С-ЯМР ОПС исследуемых штаммов были практически идентичны (рис. 3), что свидетельствовало о структурном сходстве О-антигенов.

¹Н-ЯМР-спектр содержал пять сигналов в слабопольной области при δ 4.63–5.24, сигналы метильных групп рамнозы при δ 1.26–1.32, сигнал О-ацетильной группы при δ 2.21 и сигналы протонов моносахаридных циклов при δ 3.31–4.39. ¹³С-ЯМР-спектр содержал сигналы четырех аномеров при δ 99.8–105.3, сигналы метильных групп рамнозы при δ 17.8–18.0, сигнал О-ацетильной группы при δ 22.2 (СН₃), δ 175.5 (СО), сигнал СН₂ОН-группы при δ 62.2 и сигналы углерода моносахаридных циклов при δ 70.3–81.3. Отсутствие в спектре сигналов углерода моносахаридных циклов в области δ 83–88 свидетельствовало о пиранозной форме моносахаридных остатков [24].

Сигналы ¹Н- и ¹³С-ЯМР-спектров были отнесены с применением 2D-спектров ЯМР (гомоядерные эксперименты ¹H, ¹H COSY, TOCSY, ROESY и гетероядерные эксперименты ¹H, ¹³C HSQC и HMBC). Химические сдвиги сигналов моносахаридных остатков приведены в табл. 2. На основании внутризвеньевых корреляций Н, Н и Н, С и констант спин-спинового взаимодействия ³*J*_{H,H} были идентифицированы спин-спиновые системы четырех моносахаридов: А, В и С, имеющих *манно*-конфигурацию, и **D**, имеющего глюко-конфигурацию. Спектр TOCSY продемонстрировал наличие Н1/Н2 и Н2/Н3 – Н-6 кросспиков для остатков A-C и H1/H2 – H-6 кросспики для остатка **D**. Сигналы внутри каждой спин-спиновой системы были отнесены с помощью спектров COSY.

Альфа-конфигурация остатков **А**–**С** и бетаконфигурация остатка **D** были установлены на основании характеристических химических сдвигов сигналов С-5 при сравнении с литературными данными [24, 25].

Позиции замещения моносахаридов были установлены на основании сдвига в слабое поле сигналов C2 и C3 остатка A, C-3 остатков B и C

Рис. 3. ¹Н-ЯМР-спектры О-специфических полисахаридов *A. palustre* B2 (*a*) и *A. zeae* N7 (*b*).

по сравнению с соответствующими незамещенными моносахаридами [24, 25]. Химические сдвиги C2-C6 остатка D были близки к таковым О-метил-β-Glcp [24] и указывали на то, что остаток **D** занимает терминальное положение в боковой цепи. Последовательность моносахаридов была установлена на основании спектров ROESY, которые демонстрировали межзвеньевые корреляции между аномерными протонами и протонами при трансгликозидных связях: А Н1/В Н3 при δ 5.11/3.74; В Н1/С Н3 при δ 5.03/4.04, С Н1/А Н2 при δ 5.24/4.39, D H1/A H3 при δ 4.63/4.03. В спектрах ¹Н-и ¹³С-НМВС наблюдались соответствующие корреляции между аномерными протонами и атомами углерода при гликозидной связи: А Н1/В С3 при δ 5.11/78.6; В Н1/С С3 при δ 5.03/77.0, **С** H1/**A** C2 при δ 5.24/78.5, **D** H1/**A** C3 при δ 4.63/81.3.

На основании проведенных исследований была идентифицирована структура повторяющегося звена ОПС исследуемых микроорганизмов: три остатка рамнозы в основной цепи и остаток глюкозы в боковой цепи (рис. 4). На основании интегральной интенсивности сигналов аномерного протона остатка C с ацетильной и без ацетильной групп ($\delta_{\rm H}$ 5.13 м.д. [26]) степень ацетилирования остатка C составила ~75%. Данная структура повторяющихся звеньев ОПС распространена среди азоспирилл серогруппы III, для которых продемонстрирована различная степень ацетилирования остатка Rha [13]. Наблюдаемое сходство строения О-антигенов различных видов бактерий может служить косвенным подтверждением ши-

Моносахаридный остаток	H1	H2	H3	H4	H5	H6 (6a; 6b)
	C1	C2	C3	C4	C5	C6
$\rightarrow 2,3$)- α -L-Rhap-(1 \rightarrow A	5.11	4.39	4.03	3.64	3.88	1.32
	102.2	78.5	81.3	72.4	70.3	18.0
\rightarrow 3)- α -L-Rhap-(1 \rightarrow B	5.03	4.08	3.74	3.55	3.72	1.28
	103.3	71.1	78.6	72.7	70.7	17.9
\rightarrow 3)- α -L-Rhap2OAc-(1 \rightarrow C	5.24	5.30	4.04	3.61	3.81	1.26
	99.8	73.0	77.0	73.1	70.6	17.8
β -D-Glcp-(1 \rightarrow D	4.63	3.35	3.48	3.31	3.42	3.61; 3.90
	105.3	74.9	76.9	71.0	77.1	62.2

Таблица 2. Данные ²Н- и ¹³С-ЯМР-спектров О-специфического полисахарида *А. zeae* N7(T) (химические сдвиги, м.д.)

БИООРГАНИЧЕСКАЯ ХИМИЯ том 48 № 3 2022

Рис. 4. Структура повторяющегося звена О-специфических полисахаридов типовых штаммов *A. zeae* N7, *A. melinis* TMCY 0552 и *A. palustre* B2.

роко распространенного горизонтального переноса генов.

Для установления родства генов, вовлеченных в биосинтез О-антигенов исследуемых штаммов, нами был проведен поиск генов биосинтеза L-Rha, доступных в базе данных NCBI последовательностей полных геномов азоспирилл. В результате были выявлены участки геномов, условно обозначенные нами как генные кластеры или локусы, содержащие гены биосинтеза нуклеотидактивированных предшественников L-Rha, гликозилтрансферазы и гены АВС-транспортера, вовлеченные в процессинг О-антигена. Плазмидная локализация генов биосинтеза О-антигенов азоспирилл может свидетельствовать об их появлении в геноме в результате процесса горизонтального переноса, а также об их вовлечении в этот процесс, т.е. о переносе генов между штаммами внутри одного вида, разных видов, родов, семейств. Анализ ближайших гомологов белков биосинтеза О-антигенов продемонстрировал их присутствие в бактериях семейств Rhodospirillaceae, Rhodobacteraceae и Phyllobacteriaceae α-протеобактерий, а также порядка Nitrospirales (табл. 3). Следует отметить, что все эти бактерии – представители либо почвенной микрофлоры, либо морских экосистем.

Соответствующие локусы штаммов A. oryzae КАСС 14407, A. lipoferum Sp59b и A. palustre B2, для двух из которых установлена идентичность повторяющихся звеньев гликанов поверхности (структура ОПС A. oryzae к настоящему моменту еще не установлена), демонстрировали значительное сходство организации между собой и существенно отличались от кластера штамма A. brasilense Sp7 (рис. 5). В пределах обнаруженных локусов штаммов A. oryzae КАСС 14407, A. lipoferum Sp59b и A. palustre B2 анализируемые гены располагались последовательно на антисмысловой цепи ДНК. У штамма A. brasilense Sp7 гены биосинтеза L-Rha и процессинга ОПС (wzm и wzt) были существенно удалены друг от друга, между ними

располагались гены нескольких предположительных гликозилтрансфераз и открытые рамки считывания с неустановленными функциями, при этом *wzm* и гены двух гликозилтрансфераз имели обратное направление считывания.

Сравнительный анализ выявил высокую степень гомологии генов биосинтеза L-Rha *rfbA*– *rfbD* и процессинга *wzm* и *wzt* (93.5–96.6%) у штаммов A. oryzae KACC 14407, A. lipoferum Sp59b и A. palustre B2. По сравнению с ними, для типового штамма A. brasilense Sp7 степень гомологии функционально родственных генов биосинтеза L-Rha *rmbA*–*rmbD* и генов процессинга *wzm* и *wzt* составляла 69.7–77.8%.

Попарное выравнивание нуклеотидных последовательностей гликозилтрансфераз, входящих в генный кластер синтеза L-Rha, A. oryzae КАСС 14407, A. lipoferum Sp59b и A. palustre B2, не показало значимого подобия с соответствующими генами A. brasilense Sp7, что связано с различным строением ОПС этих штаммов и, соответственно, различной специфичностью ферментов, участвующих в сборке О-звена. Поиск генов с максимальной степенью подобия для данных гликозилтрансфераз алгоритмом megaBLAST показал, что для А. oryzae КАСС 14407 наибольшую степень гомологии имеет аналогично аннотированная последовательность A. thiophilum BV-S (СР012407.1) (идентичность 95.3%), в то время как для A. lipoferum Sp59b и A. palustre B2 наиболее близка по последовательности нуклеотидов гликозилтрансфераза Azospirillum sp. TSH100 (СР039640.1) (идентичность 96.3 и 96.2% соответственно).

Таким образом, на основании анализа структуры генных кластеров синтеза L-Rha у четырех штаммов азоспирилл можно сделать вывод об ортологичности соответствующих генов, причем штаммы A. oryzae KACC 14407, A. lipoferum Sp59b и A. palustre B2 обнаруживают незначительную вариабельность, в отличие от несколько более эволюционно отдаленного штамма A. brasilense Sp7, что может свидетельствовать о приобретении этих генов в процессе горизонтального переноса. Структура локуса А. oryzae КАСС 14407 и его сходство с таковыми штаммов A. lipoferum Sp59b и A. palustre B2 позволяет предположить присутствие в составе ОПС А. oryzae идентичного полисахарида с тетрасахаридными звеньями, установленными в настоящей работе, однако для подтверждения данного предположения требуется проведение соответствующих иммунохимических тестов или анализа структуры ОПС химическими и физико-химическими методами.

					и (код доступа)		
		A. oryzae KAC	CC 14407 (CP054615.1)	A. lipoferum Sp5	9b (VTTN01000010.1)	A. palustre B2 (C	3CF_002573965.1)
	Кодируемый белок	CDS (ID белка)	ближайший гомолог* покрытие/ идентичность, % (длина совпадающего фрагмента, п.н.)	CDS (ID белка)	ближайший гомолог* покрытие/ идентичность, % (длина совпадающего фрагмента, п.н.)	CDS (ID белка)	ближайший гомолог* покрытие/ идентичность, % (длина совпадающего фрагмента, п.н.)
	АВС-транспортная пермеаза	976610596 (QKS48944.1)	Nitrospira sp. (MCA9458094.1) 97/62 (271)	218879219706 (KAA0593813.1)	Nitrospira sp. (MCA9458094.1) 97/61 (271)	296241297647 (WP_204561567.1)	Nitrospira sp. (MCA9458094.1) 94/62 (271)
	АВС-транспортный АТР-связывающий белок	83499710 (QKS49155.1)	<i>Nitrospira</i> sp. (MCA9497562.1) 97/65 (450)	217471218874 (KAA0593866.1)	<i>Nitrospira</i> sp. (MCA9497562.1) 96/64 (450)	297652298500 (WP_098734702.1)	Oleisolibacter albus (WP_114395858.1) 94/67 (449)
	Гликозилтрансфераза	46478171 (QKS48943.1)	Mesorhizobium sp. LNHC221B00 (ESY81438.1) 93/47 (1121)	213844217302 (KAA0593812.1)	Mesorhizobium sp. LNHC232B00 94/46 (1121)	292593296072 (WP_092859550.1)	<i>Mesorhizobium</i> sp. (TIR25666.1) 94/46 (1115)
5	dTDP-4-дегидроман- нозо-3,5-эпимераза	40924643 (QKS48942.1)	Methylobacterium sp. B34 (WP_042673940.1) 100/94 (183)	213289213840 (KAA0593811.1)	Methylobacterium sp. B34 (WP_042673940.1) 100/91 (183)	292038292589 (WP_098734700.1)	Albimonas pacifica (WP_092859550.1) 100/73 (183)
~	dTDP-глюкозо-4,6- дегидратаза	29514018 (QKS48941.1)	Pararhodospirillum photometricum (WP_051013520.1) 98/80 (353)	212136213203 (KAA0593810.1)	P. photometricum DSM 122 (CCG06590.1) 98/80 (358)	289986290876 (WP_098734699.1)	P. photometricum DSM 122 (CCG06590.1) 98/80 (358)
•	dTDP-4-дегидроман- нозоредуктаза	20522942 (QKS49154.1)	P. photometricum DSM 122 (CCG06589.1) 97/63 (300)	211237212127 (KAA0593809.1)	P. photometricum DSM 122 (CCG06589.1) 97/63 (300)	290873291940 (WP_098734698.1)	P. photometricum DSM 122 (CCG06589.1) 97/62 (300)
	Глюкозо-1-фосфат- тимидилтрансфераза	11772040 (QKS48940.1)	<i>P. photometricum</i> (WP_041795448.1) 100/79 (288)	210362211225 (KAA0593808.1)	P. photometricum (WP_041795448.1) 100/79 (288)	289108289971 (WP_098734697.1)	P. photometricum (WP_041795448.1) 98/81 (288)
e l	ание: CDS – кодирующа:	я последовательн	HOCTB (CoDing Sequence). *	Бактериальный так	сон (код GenBank ближайı	пего гомолога).	

Таблица 3. Белки биосинтеза О-антигенов А. oryzae KACC 14407, А. lipoferum Sp59b и А. palustre B2 и их ближайшие гомологи

БИООРГАНИЧЕСКАЯ ХИМИЯ том 48

2022

Nº 3

308

СИГИДА и др.

Рис. 5. Схематичное расположение кластеров генов биосинтеза L-Rha. Заштрихованными стрелками обозначены гены синтеза L-Rha, серыми – аннотированные гликозилтрансферазы, темно-серыми – гены процессинга *wzt* и *wzm*, белыми – гены с неизвестными функциями.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Культивирование бактерий. Штаммы A. melinis TMCY 0552 (IBPPM 547), A. zeae N7 (IBPPM 550) и A. palustre B2(T) (IBPPM 633) предоставлены Коллекцией ризосферных микроорганизмов Института биохимии и физиологии растений и микроорганизмов РАН (г. Саратов, Россия). Культивирование бактерий проводили в жидкой малатно-солевой среде с витаминами [27] ло окончания экспоненциальной фазы роста при температуре 30°С и перемешивании на вибростенде. Клетки осаждали центрифугированием, ресуспендировали в 0.15 М растворе NaCl и смывали с поверхности капсульный материал механическим перемешиванием в течение 5 сут с ежедневной сменой отмывающего раствора.

Выделение ЛПС и ОПС. ЛПС выделяли из высушенных ацетоном бескапсульных клеток горячим 45%-ным водным раствором фенола без разделения слоев [28]. Примеси белков осаждали из раствора ЛПС добавлением 40%-ной CCl₃COOH до конечного значения pH 2.7. Растворы диализовали против дистиллированной воды, концентрировали на роторном испарителе Laborota 4000 (Heidolph, Германия) и лиофилизовали на лиофильной сушке Bench Top VirTis (США). Деградацию ЛПС проводили 2%-ной CH₃COOH при 100°С в течение 4 ч. Супернатант, содержащий ОПС, разделяли гель-хроматографией на колонке с Sephadex G-50 Fine (GE Healthcare, США) в 0.025 М пиридин-ацетатном буфере, контролируя элюцию с помощью дифференциального проточного рефрактометра (Knauer, Германия). Фракцию высокомолекулярного О-специфического полисахарида концентрировали и лиофилизировали.

Электрофорез препаратов ЛПС выполняли в 13.5%-ном SDS-ПААГ [29]. Визуализацию компонентов осуществляли окрашиванием гелей красителем на основе азотнокислого серебра [30].

Динамическое рассеяние света растворами. приготовленными из лиофилизированных препаратов ЛПС в деионизованной воде (Milli-Q) в концентрации 2.0 мг/мл, измеряли с использованием установки Malvern Nano-ZS (Malvern, Великобритания) в пластиковых 4-сторонних кюветах (10 мм) (Sarstedt, Германия). Измерения проводили при 37°С и фиксированной фокусировке гелий-неонового лазера ($\lambda = 633$ нм в вакууме) в центре кюветы (4.65 мм) и постоянном диаметре диафрагмы (установленный аттенюатор: 7). Определяли интенсивность рассеяния света под углом 173° (выраженную в единицах скорости счета числа фотонов - kcps) и поправочную функцию флуктуаций интенсивности рассеяния во времени. По этим данным производили оценку наиболее вероятного модального гидродинамического диаметра (d_m) мицелл. Относительные значения числовой концентрации (N_{отн}) и массово-объемной концентрации диспергированных биополимерных веществ (Сотн) определяли по

циал мицелл ЛПС (2.0 мг/мл) измеряли при 37°С с помощью системы Malvern Nano-ZS (Malvern, Великобритания). Измерения проводили с настройками по умолчанию, рекомендованными производителем.

Иммунохимические исследования ЛПС проводили с использованием поликлональных антител кролика к ЛПБК А. lipoferum Sp59b методами двойной радиальной иммунодиффузии [31] и иммуноферментного твердофазного анализа (ИФА). Преципитат в иммунодиффузии окрашивали кумасси голубым R-250. Взаимодействие антигенов и антител в ИФА детектировали в полистироловых 96-луночных планшетах, используя козьи антикроличьи антитела, конъюгированные с пероксидазой хрена, при добавлении перекиси водорода и о-фенилендиамина. Измерения оптической плотности исследуемых проб проводили при длине волны 490 нм на иммуноферментном анализаторе Tescan (Thermo Fisher Scientific, США).

Анализ моносахаридого состава и абсолютных конфигураций сахаров после гидролиза ОПС 2 М CF₃COOH (120°C, 2 ч) осуществляли методом ГЖХ ацетатов полиолов [32] и ацетилированных 2-(S)-октилгликозидов [33] на хроматографе Hewlett-Packard 7820A с капиллярной колонкой HP-5 (Hewlett-Packard, США). Градиент температуры от 160°C (1 мин) до 290°C, скорость нагрева 7°C/мин.

Состав жирных кислот. Состав жирных кислот ЛПС в виде метиловых эфиров жирных кислот определяли с помощью ГЖХ на хроматографе GC-2010 (Shimadzu, Япония), снабженном колонкой DB-5 (Agilent, США). Метилирование выполняли методом, описанным в работе Mayer et al. [34].

ЯМР-спектроскопия. Спектры ЯМР записывали на спектрометре DRX-600 (Вгикег, Германия) в растворе 99.96%-ной D₂O при 30°С (внутренний стандарт – триметилсилилпропаноат- d_4 , δ_C – 1.6 и δ_H 0.0). Образцы предварительно лиофилизовали дважды из 99.9%-ной D₂O. Двумерные спектры записывали с использованием стандартного математического обеспечения компании Bruker (Германия); для сбора и обработки данных использовали программу TOPSPIN 2.1. В экспериментах TOCSY и NOESY время смешивания составляло 150 и 200 мс соответственно.

Анализ генов биосинтеза О-антигенов. Гены биосинтеза L-Rha были извлечены из полногеномных сиквенсов *A. brasilense* Sp7 (GenBank: AH013753.2), *A. oryzae* KACC 14407 (CP054615.1) и *A. lipoferum* Sp59b (VTTN01000010.1) и из доступных предварительных данных полногеномного сиквенса *A. palustre* B2 (GCF_002573965.1, сборка ASM257396v1). Предсказание функций идентифицированных последовательностей генов про-

водили путем выравнивания соответствующих и известных белковых последовательностей (полученных из GenBank), участвующих в биосинтезе О-антигенов других бактерий, с помощью инструмента BLASTn [35]. Трех- и четырехбуквенные обозначения генов A. brasilense Sp7 приведены в соответствии с аннотацией GenBank. Трехбуквенные (*wzm* и *wzt*) и четырехбуквенные обозначения (rfbA-rfbD) присвоены генам A. oryzae KACC 14407, A. lipoferum Sp59b и A. palustre B2 в соответствии с их аннотациями, а также результатами попарных выравниваний их нуклеотидных последовательностей. Изображение генных кластеров изучаемых штаммов азоспирилл было получено с помощью визуализатора Easyfig версии 2.2.5 [36]. Гомологию нуклеотидных последовательностей генов оценивали с помощью попарных выравниваний соответствующих последовательностей, выполненных с помощью программы BLASTn.

ЗАКЛЮЧЕНИЕ

Гликанам клеточной поверхности ризобактерий отводится важная роль на всех этапах существования популяции клеток, как при жизни в почве и ризосфере, так и при формировании симбиотических отношений с растениями. Липополисахариды — конструктивные компоненты клеточной стенки бактерий, которые могут экспортироваться в окружающую среду. Полисахариды, формируя внешний слой клеточной поверхности грамотрицательных бактерий, составляют основу для защиты клетки от неблагоприятного воздействия экстраклеточного окружения, а в случае симбиотических микроорганизмов они играют важную роль во взаимодействии с эукариотическими клетками организма-хозяина.

Прогресс в изучении структурных особенностей строения ЛПС (в том числе их ОПС) грамотрицательных бактерий во многом обусловлен их ролью в развитии патофизиологических процессов, сопровождающих бактериальные инфекции человека и животных. Эти молекулы вызывают иммунный ответ организма животных и человека и распознаются их антителами, что успешно применяется в клинике для идентификации и классификации патогенных бактерий. Коллекции О-антиген-специфичных антисывороток ИСпользуются для классификации грамотрицательных организмов в серологическом тестировании, что эффективно и для непатогенных микроорганизмов, к которым относятся и почвенные диазотрофы рода Azospirillum.

У *Е. coli* нуклеотидные последовательности генных кластеров биосинтеза О-антигенов могут использоваться в качестве генетических маркеров для штаммовой идентификации этих бактерий [37]. Бактерии рода *Azopirillum* в этом отношении исследованы явно недостаточно. В настоящей ра-

боте представлены результаты анализа структур ОПС представителей трех ранее не изученных в этом отношении вилов азоспирилл, а также выявления в их геномах генных кластеров, ответственных за биосинтез О-антигенов, с высоким уровнем идентичности. Использованный подход может быть весьма эффективным для дальнейшей молекулярной серодиагностики азоспирилл по генным кластерам их О-антигенов, учитывая тот факт. что для представителей этого рода весьма характерно явление молекулярной мимикрии [13]. При этом следует отметить, что идентичность структур О-антигенов не приводит к унификации свойств поверхности этих микроорганизмов, возможно, в силу многообразия экспонированных биомакромолекул либо в силу выявленных в ходе представленных исследований различий в мицеллообразовании амфифильных молекул ЛПС в водном растворе.

БЛАГОДАРНОСТИ

Авторы выражают благодарность д.х.н., проф. А.С. Шашкову за регистрацию ЯМР-спектров *A. zeae* и *A. melinis.*

В работе использованы ресурсы Центра коллективного пользования "Симбиоз" при Институте биохимии и физиологии растений и микроорганизмов РАН.

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Настоящая статья не содержит описания исследований, выполненных кем-либо из авторов данной работы, с участием людей или использованием животных в качестве объектов.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Cassán F., Coniglio A., López G., Molina R., Nievas S., Le Noir de Carlan C., Donadio F., Torres D., Rosas S., Olivera P.F., de Souza E., Díaz Zorita M., de-Bashan L., Mora V. // Biol. Fertil. Soils. 2020. V. 56. P. 461–479. https://doi.org/10.1007/s00374-020-01463-y
- Döbereiner J., Marriel I.E., Nery M. // Can. J. Microbiol. 1976. V. 22. P. 1464–1473. https://doi.org/10.1139/m76-217
- Bashan Y., de-Bashan L.E. // Adv. Agron. 2010. V. 108. P. 77–136. https://doi.org/10.1016/S0065-2113(10)08002-8
- 4. Genus *Azospirillum* // In: List of Prokaryotic Names
- with Standing in Nomenclature (LPSN). https://bacterio.net/genus/azospirillum
- Tikhonova E.N., Grouzdev D.S., Kravchenko I.K. // Int. J. Syst. Evol. Microbiol. 2019. V. 69. P. 2787–2793. https://doi.org/10.1099/ijsem.0.003560

БИООРГАНИЧЕСКАЯ ХИМИЯ том 48 № 3 2022

- Wisniewski-Dyé F., Borziak K., Khalsa-Moyers G., Alexandre G., Sukharnikov L.O., Wuichet K., Hurst G.B., McDonald W.H., Robertson J.S., Barbe V., Calteau A., Rouy Z., Mangenot S., Prigent-Combaret C., Normand P., Boyer M., Siguier P., Dessaux Y., Elmerich C., Condemine G., Krishnen G., Kennedy I., Paterson A.H., González V., Mavingui P., Zhulin I.B. // PLoS Genet. 2011. V. 7. P. e1002430. https://doi.org/10.1371/journal.pgen.1002430
- Bomfim C.A., Coelho L.G.F., do Vale H.M.M., de Carvalho Mendes I., Megias M., Ollero F.J., Dos Reis Junior F.B. // Braz. J. Microbiol. 2021. V. 52. P. 2215– 2232. https://doi.org/10.1007/s42770-021-00618-9
- Cassán F., Diaz-Zorita M. // Soil Biol. Biochem. 2016. V. 103. P. 117–130. https://doi.org/10.1111/j.1574-6968.1998.tb13150.x
- Skvortsov I.M., Ignatov V.V. // FEMS Microbiol Lett. 1998. V. 165. P. 223–229. https://doi.org/10.1111/j.1574-6968.1998.tb13150.x
- Sigida E.N., Fedonenko Y.P., Shashkov A.S., Toukach P.V., Shelud'ko A.V., Zdorovenko E.L., Knirel Y.A., Konnova S.A. // Int. J. Biol. Macromol. 2019. V. 126. P. 246– 253. https://doi.org/10.1016/j.ijbiomac.2018.12.229
- Hernández-Esquivel A.A., Castro-Mercado E., García-Pineda E. // J. Plant Growth Regul. 2021. V. 40. P. 1903–1911. https://doi.org/10.1007/s00344-020-10241-x
- Tkachenko O.V., Burygin G.L., Evseeva N.V., Fedonenko Y.P., Matora L.Y., Lobachev Y.V., Shchyogolev S.Y. // Plant Cell Tiss. Organ Cult. 2021. V. 147. P. 147–155.
- Fedonenko Y.P., Sigida E.N., Konnova S.A., Ignatov V.V. // Russ. Chem. Bull. 2015. V. 64. P. 1024–1031. https://doi.org/10.1007/s11172-015-0971-x
- Sigida E.N., Fedonenko Y.P., Shashkov A.S., Arbatsky N.P., Zdorovenko E.L., Konnova S.A., Ignatov V.V., Knirel Y.A. // Beilstein J. Org. Chem. 2016. V. 12. P. 636–642. https://doi.org/10.3762/bjoc.12.62
- Sigida E.N., Fedonenko Y.P., Shashkov A.S., Zdorovenko E.L., Konnova S.A., Knirel Y.A. // Carbohydr. Res. 2019. V. 478. P. 54–57. https://doi.org/10.1016/j.carres.2019.04.009
- Sigida E.N., Fedonenko Y.P., Shashkov A.S., Konnova S.A., Ignatov V.V. // Carbohydr. Res. 2018. V. 465. P. 40–43. https://doi.org/10.1016/j.carres.2018.06.003
- Sigida E.N., Shashkov A.S., Zdorovenko E.L., Konnova S.A., Fedonenko Y.P. // Carbohydr. Res. 2020 V. 494. P. 108060. https://doi.org/10.1016/j.carres.2020.108060
- Сигида Е.Н., Кокоулин М.С., Дмитренок П.С., Гринёв В.С., Федоненко Ю.П., Коннова С.А. // Биоорг. химия. 2020. Т. 46. С. 65–76. [Sigida E.N., Kokoulin M.S., Dmitrenok P.S., Grinev V.S., Fedonenko Y.P., Konnova S.A. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 60–70.] https://doi.org/10.1134/S1068162020010112
- Samuel G., Reeves P. // Carbohydr. Res. 2003. V. 338. P. 2503–2519. https://doi.org/10.1016/j.carres.2003.07.009

- Mehnaz S., Weselowski B., Lazarovits G. // Int. J. Syst. Evol. Microbiol. 2007. V. 57. P. 2805–2809. https://doi.org/10.1099/ijs.0.65128-0
- Peng G., Wang H., Zhang G., Hou W., Liu Y., Wang E. T., Tan Z. // Int. J. Syst. Evol. Microbiol. 2006. V. 56. P. 1263–1271. https://doi.org/10.1099/ijs.0.64025-0
- D'Errico G., Silipo A., Mangiapia G., Vitiello G., Radulescu A., Molinaro A., Lanzetta R., Paduano L. // Phys. Chem. Chem. Phys. 2010. V. 12. P. 13574–13585. https://doi.org/10.1039/c0cp00066c
- Burygin G.L., Sigida E.N., Fedonenko Y.P., Khlebtsov B.N., Shchyogolev S.Y. // Biophysics. 2016. V. 61. 547–557. https://doi.org/10.1134/S0006350916040059
- 24. Bock K., Pedersen C. // Adv. Carbohydr. Chem. Biochem. 1983. V. 41. P. 27–66.
- Lipkind G.M., Shashkov A.S., Knirel Y.A., Vinogradov E.V., Kochetkov N.K. // Carbohydr. Res. 1988. V. 175. P. 59–75. https://doi.org/10.1016/0008-6215(88)80156-3
- Choma A., Komaniecka I., Sowinski P. // Carbohydr. Res. 2009. V. 344. P. 936–939. https://doi.org/10.1016/i.carres.2009.02.021
- Konnova S.A., Makarov O.E., Skvortsov I.M., Ignatov V.V. // FEMS Microbiol. Lett. 1994. V. 118. P. 93–99.
- Westphal O., Jann K. // Methods Carbohydr. Chem. 1965. V. 5. P. 83–91.

- 29. *Hitchcock P.J., Brown T.M.* // J. Bacteriol. 1983. V. 154. P. 269–277.
- Tsai C.M., Frasch C.E. // Anal. Biochem. 1982. V. 119. P. 115–119.
- Ouchterlony O., Nilsson L.-A. // In: Handbook of Experimental Immunology / Ed. Weir D.M. Oxford: Blackwell Scientific Publication, 1978. P. 19.16–19.23.
- 32. Sawardeker J.S., Sloneker J.H., Jeanes A. // Anal. Chem. 1965. V. 37. P. 1602–1603.
- Leontein K., Lindberg B., Lönngren J. // Carbohydr. Res. 1978. V. 62. P. 359–362.
- Mayer H., Merkofer T., Warth C., Weckesser J. // J. Endotox. Res. 1996. V. 3. P. 345–352. https://doi.org/10.1177/096805199600300409
- Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. // Nucleic Acids Res. 1997. V. 25. P. 3398–3402.
- Sullivan M.J., Petty N.K., Beatson S.A. // Bioinformatics. 2011. V. 27. P. 1009–1010.
- Liu B., Furevi A., Perepelov A.V., Guo X., Cao H., Wang Q., Reeves P.R., Knirel Y.A., Wang L., Widmalm G. // FEMS Microbiol. Rev. 2020. V. 44. P. 655– 683. https://doi.org/10.1093/femsre/fuz028

O-Antigens of Azospirillum zeae N7(T), Azospirillum melinis TMCY 0552(T) and Azospirillum palustre B2(T): Structure Elucidation and Analysis of Biosynthesis Genes

E. N. Sigida^{*, **, #}, V. S. Grinev^{*}, E. L. Zdorovenko^{**}, A. S. Dmitrenok^{**}, G. L. Burygin^{*}, N. K. Kondurina^{***}, S. A. Konnova^{*, ***}, and Y. P. Fedonenko^{*}

[#]Phone: +7 (8452) 97-04-44; e-mail: si_elena@mail.ru

*Institute of Biochemistry and Physiology of Plants and Microorganisms, FRC Saratov Scientific Centre of RAS, prosp. Entuziastov 13, Saratov, 410049 Russia

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991 Russia *Chernyshevsky Saratov State University, ul. Astrakhanskaya 83, Saratov, 410012 Russia

O-specific polysaccharides were isolated from lipopolysaccharides of type bacterial strains *Azospirillum zeae* N7, *Azospirillum melinis* TMCY 0552 and *Azospirillum palustre* B2. Based on the results of sugar analysis, including the determination of the absolute configurations of monosaccharides, one- and two-dimensional ¹H and ¹³C NMR spectroscopy, it was found that the isolated polysaccharides built up of branched tetrasaccharide repeating units with the following structure: \rightarrow 3)- α -L-Rhap2OAc-(1 \rightarrow 2)-[β -D-Glcp-(1 \rightarrow 3)]- α -L-Rhap-(1 \rightarrow 3)- α -Rh

Keywords: Azospirillum, lipopolysaccharide, O-specific polysaccharide, structure of bacterial polysaccharides, O-antigen gene cluster