УДК 577.355.3

ОКИСЛЕНИЕ ПЛАСТОХИНОЛА – ЛИМИТИРУЮЩАЯ СТАДИЯ В ЦЕПИ ПЕРЕНОСА ЭЛЕКТРОНОВ В ХЛОРОПЛАСТАХ

© 2022 Л.Ю. Устынюк¹, А.Н. Тихонов^{2*}

¹ Московский государственный университет имени М.В. Ломоносова, химический факультет, 119991 Москва, Россия

² Московский государственный университет имени М.В. Ломоносова, физический факультет, 119991 Москва, Россия; электронная почта: an_tikhonov@mail.ru

> Поступила в редакцию 22.06.2022 После доработки 04.08.2022 Принята к публикации 25.08.2022

Работа посвящена анализу функционирования цитохромного *b*₆*f*-комплекса (пластохинол:пластоцианин оксидоредуктаза), входящего в цепь переноса электронов фотосинтезирующих систем оксигенного типа. Кратко рассмотрены строение цепи электронного транспорта (ЦЭТ) хлоропластов и механизмы функционирования цитохромного комплекса b₆f, расположенного в ЦЭТ между фотосистемами 2 и 1 (Φ C2 и Φ C1). Цитохромный $b_6 f$ -комплекс окисляет молекулы пластохинола (PQH₂), образующиеся в Φ C2, и восстанавливает пластоцианин – донор электрона для Φ C1. Окисление PQH_2 – стадия, лимитирующая перенос электронов между $\Phi C2$ и $\Phi C1$. Проанализированы процессы двухэлектронного (бифуркационного) окисления PQH₂ в каталитическом центре Q_0 комплекса $b_6 f$. Методом функционала плотности исследованы две стадии окисления PQH₂ в системе, моделирующей центр Q₀. Результаты квантово-химических расчётов согласуются с тем, что первая стадия окисления PQH₂ – перенос электрона к Fe₂S₂-кластеру белка Риске – это эндергонический (энерго-акцепторный) процесс ($\Delta E \sim 15 \text{ кДж моль}^{-1}$), который может лимитировать скорость функционирования цитохромного комплекса. Вторая стадия окисления хинола – перенос электрона от молекулы семихинона (PQH[•]), образующейся после первой стадии окисления PQH₂, к низкопотенциальному гему b_6^{L} — представляет собой экзоэргический (энерго-донорный) процесс ($\Delta E < 0$). Результаты расчётов показывают, что окисление семихинона стимулируется в результате его смещения в сторону гема b_6^{L} (акцептор электрона) и приближения к карбоксильной группе Glu78, служащей акцептором протона. Полученные данные обсуждаются в рамках модели Q-цикла Митчелла, описывающей окисление пластохинола в цитохромном $b_6 f$ -комплексе.

КЛЮЧЕВЫЕ СЛОВА: фотосинтез, цитохромный комплекс, окисление пластохонола, моделирование.

DOI: 10.31857/S0320972522100049, **EDN:** BBTSHP

введение

В фотосинтетических системах оксигенного типа (хлоропласты высших растений, цианобактерии, водоросли) имеются две фотосистемы, которые за счёт энергии света осуществляют перенос электронов от воды, разлагаемой в фотосистеме 2 (ФС2), к NADP⁺ – физиологическому акцептору электронов фотосистемы 1 (ФС1) [1–5]. Фотосинтетический транспорт электронов сопряжён с образованием трансмембранной разности электрохимических потенциалов ионов водорода, $\Delta \mu_{H^+}$, являющейся источником энергии для ATP-синтазных комплексов, катализирующих образование ATP из ADP и P_i [6–9]. Баланс между ATP и NADPH (ATP/NADPH = 3/2), необходимый для работы цикла Кальвина–Бенсона (ЦКБ), достигается за счёт регуляторных механизмов, таких как активация или ослабление активностей Φ C1 и Φ C2, перераспределение электронных потоков (нециклический и циклический пути переноса), pH-зависимая регуляция электронного транспорта [10–14].

Принятые сокращения: ФС1 и ФС2 – фотосистемы 1 и 2; b_6^L и b_6^H – низко- и высокопотенциальный гемы цитохрома b_6 ; Суt – цитохром; Fd – ферредоксин; FNR – ферредоксин-NADP-редуктаза; ISP – железосерный белок, называемый белком Риске; Pc – пластоцианин; PQ – пластохинон; PQH₂ – пластохинол; Q₀ и Q_i – каталитические центры цитохромного комплекса; TMBQH₂ – 2,3,5-три-метил-бензохинол, аналог пластохинола.

^{*} Адресат для корреспонденции.

Перенос электронов от ФС2 к ФС1 обеспечивается за счёт цитохромного комплекса $b_6 f$ и мобильных переносчиков электрона – пластохинона (PQ) и пластоцианина (Pc) [1–5]. Два электрона, «извлекаемых» из молекулы воды за счёт работы водоокисляющего комплекса Φ C2, переносятся на молекулу PQ, которая протонируется за счёт ионов водорода, поступающих из стромы (PQ + $2e^- + 2H^+_{out} \rightarrow PQH_2$). Молекула пластохинола (РОН₂) окисляется цитохромным комплексом $b_6 f$, от которого электрон переносится к Pc (через гем f) и далее к окисленному реакционному центру $\Phi C1 (P_{700}^+)$. Два электрона от ФС1 последовательно поступают к ферредоксин-NADP-редуктазе (FNR) через ферредоксин (Fd) и восстанавливают NADP⁺ до NADPH. Перенос электронов через b₆f-комплекс сопряжён с транслокацией протонов через тилакоидную мембрану. Ионы водорода, поступающие из стромы к пластохинону, при окислении PQH₂ комплексом $b_6 f$ выделяются в люмен (внутритилакоидное пространство).

Особенностью тилакоидных мембран хлоропластов является их латеральная гетерогенность [15]. Большая часть комплексов ФС2 находится в тесно примыкающих друг к другу тилакоидах гран. ФС1 и АТР-синтазные комплексы локализованы в межгранных тилакоидах и на тех участках мембран (торцы гран и внешние тилакоиды), которые ориентированы в строму. Комплексы $b_6 f$ распределены равномерно вдоль мембран тилакоидов гран и межгранных тилакоидов. Вследствие латеральной подвижности молекул PQH₂ и Pc гранальные комплексы $b_6 f$ могут обеспечивать латеральный транспорт электронов на сравнительно большие расстояния вдоль тилакоидов: Φ C2 \rightarrow PQ \rightarrow *b*₆*f* \rightarrow Pc \rightarrow Φ C1. Диффузия Pc внутри люмена (внутритилакоидное пространство) происходит намного быстрее (≤ 20–200 мкс [1, 16]), чем окисление PQH_2 цитохромным комплексом (≥ 5-20 мс [4, 5]). Цитохромные $b_6 f$ -комплексы, находящиеся в межгранных тилакоидах, могут участвовать в циклическом переносе электронов вокруг ФС1 [17, 18]. Замедление диффузии PQH₂ в тилакоидной мембране, плотно заполненной белками, может тормозить перенос электронов между ФС2 и ФС1 [19]. Однако, как показали опыты с изолированными хлоропластами класса Б, лишёнными ферментов ЦКБ, в широком диапазоне физиологических условий (рН, температура) скорость переноса электронов между ФС2 и ФС1 контролируется главным образом процессами, происходящими уже после связывания PQH₂ с каталитическим центром $b_6 f$ -комплекса [4, 20].

Общая скорость переноса электронов от PQH₂ к $b_6 f$ -комплексу определяется: 1) временем диффузии РОН₂ в мембране, 2) временем проникновения PQH₂ внутрь b₆f-комплекса и его связывания с каталитическим центром цитохромного комплекса Q_0 , 3) скоростью окисления PQH₂ в каталитическом центре Q_o [4, 20]. Лимитирующей стадией переноса электронов между ФС2 и ФС1 является окисление PQH_2 цитохромным b_6f -комплексом. Несмотря на то что Φ C1, Φ C2 и $b_6 f$ -комплексы могут быть расположены в удалённых областях тилакоидной мембраны, значительная часть этих комплексов находится сравнительно близко друг от друга. Локализация *b*₆*f*-комплексов в гранах, обогащённых пигмент-белковыми комплексами ФС2, значительно сокращает путь, который молекулы PQH₂ проходят от ФС2 до ближайших к ним b₆f-комплексов. В этом случае белковые препятствия, ограничивающие диффузии пластохинона в мембране, не являются критическим фактором, лимитирующим скорость окисления PQH₂. В большинстве случаев характерные времена диффузии PQH_2 от $\Phi C2$ к комплексам $b_6 f$ не превышают $\Delta \tau \approx 2-4$ мс [4, 20]. Скорость окисления PQH₂ зависит от внутритилакоидного pH (pH_{in}), поскольку процессы электронного переноса сопряжены с выходом протонов в люмен $(PQH_2 \rightarrow PQ + 2e^- + 2H_{in}^+)$. Вероятность депротонирования РОН₂ уменьшается при понижении pH_{in} вследствие усиления «давления» со стороны протонов люмена [20-22].

СТРУКТУРНАЯ И ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ ЦИТОХРОМНОГО *b*6*f*-комплекса

Пространственное строение $b_6 f$ комплекса. Цитохромный комплекс *b*₆*f* представляет собой димер, состоящий, как и родственный ему комплекс bc_1 , из двух белковых мономеров [5, 23-32]). Каждый мономер содержит восемь полипептидных субъединиц. Четыре крупные субъединицы – это железосерный белок (ISP, называемый белком Риске), включающий в себя Fe_2S_2 -кластер; цитохром (Cyt) b_6 , который содержит низкопотенциальный и высокопотенциальный гемы (b_6^L и b_6^H); Суt f и субъединица IV, с которой связаны два пигмента – хлорофилл (Chl) *а* и β-каротин. Гем *f* выступает в люмен. На периферии каждого мономера находятся четыре малые субъединицы, представляющие собой α-спирали.

Каталитические функции *b*₆*f*-комплекса связаны с редокс-превращениями PQH₂ и PQ в

двух центрах, Q_o и Q_i . Расположение электронных переносчиков, участвующих в реакциях окисления PQH₂ (центр Q_o) и восстановления PQ (центр Q_i), показано на рис. 1, построенном для нативного $b_6 f$ -комплекса шпината по данным криоэлектронной микроскопии (PDB ID: 6RGF [32]). В верхней части этого рисунка показано взаимное расположение кофакторов электронного переноса и двух молекул Chl *a*, находящихся внутри димерного комплекса. Димерная структура $b_6 f$ -комплекса обеспечивает формирование крупной внутрибелковой полости (~30 × 25 × 15 Å) [26]), через которую молекулы PQH₂ и PQ проникают к хинон-связывающим центрам. В нативном b_6f -комплексе шпината были обнаружены три молекулы пластохинона, обозначенные на рис. 1 как PQ1, PQ2 и PQ3. Эти молекулы значительно удалены от каталитических центров Q₀. Бензольное кольцо молекулы PQ1 примыкает к гему и молекуле Chl *a*; PQ2 находится вблизи от гемов $b_6^{\rm H}$ и c_n , молекула PQ3 расположена между гемами $b_6^{\rm H}$ и c_n , связанными с разными мономерами димерного комплекса b_6f .

Рис. 1. Кофакторы электронного переноса (верхняя панель) и их расположение в нативном димерном цитохромном b_6f -комплексе шпината (нижняя панель, по данным PDB ID: 6RQF [32]). Стрелками обозначено положение двух Fe₂S₂-кластеров и гемов цитохрома f, низкопотенциального и высокопотенциального гемов b_6^{L} и b_6^{H} , гемов c_n и молекул хлорофилла a (Chl a). Символами PQ1, PQ2 и PQ3 обозначены три молекулы пластохинона, которые удалены от Fe₂S₂-кластеров. Пунктирные стрелки на верхней панели символизируют, что молекула PQ1 перемещается внутри белкового комплекса, приближаясь к одному из Fe₂S₂-кластеров

Сайт Q_o , в котором происходит окисление PQH₂, располагается вблизи от Fe₂S₂-кластера ISP. Хинон-связывающий портал этого сайта представляет собой полость (~11 × 12 Å), покрытую молекулами липидов [26, 27]. В эту полость проникает липидорастворимая молекула PQH₂, которая связывается с ISP, образуя «субстрат-ферментный» комплекс (PQH₂–ISP).

Второй центр связывания хинона (сайт Q_i) расположен вблизи участка цитохромного комплекса, ориентированного в сторону стромы. Этот сайт находится в полости между гемами b_6^{H} и c_n [29–32]. Предполагается, что «нетипичный» гем c_n может участвовать в циклическом переносе электронов от акцепторного участка ФС1 (через Fd и FNR) к молекуле PQ, находящейся в сайте Q_i [17, 18].

Пластохинон внутри портала Q₀. В структурах $b_6 f$ -комплекса, полученных методом рентгеноструктурного анализа, отсутствуют нативные молекулы PQH₂ и PQ. О возможной локализации PQH₂ в каталитическом сайте Q₀ чаще всего судят по положению ингибитора TDS (три-децил-стигмателлин), расположенного в непосредственной близости от Fe₂S₂-кластера. TDS образует водородную связь с атомом азота N₆ гистидина (His155 – в Chlamydomonas reinhardtii [29], His129 – в Mastigocladus laminosus [30] или His128 – в $b_6 f$ -комплексе шпината [32]), являющегося лигандом одного из ионов Fe кластера Fe_2S_2 . Атом N₆ имидазолидинового фрагмента депротонированной формы His образует водородную связь с группой – OH молекулы PQH₂. Образование водородной связи между N_ε и – OH обычно рассматривается как необходимое условие формирования комплекса PQH₂-His. Существование такой связи было показано в цитохромном комплексе bc_1 , родственном $b_6 f$ -комплексу [33–39]. Полагают, что атом N₆ служит первичным акцептором протона, переносимого от PQH_2 к окисленному ISP (ISP_{ox}). Альтернативная модель, предполагающая, что первичным акцептором протона является близлежащая молекула воды, была предложена в работах Postila et al. [39] и Barragan et al. [40].

Проникновению PQH_2 в полость хинон-связывающего сайта Q_0 предшествует его диффузия из липидной фазы тилакоидной мембраны вдоль сравнительно длинного пути внутри белкового комплекса. Интересное наблюдение заключается в том, что длинный фитильный «хвост» молекулы Chl *а* лежит на пути перемещения пластохинона к порталу Q_0 . Предполагается, что Chl *а* выполняет «воротные» функции. Возможны две конформации фитильной цепи: в одной конформации эта цепь не препятствует, а в другой — ограничивает доступ хинона к порталу Q_0 [32].

Экспериментальные данные о расположении пластохинона во внутрибелковой полости портала Q₀ отсутствуют. Следует, однако, иметь в виду, что пластохинон (или по крайней мере его редокс-активный фрагмент) обладает высокой подвижностью внутри полости Q₀. Эта полость покрыта липидами (23 потенциальных участка связывания липидов в расчёте на один мономер [27, 28]). Линейные размеры полости достаточно велики (расстояние между Fe₂S₂ и гемом b_6^{L} составляет ~25 Å), что позволяет предположить, что молекула пластохинола целиком помещается внутри полости, включая её загнутый фитильный «хвост» (рис. 1). Альтернативой является гипотетический случай, когда «голова» пластохинола проникает в гидрофобную полость и связывается с каталитическим центром Q₀, при этом гибкий фитильный «хвост» оказывается лишь частично погруженным в полость.

Окисление пластохинола в Q₀-центре цитохромного комплекса $b_6 f$. На рис. 2, *a* показана упрощённая схема окислительно-восстановительных процессов, происходящих в комплексе $b_6 f$ с участием пластохинола. Центр Q_0 выполняет роль хинол-оксидазы: два электрона, донируемых молекулой PQH₂, направляются по разным цепям переноса электрона, высоко- и низкопотенциальной. Один электрон переносится на Fe_2S_2 -кластер ISP (реакция 1); ISP служит донором электрона для Cyt f, который, в свою очередь, восстанавливает Рс. Второй электрон поступает от пластосемихинона к низкопотенциальному гему b_6^{L} (реакция 2). Восстановленный гем b_6^L передаёт электрон высокопотенциальному гему b_6^{H} , расположенному вблизи от центра Q_i на стромальной стороне комплекса.

На рис. 2, б представлена «энергетическая» диаграмма, показывающая стандартные значения редокс-потенциалов кофакторов, участвующих в переносе электронов по высоко- и низкопотенциальной цепям. Согласно этим данным, перенос электрона и протона от PQH_2 к ISP – это эндергонический (энерго-акцепторный) процесс, который определяет скорость окисления PQH₂. Дальнейший перенос электрона в сторону P_{700}^+ идет с понижением свободной энергии. В результате первой стадии окисления PQH₂ образуется радикальная пара PQH[•]-Fe₂S₂(H⁺)[•]. Здесь PQH[•] обозначает молекулу пластосемихинона в протонированной форме. Такая радикальная пара была зарегистрирована методом ЭПР в цитохромных комплексах bc_1 и $b_6 f$ в работах группы

Рис. 2. Схема нециклического электронного транспорта и редокс-превращений пластохинола в цитохромном b_6f -комплексе (a). δ – Диаграмма значений стандартных редокс-потенциалов переносчиков высоко- и низкопотенциальной цепей переноса электронов в цитохромном b_6f -комплексе одноклеточной водоросли *Chlamydomonas reinhardtii*. Диаграмма построена на основании литературных данных о стандартных значениях редокс-потенциалов, приведённых в работе Pierre et al. [77]. Ссылки на значения редокс-потенциалов для комплексов Cyt b_6f для других фотосинтезирующих организмов приведены в подписи к рис. 10 в статье Tikhonov [4]. Символами 1 и 2 обозначены реакции переноса электрона от PQH₂ к Fe₂S₂-кластеру и от семихинона PQH⁻ – к низкопотенциальному гему b_6^{L} соответственно

Оѕусzka [28, 41–44]. Энергия связи между радикалами невелика (~3,5 ГГц). Метастабильная радикальная пара распадается на РQН[•] и Fe₂S₂(H⁺)[•], после чего происходят события, включающие в себя крупномасштабные структурные перестройки белкового комплекса. Перенос электрона от восстановленного кластера Fe₂S₂[•] к Суt *f* связан с движением мобильного фрагмента ISP, содержащего Fe₂S₂[•], в сторону гема *f* [45].

Согласно модели Q-цикла [46–48], пластосемихинон PQH[•] восстанавливает гем b_6^{L} . Дальнейший перенос электрона по низкопотенциальной цепи обеспечивает перенос электрона к окисленной молекуле PQ, связанной с центром Q_i. Эти реакции включают перенос электрона от b_6^{L} к b_6^{H} и происходят с понижением свободной энергии. Молекула PQ, находящаяся в центре Q_i, получает один электрон от b_6^{H} . Согласно модели модифицированного Q-цикла, PQ может получить второй электрон, поступающий к ней от ФС1 по цепи циклического транспорта электронов через Fd, FNR и гем c_n (PSI \rightarrow Fd \rightarrow FNR $\rightarrow c_n \rightarrow$ (PQ)_i) [17, 18]. Двукратно восстановленная молекула PQH₂ уходит из центра Q_i и затем может связаться с вакантным центром Q₀, имеющим высокое сродство к РОН2. Можно предположить, что при отсутствии переносчиков циклического транспорта электронов (например, в изолированных хлоропластах класса Б), молекула семихинона $(PQ^{\cdot})_{i}$, образовавшаяся в центре Q_{i} , ожидает второго электрона, поступающего к ней от следующей молекулы PQH₂, окисляемой в центре Q_0 . Вся совокупность процессов, показанных на рис. 2, б, свидетельствует, что окисление PQH₂ до PQ – энергетически выгодный процесс: суммарное изменение свободной энергии в результате окисления PQH₂, оцениваемое по стандартным значениям редокс-потенциалов электронных переносчиков, имеет отрицательное значение.

Процессы двухэлектронного окисления PQH₂ в центре Q₀ сопряжены с переносом протонов от РОН2 на близлежащие протон-акцепторные группы. Общепризнано, что первичным акцептором протона, донируемого молекулой PQH₂, служит имидазолидиновая группа His, входящего в ISP [28-38]. Считается, что первичным акцептором протона, донируемого семихиноном РОН, служит карбоксильная группа -СОО- аминокислотного остатка Glu78 ($-COO^- + H^+ \rightarrow -COOH$) (рис. 3, а) [49-51]. В хлоропластах эта группа имеет ограниченную подвижность внутри белкового комплекса $b_6 f$ благодаря образованию солевого мостика между Glu78 и Arg87 [49, 52]. От -СООН протон переносится в люмен,

что происходит посредством обмена с протон-связывающими карбоксильными группами Glu3 и Glu58 [52].

Следует обратить внимание на то, что гем b_6^L и карбоксильная группа Glu78 находятся сравнительно далеко (~6 Å) от того участка, где появляется радикал PQH[•]. Оценки, сделанные на основании квантово-химических расчётов (см. ниже), показали, что при достаточно большом удалении PQH[•] от первичного акцептора протона –СОО⁻ эффективность переноса электрона к гему b_6^L , сопряжённого с переносом протона, будет невелика. Окисление PQH[•] может заметно ускоряться после смещения радикала PQH[•] внутри гидрофобной полости в сторону гема b_6^L и карбоксильной

Рис. 3. Реакции бифуркационного (двухэлектронного) окисления TMBQH₂ (*a*) и предполагаемые положения молекул пластохинола (H–Q–H) и пластосемихинона (H–Q[•]) внутри белкового портала Q₀ (*b*). Фрагмент белковой структуры, включающий в себя Fe₂S₂-кластер и гем b_6^{L} , построен на основании данных криоэлектронной микроскопии для b_6f -комплекса шпината (PDB ID: 6RQF [32]). Серым цветом обозначена полость, в которой находятся молекулы пластохинола и пластосемихинона, непосредственно взаимодействующие с ISP и гемом b_6^{L} . Короткие красные стрелки показывают направления переноса протонов от пластохинола к атому N_ε гистидина и от пластосемихинона – к группе –СОО⁻ Glu78 соответственно. Синие стрелки – перенос электронов к Fe₂S₂-кластеру и к гему b_6^{L}

группы Glu78 (рис. 3, δ). Аналогичное предположение было высказано Crofts [53] на основании анализа процессов окисления убихинола в комплексе bc_1 .

МАТЕРИАЛЫ И МЕТОДЫ

Модельная система и методы расчетов. Геометрия модельной системы. Полная модельсистема, имитирующая расположение ная электронных переносчиков в каталитическом центре Q_0 (рис. 4), была построена на основе кристаллической структуры b₆f-комплекса одноклеточной водоросли С. reinhardtii (PDB ID: 1Q90 [29]). Можно выделить четыре функциональные группы этой структуры: 1) редокс-центр, содержащий железосерный кластер (Fe_2S_2) и окружающие его аминокислотные остатки; 2) гем b_6^{L} ; 3) Glu78 субъединицы IV и 4) аналог пластохинола (2,3,5-три-метил-бензохинол, ТМВQH₂). Молекула ТМВQH₂ была выбрана в качестве структуры, моделирующей пластохинол. Она имеет такую же структуру хинольного фрагмента, как молекула PQH_2 , но не содержит фитильной цепи. Структуры каждого из четырёх фрагментов были дополнены необходимым числом атомов водорода и полностью оптимизированы как изолированные. Затем эти фрагменты были помещены в исходную систему таким образом, чтобы добиться наилучшего совмещения положений атомов в оптимизированной и в экспериментальной структурах. Предварительно оптимизированная структура TMBQH₂ была помещена в то место, где, по данным рентгеноструктурного анализа, находилась молекула ингибитора TDS [31].

На завершающем этапе построения модельной системы проводилось уточнение её структуры путём внесения небольших конформационных изменений. Согласно Ustynyuk et al. [54, 55], образование водородной связи между атомом H группы – OH молекулы TMBQH₂ и атомом N_ε приводит к уменьшению расстояния H–N_ε за счёт поворота – OH вокруг связи С–OH. Такой поворот сокращает путь реакции от 2,42 Å до минимального значения – 2,08 Å. В настоящей работе сканирование зависимости энергии системы от расстояния H(1)–N_ε проведено для структуры, в которой такое расстояние было минимальным.

Вычислительные методы. Расчеты проводили методом функционала плотности с помощью программы «Природа» [56], с использованием функционала РВЕ [57] и набора базисных функций TZ2P Гауссова типа. Были использованы следующие схемы сжатия орбитальных базисных функций: (5s1p)/[3s1p] – для атомов Н; (11s6p2d)/[6s3p2d] – для атомов С, N, и O; (15s11p2d)/[10s6p2d] – для атомов S и (17s13p8d)/[12s9p4d] – для Fe. При расчёте синглетного состояния фрагмента белка Риске применяли неограниченный метод функционала плотности. Ранее [54, 55] нами было установлено, что для нахождения низшего по энергии синглетного электронного состояния этого комплекса необходимо изменить последовательность граничных орбиталей в одной из электронных подсистем (α или β). Данное обстоятельство представляется важным, поскольку в модельной системе рассматривался биядерный кластер Fe₂S₂, в котором реализуется антиферромагнитная ориентация спинов парамагнитных ионов железа. Для таких комплексов, как известно [58], энергия системы растёт с увеличением мультиплетности. Данная закономерность (так называемая «лестница» Гейзенберга) была получена нами ранее [54].

Рис. 4. Модельная система для реакции двухстадийного окисления пластохинола цитохромным комплексом $b_6 f$. Символами O(1) и H(1) показаны атомы кислорода и водорода группы –OH молекулы TMBQH₂, взаимодействующей с каталитическим центром ISP (рис. 1, реакция *1*). Символами O(2) и H(2) показаны атомы кислорода и водорода группы –OH, взаимодействующей с гемом b_6^L и группой –COO⁻ Glu78. Fe(1) и Fe(2) – два иона железа кластера Fe₂S₂

Для модельной системы, построенной в настоящей работе, эта закономерность также выполнялась. Это доказывает, что синглетное электронное состояние железосерного кластера является низшим по энергии, что соответствует литературным данным [59–63].

Спиновую плотность и заряды на атомах вычисляли по методу Hirshfeld [64]. Согласие расчётных и экспериментальных данных по распределению спиновой плотности на атомах было показано в работе Frolov et al. [65] для радикала TMBQH[•].

Спиновые характеристики. Для окисленного редокс-центра ISP (ISP_{ox}) атом N_{ϵ} имидазолидинового остатка His155 принимали депротонированным, а для His136 – протонированным; общий заряд этого фрагмента равен Z = -1. Известно, что окисленный кластер Fe₂S₂ является диамагнитным (спин S = 0) вследствие антиферромагнитного взаимодействия двух парамагнитных ионов, Fe³⁺(1) и Fe³⁺(2), каждый из которых имеет спин S = 5/2 [28, 59-61]. Результаты расчётов, проведённых ранее [54], были подтверждены в настоящей работе, они согласуются с экспериментальными данными. После восстановления окисленного ISP (ISP_{ox}) кластер Fe₂S₂ становится парамагнитным (суммарный спин равен *S* = ½ [28, 59–61]). Согласно нашим расчётам, проекции спинов двух ионов железа кластера Fe_2S_2 как в окисленном, так и в восстановленном состоянии сохраняют противоположные проекции [54], что также согласуется с экспериментальными данными об антиферромагнитном взаимодействии ионов железа в кластере Fe₂S₂ восстановленного белка Риске.

Рассматривая взаимодействие семихинона TMBQH[•] с Суt b_6 , отметим следующее. Молекула семихинона имеет спин S = 1/2; окисленный гем b_6^{L} парамагнитен (S = 1/2) [28, 61]. Поэтому при описании второй стадии реакции мы рассматривали две возможности для полного спина модельной системы, описывающей окисление TMBQH[•], S = 0 или S = 1.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Первая стадия окисления TMBQH₂. На рис. 5 показан энергетический профиль реакции (зависимость энергии системы от расстояния между атомами H(1) и N_ε), рассчитанный для первой стадии окисления хинола в модельной системе, включающей TMBQH₂, фрагмент белка Риске, содержащий Fe₂S₂-кластер и окружающие его аминокислотные остатки, а также Glu78. Энергетический профиль имеет два минимума.

БИОХИМИЯ том 87 вып. 10 2022

Один минимум отвечает исходному положению атома H(1) в молекуле TMBQH₂. Второй – соответствует положению H(1) вблизи атома N₆ имидазолидинового кольца His155 и характеризует образование связи $H-N_{\varepsilon}$ ($R_{H-N_{\varepsilon}} = 1,11$ Å в структуре, соответствующей второму минимуму). Расстояние между минимумами на кривой, показанной на рис. 5, составляет 0,88 Å. Перенос атома H(1) из начального положения (-OH(1)) в конечное ($H(1)-N_{\epsilon}$) связан с преодолением энергетического барьера (ΔE^{\neq}). Перенос Н(1) к атому N_ε – это энерго-акцепторный процесс, который сопровождается преодолением энергетического барьера и повышением полной энергии системы на величину $\Delta E = 25,6 \text{ кДж·моль}^{-1}$ (рис. 5).

Энергетический профиль реакции переноса H(1), приведённый на рис. 5, был получен в предположении о неадиабатическом механизме реакции, когда в ходе быстрого переноса лёгкого атома H(1) геометрия системы сохраняется. Затем, после переноса протона к атому N_{ϵ} , происходит небольшое изменение («релаксация») геометрии системы, которую определяли путём оптимизации координат атомов, входящих в молекулу хинона, и железосерный кластер. Изменение энергии системы после переноса H(1) оценивали как разницу энергий «нерелаксированного» продукта ($\Delta E = 25,6 \text{ кДж·моль}^{-1}$) и «релаксированного» продукта реакции. В последнем случае предварительно оптимизированные структуры ТМВОН. и восстановленного Fe_2S_2 -кластера с протонированным His155 в качестве лиганда находились на своих

40

Рис. 5. Энергетический профиль первой стадии реакции окисления $TMBQH_2$: зависимость энергии от расстояния между атомами H(1) и N_{ϵ} (см. обозначения на рис. 4)

местах в общей структуре изучаемой системы. Расчёты показали, что в результате «релаксации» энергия системы уменьшалась на величину $\Delta E_{\rm rel} = -9,0$ кДж·моль⁻¹. Подчеркнём, что после переноса атома H(1) и «релаксации» системы её полная энергия была выше, чем в исходном состоянии (до переноса H(1)), на 16,6 кДж·моль⁻¹. Близкое по порядку значение (10,5 кДж·моль⁻¹) было получено в работе Barragan et al. [40] при моделировании работы каталитического центра Q_o цитохромного комплекса bc₁. Увеличение энергии в результате переноса электрона от $PQH_2 \kappa ISP_{ox}$ (реакция 1) хорошо согласуется с представлением о том, что эта реакция является эндергоническим (энерго-акцепторным) процессом [66].

Окисление хинола (отрыв атома H1) можно рассматривать как два сопряжённых процесса, перенос двух частиц – электрона и протона, которые происходят согласованно. Первичные акцепторы электрона и протона – суть разные фрагменты белкового комплекса: электрон переносится на Fe₂S₂-кластер ISP, протон – на N_ε-атом His [54]. Говоря о согласованности процессов переноса электрона и протона, мы имеем в виду, что оба процесса происходят практически одновременно (proton coupled electron transport, PCET [67-69]). Известно, что сродство протона к His может контролироваться состоянием ISP. Редокс-превращения ISP, как известно, влияют на значения р K_a протонируемого атома N_s аминокислотного остатка His, являющегося лигандом для одного из ионов железа кластера Fe₂S₂. Для цитохромного комплекса bc_1 было экспериментально показано, что восстановление ISP в комплексе bc_1 сопровождается увеличением pK_a [34–37]. Это означает, что ISP служит не только переносчиком электрона от хинола к Cyt f, но и выполняет «воротные» функции, обеспечивая перенос протонов в люмен [46, 47]. Восстановление ISP способствует протонированию его His за счёт иона водорода, донируемого молекулой PQH₂, с последующим переносом протона в люмен в результате окисления ISP: $PQH_2 + ISP_{ox} \rightarrow PQH^{\cdot} + ISP_{red}(H^+) \rightarrow ISP_{ox} + H^+_{in}$.

Анализ распределения спиновой плотности, сделанный на основании квантово-химических расчётов, показал удовлетворительное согласие расчётных и экспериментальных данных. В начальном состоянии оба участника реакции (TMBQH₂ и ISP_{ох}) диамагнитны. Суммарное значение спиновой плотности ионов железа в окисленном кластере Fe_2S_2 , как показали наши расчёты, близко к нулю. При этом каждый из ионов железа кластера Fe_2S_2 ($Fe^{3+}(1)$ и $Fe^{3+}(2)$) является парамагнитным, но значения спиновых плотностей этих ионов имеют противоположные знаки ($\sigma_{\text{Fe}(1)} \approx 3,2$ и $\sigma_{\text{Fe}(2)} \approx -3,2$ а.е.), что согласуется с экспериментальными данными об антиферромагнитном взаимодействии ионов Fe³⁺(1) и Fe³⁺(2) в кластере Fe₂S₂. Спиновая плотность молекулы хинола (TMBQH₂) равна нулю.

После переноса электрона от ТМВQH₂ к Fe₂S₂ происходит перераспределение спиновой плотности между атомами. Образующийся радикал ТМВОН. является парамагнитным; при этом спиновая плотность частично распределена между разными атомами TMBQH', но в основном она локализована на атоме O(1), ориентированном в сторону ISP. Изменение спиновой плотности на всех атомах С и О в ходе реакции переноса атома водорода (протона и электрона) равно $\Delta \sigma$ (TMBQH[•]) ≈ -0.6 a.e., изменение спиновой плотности на атомах Fe и S кластера Fe₂S₂ составляет близкую величину, $\Delta \sigma(\text{Fe}_2\text{S}_2) \approx 0.5$ а.е. Таким образом, квантово-химические расчёты показывают, что сразу после переноса H(1) от TMBQH₂ к ISP_{ох} возникает радикальная пара, образованная двумя парамагнитными частицами, TMBQH. и $Fe_2S_2(H^+)$, с противоположными ориентациями спинов. Суммарное изменение спиновой плотности радикальной пары, определяемое как $\Delta \sigma_{\Sigma} = [\Delta \sigma (\text{TMBQH}) + \Delta \sigma (\text{Fe}_2 \text{S}_2)],$ оказывается близким к нулю, что определяется заданием мультиплетности (S = 0) исходной модельной системы.

Радикальная пара пластосемихинон-Fe₂S₂(H⁺)[•] является метастабильной. По оценкам, сделанным на основании анализа спектров ЭПР цитохромного комплекса bc_1 [28], энергия взаимодействия радикалов невелика, она составляет ~3,5 ГГц (в температурных единицах это эквивалентно ~1 К). После распада радикальной пары восстановленный кластер Fe₂S₂. смещается на значительное расстояние в сторону гема f. Это происходит за счёт отклонения мобильного домена ISP, содержащего Fe_2S_2 , «ограниченной диффузии» механизму ПО (tethered diffusion [45]).

Вторая стадия реакции – окисление семихинона ТМВQН[•]. Согласно модели Q-цикла, молекула семихинона (в нашей модели – это ТМВQH[•]) окисляется низкопотенциальным гемом b_6^{L} . Возникает вопрос: может ли семихинон, расположенный в месте его образования (радикальная пара ТМВQH[•]–Fe₂S₂(H⁺)[•]), служить эффективным донором электрона для гема b_6^{L} и протона – для –СОО[–] группы Glu78? Согласно структурным данным, расстояния между семихиноном и его партнерами – гемом b_6^{L} и группой –СОО[–] аминокислотного

остатка Glu78 — слишком велики, чтобы обеспечить эффективное окисление TMBQH[•]. Возможна ли реализация этих процессов без смещения радикала TMBQH[•] в сторону гема b_6^{L} и Glu78? Мы оценили такую возможность в рамках модели, включающей TMBQH[•], Glu78 и гем b_6^{L} , для двух случаев: когда полный спин модельной системы равен $S_{total} = 0$ или $S_{total} = 1$. Эти значения спина были выбраны, исходя из того, что семихинон TMBQH[•] и окисленный гем b_6^{L} имеют спины $S = \frac{1}{2}$ [28]. В качестве координаты реакции, характеризующей перенос атома H(2), было выбрано расстояние между H(2) и ближайшим к нему атомом O карбоксильной группы –СОО[–].

Расстояние, которое проходит атом H(2), определяется координатами H(2) в молекуле семихинона в исходной (ТМВОН, Glu78 ($-COO^{-}$), гем b_6^{L}) и в конечной системе (TMBQ, Glu78 (-СООН), восстановленный гем b_6^{L}), оно составляет 2,60 Å. Расчёты, выполненные для такой модельной системы при $S_{\text{total}} = 0$ или $S_{\text{total}} = 1$, показали, что в обоих случаях для радикала ТМВQН', находящегося в исходном положении, энергетический барьер ΔE^{\neq} второй стадии реакции оказывается очень высоким и составляет 273,4 кДж моль⁻¹ для синглетного состояния и 295,7 кДж·моль⁻¹ – для триплетного состояния. Это указывает на то, что окисление радикала ТМВQН, удалённого относительно гема b₆^L и карбоксильной группы Glu78, должно быть затруднено.

Результаты расчётов, выполненные методом молекулярной динамики в группе Cramer [70], указывают на то, что характерное время диффузии пластохинона внутри портала Q_o на расстояние ~10 Å может составлять ~10 нс. Быстрая диффузия пластохинона позволяет предположить, что смещение семихинона внутри портала Q_o в сторону гема b_6^{L} и Glu78 не является фактором, лимитирующим окисление семихинона. Приближение семихинона к группе –СОО⁻ и к гему b_6^{L} существенно снижает энергетический барьер реакции и ускоряет окисление семихинона. Результаты наших расчётов согласуются с этим предположением.

На рис. 6, *а* показано, как энергия модельной системы изменяется по мере смещения радикала TMBQH[•] в сторону группы –СОО[–] Glu78. В обоих случаях ($S_{total} = 0$ и $S_{total} = 1$) энергия системы уменьшается при приближении TMBQH[•] к –СОО[–]. От места, где семихинон образовался, до места, в котором достигается минимальное значение энергии, TMBQH[•] должен сместиться на расстояние ~1,90 Å для синглетного и ~1,80 Å – для триплетного со-

БИОХИМИЯ том 87 вып. 10 2022

стояния системы. Энергия системы при этом понижается на 74,5 и 44,5 кДж·моль⁻¹ соответственно, в результате чего синглетное состояние становится более устойчивым, чем триплетное, на 15,6 кДж·моль⁻¹.

На рис. 6, δ показаны энергетические профили реакции, характеризующие изменение полной энергии системы при переносе атома H(2) к –СОО⁻ в зависимости от положения TMBQH[•] относительно Glu78. Профили, рассчитанные для $S_{total} = 0$ и $S_{total} = 1$, заметно различаются. В первом случае ($S_{total} = 0$) энергия системы уменьшается, достигая минимума при расстоянии H(2)–O, равном 1,06 Å, что соответствует длине связи O–H в группе –СООН. Энергетические профили, показанные на рис. 6, δ , были получены в неадиабатическом приближении, предполагающем, что перенос атома H(2) происходит быстро, при этом остальные геометрические параметры не меняются. В слу-

Рис. 6. Зависимости энергии системы от смещения семихинона TMBQH[•] (*a*) от исходного положения в сторону карбоксильной группы Glu78 и гема b_6^L , рассчитанные для двух значений суммарного спина, S = 0 и S = 1. δ – Энергетические профили реакции окисления смещённой молекулы TMBQH[•]. Вертикальными стрелками показаны изменения энергии в результате «релаксации» системы, связанной с небольшими изменениями её геометрии после переноса атома H(2) (пояснения в тексте)

чае $S_{\text{total}} = 0$ следующая за этим «релаксация» системы приводит к уменьшению энергии на величину $\Delta E_{\rm rel} \approx -74,4$ кДж·моль⁻¹. В случае S_{total} = 1 наблюдается иная картина: по мере приближения H(2) к -COO⁻ энергия системы сначала повышается на 37,7 кДж моль⁻¹. Однако после сближения Н(2) с атомом кислорода группы -СОО- на расстояние H(2)−O ≈ 1,06 Å последующая «релаксация» системы (изменение геометрии) вызываvменьшение ет энергии на величину $\Delta E_{\rm rel} \approx -60,6$ кДж·моль⁻¹. В обоих случаях $(S_{\text{total}} = 0 \text{ и } S_{\text{total}} = 1)$ окисление семихинона оказывается энергетически выгодным процессом. Это означает, что смещение ТМВQН в сторону $-COO^-$ и к гему b_6^{L} должно способствовать окислению семихинонового радикала.

Итак, результаты моделирования двух стадий окисления TMBQH₂ показали, что бифуркационное (двухэлектронное) окисление TMBQH₂ – это энергетически выгодный процесс. Суммарное изменение энергии системы в результате двух стадий окисления молекулы TMBQH₂ является отрицательным.

ЗАКЛЮЧЕНИЕ

Окисление пластохинола цитохромным $b_6 f$ -комплексом — основное звено в цепи переноса электронов в хлоропластах, которое определяет скорость переноса электронов между ФС2 и ФС1. На рис. 7 показана схема, описывающая совокупность событий, связанных с бифуркационным (двухэлектронным) окислением пластохинола в цитохромном $b_6 f$ -комплексе. Цикл превращений РОН₂ включает в себя стадию его проникновения в хинол-связывающий портал Q₀, процессы окисления PQH₂ за счёт взаимодействия с ISP и гемом b_6^{L} , а также выход PQ из полости портала Q_o. Влияние «механических» стадий (диффузия PQH₂ и PQ в полости портала Q₀) на скорость функционирования комплекса $b_6 f$ было экспериментально показано группой Cramer [71, 72]. Путём генетических модификаций α-спирали субъединицы IV (Pro105Ala и Pro112Ala) в цианобактерии Synechococcus sp. РСС 7002 авторам удалось сузить вход в портал Q_o, тем самым затруднив проникновение PQH₂ к сайту его связывания

Рис. 7. Схема, иллюстрирующая цикл превращений пластохинола в каталитическом центре Q_o . Символами HQH, HQ[•] и Q обозначены молекулы пластохинола, пластосемихинона и пластохинона соответственно. Общее время перехода из состояния *3* в состояние *4* определяется временем окисления семихинона HQ[•] гемом b_6^{L} , оцениваемого по кинетике редокс-превращений b_6^{L} , а также скоростями стадий, связанных с окислением Fe₂S₂-кластера и возвращением в исходное положение [70–72]

с ISP. В результате таких манипуляций уменьшалась скорость восстановления Cyt f и замедлялся рост растений.

Основным процессом, определяющим скорость окисления PQH₂ цитохромным комплексом, является «химическая» стадия реакции, связанная с переносом электрона и протона от PQH₂ к соответствующим акцепторам. В согласии с моделью Q-цикла Митчелла, два электрона, донируемых молекулой хинола, переносятся по разным цепям электронного транспорта – высоко- и низкопотенциальной (рис. 3). Проведённое нами квантово-химическое моделирование бифуркационного окисления пластохинола согласуется с представлениями о том, что первая стадия окисления хинола (перенос электрона к ISP) – это эндергонический (энерго-акцепторный) процесс, который лимитирует общую скорость окисления в хинол-оксидазном центре Q₀ [24]. Вторая стадия бифуркационной реакции – окисление семихинона за счёт переноса электрона к гему *b*₆^L – это экзоергонический (энергодонорный) процесс, идущий с понижением энергии. Результаты наших расчётов позволяют предположить, что одним из ключевых факторов эффективного сопряжения этих двух стадий, является высокая подвижность пластосемихинона внутри белковой полости хинон-связывающего центра Q_o.

Оценки подвижности пластохинона, сделанные методом молекулярной динамики [70], показали, что характерное время смещения молекулы хинона в сторону гема b_6^{L} внутри белковой полости портала Q_0 , покрытой большим числом липидов [73], очень короткое, оно составляет $\Delta \tau \sim 10$ нс. Это означает, что движение семихинона в сторону гема b_6^{L} и Glu78 может происходить очень быстро по сравнению с довольно медленной стадией окисления PQH₂, в результате которой образуется пластосемихи-

нон ($\tau_{1/2} \ge 4-5$ мс [1, 4, 5]). Поэтому обе стадии бифуркационного окисления хинола - перенос электрона от PQH_2 к белку Риске (ISP_{ox}) и окисление пластосемихинона гемом b_6^{L} – можно рассматривать как процессы, происходящие синхронно [67–69]. Короткое время жизни семихинона может служить одной из причин того, что в *b*₆*f*-комплексах концентрация радикалов, детектируемых методом ЭПР, очень низкая [28]. Другая причина – сильное уширение спектра ЭПР семихинонов за счёт их взаимодействия с другими парамагнитными центрами. Отметим, что короткое время жизни химически активных семихиноновых радикалов должно уменьшать вероятность побочной реакции переноса электрона от пластосемихинона, находящегося в полости портала Q₀, к молекулярному кислороду О2, приводящей к образованию токсичного продукта - супероксидного радикала (O₂⁻) [74-76].

Благодарности. Статья посвящена памяти Владимира Анатольевича Шувалова, выдающегося ученого, внесшего фундаментальный вклад в выяснение механизмов электронного переноса в фотосинтетических системах.

Вклад авторов. Л.Ю. Устынюк – проведение квантово-химических расчётов, обработка результатов численных экспериментов, участие в написании статьи. А.Н. Тихонов – общий план работы, анализ литературных данных, подготовка графических материалов, написание статьи.

Финансирование. Работа выполнена при финансовой поддержке Российского научного фонда (грант № 21-74-20047).

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм. Настоящая статья не содержит описания исследований с участием людей или использованием животных в качестве объектов.

СПИСОК ЛИТЕРАТУРЫ

- Haehnel, W. (1984) Photosynthetic electron transport in higher plants, *Annu. Rev. Plant. Physiol.*, 35, 659-693, doi: 10.1146/annurev.pp.35.060184.003303.
- Nelson, N., Yocum, C.F. (2006) Structure and function of photosystems I and II, *Annu. Rev. Plant Biol.*, 57, 521-565, doi: 10.1146/annurev.arplant. 57.032905.105350.
- Mamedov, M., Govindjee G., Nadtochenko, V., and Semenov, A. Yu. (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms, *Photosynth. Res.*, **125**, 51-63, doi: 10.1007/s11120-015-0088-y.

- Tikhonov, A. N. (2014) The cytochrome b₆f complex at the crossroad of photosynthetic electron transport pathways, *Plant. Physiol. Biochem.*, **81**, 163-183, doi: 10.1016/j.plaphy.2013.12.011.
- 5. Malone, L. A., Proctor, M. S., Hitchcock, A., Hunter, C. N., and Johnson, M. P. (2021) Cytochrome b_6f – Orchestrator of photosynthetic electron transfer, *Biochim. Biophis. Acta*, **1862**, 148380, doi: 10.1016/j.bbabio.2021.148380.
- Boyer, P. D. (1997) The ATP synthase a splendid molecular machine, *Annu. Rev. Biochem.*, 66, 717-749, doi: 10.1146/annurev.biochem.66.1.717.

- Романовский Ю. М., Тихонов А. Н. (2010) Молекулярные преобразователи энергии живой клетки. Протонная АТР-синтаза – вращающийся молекулярный мотор, *Успехи физических наук*, 180, 931-956.
- Walker, J. E. (2013) The ATP synthase: the understood, the uncertain and the unknown, *Biochem. Soc. Trans.*, 41, 1-16, doi: 10.1042/BST20110773.
- Junge, W., and Nelson, N. (2015) ATP synthase, *Annu. Rev. Biochem.*, 83, 631-657, doi: 10.1146/ annurev-biochem-060614-034124.
- Lemeille, S., and Rochaix, J.-D. (2010) State transitions at the crossroad of thylakoid signaling pathways, *Photosynth. Res.*, **106**, 33-46, doi: 10.1007/ s11120-010-9538-8.
- Foyer, C. H., Neukermans, J., Queval, G., Noctor, G., and Harbinson, J. (2012) Photosynthetic control of electron transport and the regulation of gene expression, *J. Exp. Bot.*, 63, 1637-1661, doi: 10.1093/ jxb/ers013.
- Rochaix, J.-D. (2014) Regulation and dynamics of the light-harvesting system, *Annu. Rev. Plant Biol.*, 65, 287-309, doi: 10.1146/annurevarplant-050213-040226.
- Tikhonov, A. N. (2015) Induction events and shortterm regulation of electron transport in chloroplasts: An overview, *Photosynth Res.*, **125**, 65-94, doi: 10.1007/s11120-015-0094-0.
- Balsera, M., Schürmann, P., and Buchanan, B. B. (2016) Redox regulation in chloroplasts, in *Chloroplasts. Current Research and Future Trends* (Kirchhoff, H., ed.) Caister Academic Press, pp. 187-208, doi: 10.21775/9781910190470.09.
- Staehelin, L. A. (2003) Chloroplast structure: from chlorophyll granules to supramolecular architecture of thylakoid membranes, *Photosyn. Res.*, 76, 185-196, doi: 10.1023/A:1024994525586.
- Höhner, R., Pribil, M., Herbstová, M., Lopez, L. S., Kunz, H.-H., et al. (2020) Plastocyanin is the longrange electron carrier between photosystem II and photosystem I in plants, *Proc. Natl. Acad. Sci. USA*, 117, 15354-15362, doi: 10.1073/pnas.2005832117.
- Munekage Y., Hashimoto, M., Miyake, C., Tomizawa, K.-I., Endo, T., et al. (2004) Cyclic electron flow around photosystem I is essential for photosynthesis, *Nature*, 429, 579-582, doi: 10.1038/ nature02598.
- Strand, D. D., Fisher, N., and Kramer, D. M. (2016) Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts, in *Chloroplasts: Current Research and Future Trends* (Kirchhoff Helmut, ed.) Caister Academic Press, pp. 89-100, doi: 10.21775/9781910190470.04.
- Kirchhoff, H. (2014) Diffusion of molecules and macromolecules in thylakoid membranes, *Biochim. Biophys. Acta*, 1837, 495-502, doi: 10.1016/ j.bbabio.2013.11.003.

- Tikhonov, A. N. (2018) The cytochrome b₆f complex: biophysical aspects of its functioning in chloroplasts, in *Membrane Protein Complexes: Structure and Function, Subcellular Biochemistry* (Harris, J.R., Boekema, E.J., eds.) 87, Springer Nature, Singapore Pte Ltd., pp. 287-328, doi: 10.1007/978-981-10-7757-9_10.
- Kramer, D. M., Sacksteder, C. A., and Cruz, J. A. (1999) How acidic is the lumen? *Photosynth. Res.*, 60, 151-163, doi: 10.1023/A:1006212014787.
- Tikhonov, A. N. (2013) pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts, *Photosynth. Res.*, **116**, 511-534, doi: 10.1007/ s11120-013-9845-y.
- Berry, E. A., Guergova-Kuras, M., Huang, L. S., and Crofts, A. R. (2000) Structure and function of cytochrome *bc* complexes, *Annu. Rev. Biochem.*, 69, 1005-1075, doi: 10.1146/annurev.biochem.69.1.1005.
- 24. Crofts, A. R. (2004) The cytochrome bc_1 complex: function in the context of structure, *Annu. Rev. Physiol.*, **66**, 689-733, doi: 10.1146/annurev.physiol. 66.032102.150251.
- De Vitry C., Ouyang, Y., Finazzi, G., Wollman, F.-A., and Kallas, T. (2004) The chloroplast Rieske ironsulfur protein: at the crossroad of electron transport and signal transduction, *J. Biol. Chem.*, **279**, 44621-44627, doi: 10.1074/jbc.M406955200.
- Cramer, W. A., Zhang, H., Yan, J., Kurisu, G., and Smith, J. L. (2006) Transmembrane traffic in the cytochrome b₆f complex, *Annu. Rev. Biochem.*, **75**, 769-790, doi: 10.1146/annurev.biochem. 75.103004.142756.
- Cramer, W. A., and Hasan, S. S. (2016) Structurefunction of the cytochrome b₆f lipoprotein complex, in *Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling* (Cramer, W. A., and Kallas, T., eds) Springer, Dordrecht, pp. 177-207, doi: 10.1007/978-94-017-7481-9_9.
- 28. Sarewicz, M., Pintscher, S., Pietras, R., Borek, A., Bujnowicz, Ł., et al. (2021) Catalytic reactions and energy conservation in the cytochrome bc_1 and $b_6 f$ complexes of energy-transducing membranes, *Chem. Rev.*, **121**, 2020-2108, doi: 10.1021/acs.chemrev. 0c00712.
- 29. Stroebel, D., Choquet, Y., Popot, J.-L., and Picot, D. (2003) An atypical heam in the cytochrome b_6f complex, *Nature*, **426**, 413-418, doi: 10.1038/ nature02155.
- Kurisu, G., Zhang, H., Smith, J. L., and Cramer, W. A. (2003) Structure of the cytochrome b₆f complex of oxygenic photosynthesis: tuning the cavity, *Science*, **302**, 1009-1014, doi: 10.1126/science.1090165.
- 31. Yamashita, E., Zhang, H., and Cramer, W. A. (2007) Structure of the cytochrome $b_6 f$ complex: Quinone analogue inhibitors as ligands of heme c_n , *J. Mol. Biol.*, **370**, 39-52, doi: 10.1016/j.jmb.2007.04.011.
- 32. Malone, L. A., Qian, P., Mayneord, G. E., Hitchcock, A., Farmer, D. A., et al. (2019) Cryo-EM

Structure of the spinach cytochrome $b_6 f$ complex at 3.6 Å resolution, *Nature*, **575**, 535-539, doi: 10.1038/ s41586-019-1746-6.

- Samoilova, R. I., Kolling, D., Uzawa, T., Iwasaki, T., Crofts, A. R., et al. (2002) The interaction of the Rieske iron sulfur protein with occupants of the Q_osite of the *bc*₁ complex, probed by 1D and 2D electron spin echo envelope modulation, *J. Biol. Chem.*, 277, 4605-4608, doi: 10.1074/jbc.C100664200.
- Zu, Y., Couture, M. M.-J., Kolling, D. R. J., Crofts, A. R., Eltis, L. D., et al. (2003) The reduction potentials of Rieske clusters: the importance of the coupling between oxidation state and histidine protonation state, *Biochemistry*, 42, 12400-12408, doi: 10.1021/bi0350957.
- Hsueh K.-L., Westler W. M., and Markley J. L. (2010) NMR investigations of the Rieske protein from *Thermus thermophilus* support a coupled proton and electron transfer mechanism, *J. Am. Chem. Soc.*, 132, 7908-7918, doi: 10.1021/ja1026387.
- Iwaki, M., Yakovlev, G., Hirst, J., Osyczka, A., Dutton, P. L., et al. (2005) Direct observation of redox-linked histidine *bc*₁ complex by ATR-FTIR spectroscopy, *Biochemistry*, **44**, 4230-4237, doi: 10.1021/bi047533v.
- Lin, I.-J., Chen, Y., Fee, J. A., Song, J., Westler, W. M., et al. (2006) Rieske protein from *Thermus thermophilus*: ¹⁵N NMR titration study demonstrates the role of iron-ligated histidines in the pH dependence of the reduction potential, *J. Am. Chem. Soc.*, **128**, 10672-10673, doi: 10.1021/ja0627388.
- Lhee, S., Kolling, D. R. J., Nair, S. K., Dukatov, S. A., and Crofts, A. R. (2010) Modifications of protein environment of the [2Fe-2S] cluster of the *bc*₁ complex: effects on the biophysical properties of the Rieske iron-sulfur protein and on the kinetics of the complex, *J. Biol. Chem.*, 285, 9233-9248, doi: 10.1074/jbc.M109.043505.
- Postila, P.A., Kaszuba,K., Sarewicz, M., Osyczka, A., Vattulainen, I., et al. (2013) Key role of water in proton transfer at the Q_o-site of the cytochrome bc₁ complex predicted by atomistic molecular dynamics simulations, *Biochim. Biophys. Acta*, **1827**, 761-768, doi: 10.1016/j.bbabio.2013.02.005.
- Barragan, A. M., Schulten, K., and Solov'yov, I. A. (2016) Mechanism of the primary charge transfer reaction in the cytochrome *bc*₁ complex, *J. Phys. Chem. B*, **120**, 11369-11380, doi: 10.1021/acs.jpcb. 6b07394.
- Sarewicz, M., Dutka, M., Pintscher, S., and Osyczka, A. (2013) Triplet state of the semiquinone-Rieske cluster as an intermediate of electronic bifurcation catalyzed by cytochrome bc₁, Biochemistry, 52, 6388-6395, doi: 10.1021/bi400624m.
- Sarewicz, M., Bujnowicz, Ł., Satarupa, B., Singh S. K., Cramer W. A., et al. (2017) Metastable radical state, nonreactive with oxygen, is inherent to catalysis

БИОХИМИЯ том 87 вып. 10 2022

by respiratory and photosynthetic cytochromes bc_1/b_6f , *Proc. Natl. Acad. Sci. USA*, **114**, 1323-1328, doi: 10.1073/pnas.1618840114.

- 43. Pietras, R., Sarewicz, M., and Osyczka, A. (2016) Distinct properties of semiquinone species detected at the ubiquinol oxidation Q_o of cytochrome bc_1 and their mechanistic implications, *J. R. Soc. Interface*, **13**, 20160133, doi: 10.1098/rsif.2016.0133.
- Sarewicz, M., Bujnowicz, Ł., and Osyczka, A. (2018) Generation of semiquinone-[2Fe-2S]⁺ spin-coupled center at the Q_o site of cytochrome bc₁ in redoxpoised, illuminated photosynthetic membranes from *Rhodobacter capsulatus, Biochim. Biophys. Acta*, 1859, 145-153, doi: 10.1016/j.bbabio.2017.11.006.
- Zhang, Z. L., Huang, L. S., Shulmeister, V. M., Chi, Y. I., Kim, K. K., et al. (1998) Electron transfer by domain movement in cytochrome *bc*₁, *Nature*, **392**, 677-684, doi: 10.1038/33612.
- 46. Brandt, U. (1996) Bifurcated ubihydroquinone oxidation in the cytochrome bc₁ complex by proton-gated charge transfer, *FEBS Lett.*, **387**, 1-6, doi: 10.1016/0014-5793(96)00436-x.
- 47. Link, T. A. (1997) The role of the "Rieske" iron sulfur protein in the hydroquinone oxidation (Q_p) site of the cytochrome bc_1 complex: the "proton-gated affinity change" mechanism, *FEBS Lett.*, **412**, 257-264, doi: 10.1016/s0014-5793(97)00772-2.
- Cramer, W. A., Hasan, S. S., and Yamashita, E. (2011) The Q cycle of cytochrome *bc* complexes: a structure perspective, *Biochim. Biophys. Acta*, **1807**, 788-802, doi: 10.1016/j.bbabio.2011.02.006.
- Zito, F., Finazzi, G., Joliot, P., and Wollman, F. A. (1998) Glu78, from the conserved PEWY sequence of subunit IV, has a key function in the cytochrome *b*₆*f* turnover, *Biochemistry*, **37**, 10395-10403, doi: 10.1021/bi9802380.
- 50. Osyczka, A., Zhang, H., Mathe, C., Rich, P. R., Moser, C. C., et al. (2006) Role of the PEWY glutamate in hydroquinone-quinone oxidationreduction catalysis in the Q_o site of cytochrome bc_1 , *Biochemistry*, **45**, 10492-10503, doi: 10.1021/ bi060013a.
- Victoria, D., Burton, R., and Crofts, A. R. (2013) Role of the –PEWY-glutamate in catalysis at the Q_osite of the Cyt *bc*₁ complex, *Biochim. Biophys. Acta*, **1827**, 365-386, doi: 10.1016/j.bbabio.2012.10.012.
- Hasan, S. S., Yamashita, E., Baniulis, D., and Cramer, W. A. (2013) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome *b*₆*f* complex, *Proc. Natl. Acad. Sci. USA*, **110**, 4297-4302, doi: 10.1073/pnas.1222248110.
- Crofts, A. R. (2004) Proton-coupled electron transfer at the Q_o-site of the *bc*₁ complex controls the rate of ubihydroquinone oxidation, *Biochim. Biophys. Acta*, 1655, 77-92, doi: 10.1016/j.bbabio.2003.10.012.
- 54. Ustynyuk, L. Yu., and Tikhonov, A. N. (2018) The cytochrome $b_6 f$ complex: DFT modeling of

the first step of plastoquinol oxidation by the ironsulfur protein, *J. Organomet. Chem.*, **867**, 290-299, doi: 10.1016/j.jorganchem.2018.01.023.

- Ustynyuk, L. Y., Trubitsin, B. V., and Tikhonov, A. N. (2018) DFT modeling of the first step of plastoquinol oxidation by the iron-sulfur protein of the cytochrome *b*₆*f* complex, *Mendeleev Commun.*, **28**, 170-172, doi: 10.1016/j.mencom.2018.03.020.
- Laikov, D. N. (1997) Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets, *Chem. Phys. Lett.*, **281**, 151-156, doi: 10.1016/ S0009-2614(97)01206-2.
- Perdew, J. P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple, *Phys. Rev. Lett.*, 77, 3865-3868, doi: 10.1103/ PhysRevLett.77.3865.
- Siegbahn P. E. M., and Blomberg, M. R. A. (1999) Density functional theory of biologically relevant metal centers, *Annu. Rev. Phys. Chem.*, **50**, 221-249, doi: 10.1146/annurev.physchem.50.1.221.
- Noodleman, L., Peng, C. Y., Case, D. A., and Mouesca, J.-M. (1995) Orbital interactions, electron delocalization, and spin coupling in iron– sulfur clusters, *Coor. Chem. Rev.*, 144, 199-244, doi: 10.1016/0010-8545(95)07011-L.
- Noodleman, L., Lovell, T., Liu, T., Himo, F., and Torres, R. A. (2002) Insights into properties and energetics of iron–sulfur proteins from simple clusters to nitrogenase, *Curr. Opin. Chem. Biol.*, 6, 259-273, doi: 10.1016/s1367-5931(02)00309-5.
- Palmer, G. (1985) The electron paramagnetic resonance of metalloproteins, *Biochem. Soc. Trans.*, 13, 548-560, doi: 10.1042/bst0130548.
- Hagen, W. R. (1992) Spectroscopy of iron-sulfur proteins, in *Advances in Inorganic Chemistry, Iron-Sulfur Proteins*, Academic Press, Inc., San Diego, pp. 165-222, doi: 10.1016/S0898-8838(08)60064-1.
- Link, T. A. (1999) The structures of Rieske and Rieske-type proteins, *Adv. Inorg. Chem.*, 47, 83-157, doi: 10.1016/S0898-8838(08)60077-X.
- Hirshfeld, F. L. (1977) Bonded-atom fragments for describing molecular charge densities, *Theoret. Chim. Acta (Berl.)*, **44**, 129-138, doi: 10.1007/ BF00549096.
- 65. Frolov, A. E., Sviryaeva, I. V., Ruuge, E. K., Trubitsin, B. V., and Tikhonov, A. N. (2010) EPR Spectra of the trimethyl-1,4-benzoquinone anion-radical: results of calculations by the density functional method and their comparison with experiment, *Rus. Zhurn. Phys. Chem. A*, **83**, 1543-1547, doi: 10.1134/S0036024410090189.
- 66. Crofts, A. R., Hong, S., Wilson, C., Burton., R., Victoria, D., et al. (2013) The mechanism of

ubihydroquinone oxidation at the Q_o -site of the cytochrome bc_1 complex, *Biochim. Biophys. Acta*, **1827**, 1362-1377, doi: 10.1016/j.bbabio.2013.01.009.

- Zhu, J., Egawa, T., Yeh, S.-R., Yu, L., and Yu, C.-A. (2007) Simultaneous reduction of iron–sulfur protein and cytochrome b_L during ubiquinol oxidation in cytochrome bc₁ complex, *Proc. Natl. Acad, Sci. USA*, **104**, 4864-4869, doi: 10.1073/pnas.0607812104.
- Osyczka, A., Moser, C. C, and Dutton P. L. (2005) Fixing the Q cycle, *Trends. Biochem. Sci.*, **30**, 176-182, doi: 10.1016/j.tibs.2005.02.001.
- 69. Reece, S. Y., and Nocera, D. G. (2009) Protoncoupled electron transfer in biology: results from synergetic studies in natural and model systems, *Annu. Rev. Biochem.*, **78**, 673-699, doi: 10.1146/ annurev.biochem.78.080207.092132.
- 70. Hasan, S. S., Proctor, E. A., Yamashita, E., Dokholyan, N. V., and Cramer, W. A. (2014) Traffic within the cytochrome b₆*f* lipoprotein complex: gating of the quinone portal, *Biophys. J.*, **107**, 1620-1628, doi: 10.1016/j.bpj.2014.08.003.
- 71. Hasan, S. S., and Cramer, W. A. (2012) On rate limitations of electron transfer in the photosynthetic cytochrome b_6f complex, *Phys. Chem. Chem. Phys.*, 14, 13853-13860, doi: 10.1039/c2cp41386h.
- Ness, J., Naurin, S., Effinger, K., Stadnytskyi, V., Ibrahim, I. M., et al. (2019) Structure-based control of the rate limitation of photosynthetic electron transport, *FEBS Lett.*, **593**, 2103-2111, doi: 10.1002/1873-3468.13484.
- 73. Hasan, S.S., Cramer, W.A. (2014) Internal lipid architecture of the hetero-oligomeric cytochrome $b_6 f$ complex, *Structure*, **22**, 1008-1015, doi: 10.1016/j.str.2014.05.004.
- 74. Halliwell, B., and Gutteridge, J. M. C. (2007) *Free Radicals in Biology and Medicine*, 5th Edn., Oxford University, Oxford, doi: 10.1093/ acprof:oso/9780198717478.001.0001.
- Mubarakshina, M., Khorobrykh, S., and Ivanov, B. (2006) Oxygen reduction in chloroplast thylakoids results in production of hydrogen peroxide inside the membrane, *Biochim. Biophys. Acta*, **1757**, 1496-1503, doi: 10.1016/j.bbabio.2006.09.004.
- 76. Ivanov, B. N., Borisova-Mubarakshina, M. M., and Kozuleva, M. A. (2018) Formation mechanisms of superoxide radical and hydrogen peroxide in chloroplasts, and factors determining the signalling by hydrogen peroxide, *Funct. Plant Biol.*, 45, 102-110, doi: 10.1071/FP16322.
- Pierre, Y., Breyton, C., Kramer, D., and Popot, J.-L., (1995) Purification and characterization of the cytochrome b₆f complex from *Chlamydomonas reinhardtii*, J. Biol. Chem., **270**, 29342-29349, doi: 10.1074/jbc.270.49.29342.

PLASTOQUINOL OXIDATION: THE RATE-LIMITING STEP IN THE CHAIN OF ELECTRON TRANSPORT IN CHLOROPLASTS

L. Yu. Ustynyuk¹ and A. N. Tikhonov^{2*}

¹ Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia ² Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; e-mail: an_tikhonov@mail.ru

This work is devoted to theoretical study of functioning of the cytochrome (Cyt) b_6f complex (pastoquinol:plastocyanin oxidoreductase) of the electron transport chain (ETC) of oxygenic photosynthesis. The composition of the chloroplast ETC and molecular mechanisms of functioning the cytochrome b_6f complex, which is positioned between photosystems 2 and 1 (PS2 and PS1), are briefly overviewed. The Cyt b_6f complex oxidizes plastoquinol (PQH₂) molecules formed in PS2, and reduces plastocyanin, electron donor to PS1. Plastoquinol oxidation is the rate-limiting step in the ETC between PS2 and PS1. Using the density function theory (DFT) method, we have analyzed the two-electron (bifurcated) processes of PQH₂ oxidation in the Q₀ center of the Cyt b_6f complex. Results of DFT calculations are consistent with the fact that the first step of PQH₂ oxidation, the electron transfer to the Fe₂S₂ cluster of the iron-sulfur protein (ISP), is the endergonic (energy-accepting) process ($\Delta E \sim 15$ kJ mol⁻¹) that would limit the turnover of the Cyt b_6f complex. The second stage of bifurcated oxidation of quinol – the electron transfer from semiquinone (PQH⁺, formed after the first stage revealed that semiquinone oxidation was accelerated after the PQH⁺ displacement towards heme b_6^{L} (an electron acceptor) and the carboxy group of Glu78 (a proton acceptor). The data obtained are discussed within the framework of the Mitchell Q-cycle model describing the plastoquinol oxidation at the Qo site of the Cyt b_6f complex.

Keywords: photosynthesis, cytochrome complex, plastoquinol oxidation, modelling