УДК 577.25

ИЗМЕНЕНИЯ ЭКСПРЕССИИ ГЕНОВ СИСТЕМЫ ИНСУЛИН/ИНСУЛИНОПОДОБНЫХ ФАКТОРОВ РОСТА В ПОЛЕ СА1 И ЗУБЧАТОЙ ФАСЦИИ ГИППОКАМПА ПРИ ПРЕДЪЯВЛЕНИИ НОВОГО КОНТЕКСТА

© 2022 А.М. Швадченко, М.Н. Волобуева, В.О. Иванова, А.П. Белецкий, Г.Р. Смирнова, Н.В. Баль, П.М. Балабан*

Федеральное государственное бюджетное учреждение науки Институт высшей нервной деятельности и нейрофизиологии РАН, 117485 Москва, Россия; электронная почта: pmbalaban@gmail.com

> Поступила в редакцию 20.05.2022 После доработки 19.09.2022 Принята к публикации 19.09.2022

Формирование памяти — это сложный процесс, основанный на механизмах регуляции как функционирования синапсов, так и экспрессии генов, кодирующих инсулиноподобные факторы роста. Мы проанализировали изменения в уровне экспрессии генов, кодирующих белки системы инсулин/ инсулиноподобных факторов роста в ранний период обучения, в дорсальной и вентральной CA1-области и зубчатой фасции гиппокампа у мышей через час после предъявления нового контекста как с негативным подкреплением (модель контекстного условно-рефлекторного замирания), так и без подкреплением. Обнаружено, что при предъявлении нового контекста, независимо от сочетания с негативным подкреплением, наряду с изменением уровня экспрессии хорошо известных ранних генов *c-Fos* (во всех исследованных областях гиппокампа) и *Arc* (в дорсальной и вентральной областях CA1 и дорсальной зубчатой фасции), изменяется и уровень экспрессии гена субстрата инсулинового рецептора 2, *Irs2*, в дорсальной области CA1 и вентральной зубчатой фасции, что свидетельствует об участии системы инсулина/IGFs в ранних стадиях активации нейронов при предъявлении нового контекста.

КЛЮЧЕВЫЕ СЛОВА: обучение, память, Irs2, гиппокамп, транскриптом, условно-рефлекторное замирание.

DOI: 10.31857/S0320972522110045, EDN: LVITLP

введение

В настоящее время общепринятым является представление о том, что формирование памяти — это сложный процесс, включающий изменения в уровнях экспрессии генов, которые приводят к долговременным функциональным изменениям в нейронах. Внимание нейробиологов привлечено в последнее время к исследованию роли инсулин/инсулиноподобных факторов роста (insulin-like growth factors, IGFs) в обучении и памяти. IGF-инсулиновая система состоит из многих компонентов, включая:

• лиганды: инсулин, инсулиноподобные факторы роста 1 и 2 (IGF1, IGF2);

• рецепторы: инсулиновый рецептор IR (изоформы IR-A и IR-B), рецепторы инсулиноподобных факторов роста 1 и 2 (IGF1R, IGF2R);

• различные компоненты сигнальных путей инсулина и инсулиноподобных факторов, включая субстраты инсулиновых рецепторов (IRS1 и IRS2);

• различные вспомогательные белки, например, IGF-связывающие белки (IGFBPs).

Для некоторых из них показано участие в механизмах обучения и памяти. Так, в работе Chen et al. [1] было показано, что уровень экспрессии гена Igf2 увеличивается через 20 ч после обучения у крыс. Кроме того, показано, что оверэкспрессия Igf2 в мозге приводила к улучшению памяти у мышей в модели болезни Альцгеймера [2].

В работе Agis-Balboa et al. [3] продемонстрировано, что во время тестирования памяти, которое можно рассматривать как старт реконсолидации памяти, наблюдается увеличение

Принятые сокращения: IGFs – инсулиноподобные факторы роста; IGFBPs – IGF-связывающие белки; IR – инсулиновый рецептор; IRS1 и IRS2 – субстраты инсулиновых рецепторов.

^{*} Адресат для корреспонденции.

уровня экспрессии гена *Igf2* через час после напоминания о негативном контексте. При этом авторы отметили, что увеличение уровня экспрессии гена *Igf2* в зубчатой фасции и в целом гиппокампе не совпадает по своей динамике, что может свидетельствовать о регион-специфичной регуляции экспрессии генов [3]. Также была показана регион-специфичная экспрессия гена инсулинового рецептора, *Ir*, в разных отделах гиппокампа после обучения: пространственное обучение вызывало увеличение уровня экспрессии гена *Ir* в СА1-области гиппокампа и снижение – в области САЗ [4].

Помимо этих генов, в литературе существуют данные о роли других компонентов IGF-инсулиновой системы, таких как *Irs1* [5], *Irs2* [6, 7], *Igfbp2* [8] в регуляции работы нервной системы, памяти и синаптической пластичности.

Однако нами не было найдено работ по сравнению регион-специфичной экспрессии генов, вовлечённых в IGF-инсулиновую систему в гиппокампе в первые часы после обучения.

Поэтому цель работы состояла в изучении уровня экспрессии генов IGF-инсулиновой системы в разных отделах гиппокампа через час после обучения и после предъявления нового контекста. В качестве исследуемых отделов гиппокампа были выбраны область CA1 и зубчатая фасция, поскольку для них неоднократно показана вовлечённость в процессы обучения и памяти [9, 10]. Кроме того, эти структуры можно быстро и надёжно выделить под бинокулярным микроскопом. Рассматриваемые отделы гиппокампа были также разделены на дорсальную и вентральную части, поскольку существуют данные о том, что эти зоны функционально различны между собой [11–16].

МАТЕРИАЛЫ И МЕТОДЫ

Обучение животных и подготовка материала. У 54 самцов мышей линии C57Bl/6 возрастом

3-4 месяца вырабатывали обстановочный условно-оборонительный рефлекс пассивного избегания. Экспериментальных мышей (относящихся к группе с обучением, т.е. с предъявлением нового контекста и электрокожной стимуляцией) помещали в камеру на 2 мин для ознакомления с обстановкой, после чего на решетку, на которой находились животные, подавался ток силой 0,8 мА и длительностью 2 с, вызывающий сильную пассивно-оборонительную реакцию, а через 28 с животных извлекали из камеры. Контрольными животными были мыши из домашней клетки (пассивный контроль) и мыши, которых помещали в экспериментальную обстановку, но не подвергали воздействию тока (активный контроль). Через час после обучения мышь усыпляли высокой дозой изофлурана, затем в холодном фосфатно-солевом буфере (0,01 М; рН 7,2-7,6) на льду из левого полушария мозга извлекали гиппокамп и вручную под бинокуляром выделяли из него дорсальную и вентральную области СА1 и дорсальную и вентральную зубчатые фасции. Образцы замораживали в жидком азоте и хранились при -80 °С.

Часть образцов была исключена из эксперимента из-за низкого качества или малого количества выделенной РНК. В табл. 1 содержатся данные по количеству образцов в каждой исследуемой структуре.

Выделение РНК. РНК выделяли методом гуанидин-тиоцианатной фенол-хлороформной экстракции, с модификациями [17]. К замороженным пробам добавляли по 500 мкл реагента Qiazol («Qiagen», США) и измельчали с помощью гомогенизатора TissueRaptor («Qiagen»), после чего инкубировали 10–15 мин. Далее образцы центрифугировали 10 мин (12 000 g) при 4 °C. Затем переносили супернатант в новые пробирки, добавляли 100 мкл хлороформа, инкубировали 3–5 мин при комнатной температуре, периодически перемешивая. После инкубации образцы центрифугировали 15 мин

	Исследуемая структура				
Экспериментальная группа	вентральная область СА1	дорсальная область СА1	вентральная зубчатая фасция	дорсальная зубчатая фасция	
Контроль (пассивный контроль)	21	15	20	18	
Новый контекст (активный контроль)	16	12	16	15	
Новый контекст и электрокожная стимуляция (обучение)	16	13	15	12	

Таблица 1. Общее количество образцов, используемых в экспериментальных группах для анализа экспрессии генов

Примечание. Общее количество экспериментальных животных – 54: пассивный контроль (21), активный контроль (17), обучение (16).

(16 000 g) при 4 °С. Водную фазу переносили в новые пробирки и добавляли 250 мкл изопропанола, 1 мкл гликогена («Thermo Fisher Scientific», США) и инкубировали 10 мин при комнатной температуре, периодически перемешивая. Полученную смесь оставляли на ночь при -80 °C. На следующий день смесь размораживали и центрифугировали 30 мин $(21\ 000\ g)$ при 4 °С. Полученный осадок дважды промывали 80%-ным этанолом с центрифугированием в течение 15 мин (16 000 g) при 4 °С. После удаления этанола полученный осадок высушивали на воздухе и добавляли 12 мкл деионизированной воды. Полученный раствор инкубировали 5 мин при 55 °С. Концентрацию РНК измеряли на спектрофотометре NanoDrop 2000 («Thermo Fisher Scientific»).

Обратная транскрипция. Перед обратной транскрипцией из полученной РНК удаляли следовые количества ДНК. На реакцию брали 1 мкг РНК, 1 мкл буфера для DNAse I (Mg^{2+}) («Thermo Fisher Scientific»), 1 мкл DNAse I (1 ед./мкл) («Thermo Fisher Scientific») и доводили конечный объём смеси деионизированной водой до 10 мкл. Инкубировали 30 мин при 37 °C. Для остановки реакции добавляли 1 мкл ЭДТА (50 мМ) и инкубировали 10 мин при 65 °С. Обратную транскрипцию проводили с помощью обратной транскриптазы MMLV («Евроген», Россия) по инструкции производителя, используя смесь случайных (dN10)-праймеров и oligo-dT15-праймеров в присутствии ингибитора РНКаз (RNase Inhibitor Murine, «New England BioLabs», Англия). Полученные пробы разводили в 16 раз для проведения ПЦР в реальном времени.

ПЦР в реальном времени. Для проведения ПЦР в реальном времени на одну пробу брали по 4 мкл образца, по 0,56 мкл прямого и обратного праймера (10 мкМ), 2,8 мкл смеси qPCRmix-HS SYBR + LowROX («Евроген») и доводили до общего объёма (14 мкл) деионизированной водой. Для проведения реакции использовали амплификатор CFX 384 Real Time PCR («BioRad», CША). На основе данных по секвенированию, в качестве референсных генов, которые продемонстрировали стабильную экспрессию в исследуемых областях гиппокампа, были выбраны ген *Hprt* (кодирующий гипоксантин-гуанинфосфорибозилтрансферазу-1) и ген *Gpm6a* (кодирующий нейрональный мембранный гликопротеин M6-а). Последовательности праймеров для каждого гена представлены в табл. 2.

Статистическая обработка данных ПЦР в реальном времени. Для каждого гена в контрольной группе определяли значение медианы порогового цикла, которое служило нормировочным значением в остальных группах серии для определения относительной разницы в циклах (Δ Ct). Затем для всех генов интереса (*Igf2, c-Fos, Arc, Akt1* и *Irs2*) в каждом отдельном образце было определено изменение уровня экспрессии относительно среднего геометрического значения, полученного от референсных генов *Hprt* и *Gpm6a* методом Eff^{- $\Delta\Delta$ Ct}. Эффективность реакции (Eff) для каждого гена составляла от 1,8 до 2,1.

Формула расчёта относительной экспрессии исследуемых генов:

Относительная экспрессия = <u>Eff(целевой ген)^{-\Delta Ct}</u> <u>Геом. среднее(Eff(Hprt)^{-\Delta Ct}; Eff(Gpm6a)^{-\Delta Ct})</u>

В ходе анализа данные, полученные от групп с предъявлением новой обстановки и с предъявлением нового контекста и электрокожной стимуляцией были объединены в одну группу. При статистическом анализе экспрессии каждого гена сравнивали две группы — контрольную группу животных из домашней клетки

$1au_1u_1a_2$, $1u_0u_1u_1u_1u_1u_1u_1u_1u_1u_1u_1u_1u_1u_1u$	Таблина 2. Послеловат	ельности праймеров	(5'→3')). используемые лля ППР в реальном време	ни
--	-----------------------	--------------------	---------	--	----

Ген	Прямой праймер	Обратный праймер	
Hprt	GCA GTC CCA GCG TCG TG	TAA TCC AGC AGG TCA GCA AAG AAC	
Gpm6a	GTG CTT CGA GTG CTG CAT TA	GTG TGT CTC CAG CAG TCC TT	
Igf2	CCC TCA GCA AGT GCC TAA AG	TTA GGG TGC CTC GAG ATG TT	
Fos	CCA GAG CGC CCC ATC CTT A	CTG CAG CCA TCT TAT TCC GTT CC	
Arc	TGG GTG GAG TTC AAG AAG GA	AGC GTC CAC ATA CAG TGT CT	
Irs2	TGG GGC AGC TGG TGG TAG TCA TA	GGG CTC TTG GGC TCT GTG GGT A	
Akt1	TGG ACT ACT TGC ACT CCG AGA A	TCA TAG TGG CAC CGT CCT TGA T	

ШВАДЧЕНКО и др.

Группа	Левая дорсальная область CA1	Левая вентральная область СА1	Левая дорсальная зубчатая фасция	Левая вентральная зубчатая фасция
Контрольная группа	2	3	3	3
Экспериментальная группа	3	3	4	3

Таблица 3. Количество образцов для полногеномного секвенирования

Примечание. Контрольная группа – домашняя клетка; экспериментальная группа – предъявление нового контекста с электрокожной стимуляцией.

и экспериментальную группу животных, помещаемых в новую обстановку. Выбросы, выявленные после анализа, были исключены из дальнейших расчётов. Построение графиков и предобработка данных проводилась с помощью библиотек Pandas, Matplotlib и Seaborn, языка программирования Python. Попарное сравнение между группами проводили методом Манна—Уитни.

Секвенирование РНК и биоинформатический анализ. Для секвенирования на платформе Illumina NovaSeq были подготовлены 24 библиотеки кДНК (табл. 3). По завершении секвенирования полученные данные были очищены от адаптерных последовательностей и участков с низким качеством прочтения (программа BBMap, тримминг до Qscore > 20 с 3'-конца) и далее картированы на геном мыши (версия Gencode) программой STAR. Среднее количество прочтений на образец составило около 15 млн, 2/3 из которых после выравнивания составили уникальные (достоверные) прочтения. Для подсчёта количества выравниваний в пределах генов использовалась программа FeatureCounts с указанием цепь-специфичности.

Дальнейший статистический анализ осуществлялся с помощью библиотек R: DESeq2 (анализ дифференциальной экспрессии), ggplot2. Порог значимости дифференциальной экспрессии генов был установлен на уровне 0,1. В качестве дополнительного источника данных о генной онтологии использовался ресурс Metascape. Список генов, вовлечённых в IGF-инсулиновый сигнальный путь, получен с помощью geneontology.org.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Уровень экспрессии гена *Igf2* не меняется через час после обучения в разных отделах гиппокампа. Мы сравнили уровень экспрессии гена *Igf2* в разных отделах гиппокампа у мышей через час после обучения и предъявления новой

Рис. 1. Экспрессия гена *Igf2* в исследуемых структурах гиппокампа. Относительный уровень экспрессии указан в %, где значение медианы, полученное в контрольной группе, принято за 100%. Черными точками обозначены выбросы. При сравнении уровня экспрессии гена *Igf2* между экспериментальными и контрольными группами статистически значимых различий обнаружено не было (тест Манна–Уитни)

Рис. 2. Экспрессия гена *c-Fos* в исследуемых структурах гиппокампа. Относительный уровень экспрессии указан в %, где значение медианы, полученное в контрольной группе, принято за 100%. Во всех областях между контрольной группой и объединённой группой наблюдаются достоверные отличия, * *p* < 0,001; тест Манна–Уитни

обстановки. Уровень экспрессии гена *Igf2* достоверно не менялся после обучения ни в одной из изолированных областей CA1 или зубчатой фасции. Значимых различий в уровне экспрессии этого гена обнаружено не было (рис. 1).

Экспрессия немедленного раннего гена *с-Fos* увеличивается во всех исследованных областях гиппокампа через час после предъявления нового контекста вне зависимости от сочетания с электрокожной стимуляцией. Чтобы проверить, влияло ли предъявление нового контекста с негативным подкреплением или без него на экспрессию генов, мы оценили уровень экспрессии хорошо изученного немедленного раннего гена *с-Fos* в рассматриваемых нами отделах гиппокампа. В ряде работ для этого гена показано увеличение экспрессии в разных областях мозга после обучения [18].

Обнаружено, что предъявление новой обстановки вызывает достоверное увеличение уровня экспрессии гена *c-Fos* во всех изучаемых отделах гиппокампа. Стоит отметить, что сочетание новой обстановки с электрокожной стимуляцией не оказало дополнительного эффекта по сравнению с предъявлением только новой обстановки, поэтому статистический анализ проводился между контрольной группой мышей и мышами, которым был предъявлен новый контекст вне зависимости от сочетания с электрокожной стимуляцией (рис. 2).

Экспрессия немедленного раннего гена Arc увеличивается в некоторых областях гиппокампа через час после предъявления нового контекста. Также мы проверили экспрессию другого известного раннего гена *Arc* в разных структурах гиппокампа. Уровень экспрессии этого гена увеличивается во всех исследованных областях гиппокампа, кроме вентральной зубчатой фасции, через час после предъявления нового контекста, также вне зависимости от сочетания с электрокожной стимуляцией (рис. 3).

Анализ экспрессии генов с помощью полногеномного секвенирования РНК в отдельных областях гиппокампа показал изменения в уровне экспрессии ряда генов IGF-инсулинового пути. Чтобы найти гены, участвующие в IGF-инсулиновом сигнальном пути, которые меняют уровень экспрессии во время обучения, мы провели пилотное секвенирование образцов гиппокампа через час после обучения. Обнаружено, что изменение уровня экспрессии многих генов наблюдается в первую очередь в дорсальной области CA1, в то время как в других областях наблюдается изменение уровня экспрессии только отдельных генов.

На рис. 4, *а* показано, что гены, уровень экспрессии которых меняется через час после обучения в дорсальной области CA1 гиппокампа, относятся к различным сигнальным каскадам и биологическим процессам, в том числе к mTOR-зависимому сигнальному пути, являющемуся компонентом других сигнальных путей (в том числе IGF-инсулиновой системы). Для того чтобы среди всех дифференциально экспрессируемых генов найти те, что относятся к IGF-инсулиновой системе, мы загрузили спи-

Рис. 3. Экспрессия гена *Arc* в исследуемых структурах гиппокампа. Относительный уровень экспрессии указан в %, где значение медианы, полученное в контрольной группе, принято за 100%. Во всех областях, кроме вентральной зубчатой фасции, между контрольной группой и объединённой группой наблюдаются достоверные различия, * p < 0,001; тест Манна–Уитни. Черными точками обозначены выбросы

Рис. 4. Анализ генной онтологии дифференциально экспрессируемых генов в дорсальной области CA1 гиппокампа после предъявления нового контекста с электрокожной стимуляцией. a – Анализ вовлечённости дифференциальноэкспрессируемых генов в различные биологические процессы и сигнальные каскады (значение p < 0,1 после поправки на множественное сравнение). Данные получены с помощью ресурса Metascape. δ – Изменение уровня экспрессии генов, вовлечённых в IGF-инсулин-зависимые сигнальные каскады (значение p < 0,1 после поправки на множественное сравнение). Данные получены с помощью ресурса geneontology

сок всех генов (по порогу скорректированного значения p < 0,1) в базу данных geneontology.org. Таким образом, были отобраны гены, входящие в IGF-инсулин-связанные сигнальные пути. Уровень экспрессии этих генов показан на рис. 4, δ .

Для дальнейшего анализа с помощью ПЦР в реальном времени на большей выборке животных (табл. 1) были отобраны два гена – *Irs2* и *Akt1*. *Irs2* – ген субстрата инсулинового рецептора 2, является специфичным компонентом IGF-инсулинового пути, в то время как многие другие компоненты являются общими для разных нейротрофических путей. *Akt1* – ген внутриклеточного фермента семейства протеинкиназ B, вовлечённый в регуляцию

Рис. 5. Экспрессия гена *Irs2* в исследуемых структурах гиппокампа. Относительный уровень экспрессии указан в %, где значение медианы, полученное в контрольной группе, принято за 100%. В дорсальной области CA1 и в вентральной зубчатой фасции между контрольной и объединённой группами наблюдаются достоверные различия, * p < 0.05; тест Манна–Уитни. Черными точками указаны выбросы

Рис. 6. Экспрессия гена *Akt1* в исследуемых структурах гиппокампа. Относительный уровень экспрессии указан в %, где значение медианы, полученное в контрольной группе принято за 100%. В дорсальной области CA1 между контрольной группой и объединённой группой с предъявлением нового контекста наблюдается тенденция к увеличению, # p < 0,1; тест Манна—Уитни

пролиферации, роста и выживания клеток, участвующий также в активации mTOR-зависимого сигнального пути. Данный ген показал наибольшее изменение уровня экспрессии в дорсальной области CA1 гиппокампа среди других генов IGF-инсулиновой системы после анализа данных секвенирования (рис. 4, *б*). Уровень экспрессии гена *Irs2* увеличивается в дорсальной области CA1 и в вентральной зубчатой фасции через час после предъявления новой обстановки. Мы обнаружили, что уровень экспрессии гена *Irs2* достоверно увеличивается при предъявлении нового контекста в дорсальной области CA1 и в вентральной зубчатой

фасции, но не в других исследуемых областях гиппокампа (рис. 5).

Уровень экспрессии гена Akt1 не меняется достоверно в изолированных областях CA1 и зубчатых фасциях через час после предъявления новой обстановки. Мы не обнаружили достоверных изменений экспрессии гена Akt1 в исследуемых областях гиппокампа, хотя наблюдается тенденция к увеличению экспрессии гена Akt1 в дорсальной области CA1 (скорректированное значение p = 0,07; рис. 6).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Гиппокамп — это многокомпонентный отдел мозга, в котором наблюдаются морфофункциональные различия как вдоль дорсовентральной оси, что обусловлено различными связями дорсальной и вентральной частей гиппокампа с другими отделами мозга, так и вдоль поперечной оси, что обусловлено хорошо описанной структурированностью гиппокампа и делением его на области СА1, СА2, СА3 и зубчатую фасцию [9, 19, 20]. Разные области гиппокампа отличаются нейрохимическими изменениями при стрессе и нейропатологиях [11].

Однако при исследовании экспрессии генов функциональные различия между областями гиппокампа часто не учитываются [21], хотя в некоторых работах авторы наблюдали различия в уровне экспрессии генов в отдельных частях гиппокампа в ходе экспериментов с обучением и модификацией памяти [3, 22, 23]. Например, в работе по изучению динамики накопления белков с-Fos и Arc в клетках мозга мышей после обучения были показаны временные различия в увеличении экспрессии этих белков для разных областей гиппокампа (области СА1, СА3 и зубчатой фасции) [24]. Подобные различия в количестве с-Fos-положительных клеток после обучения (электрокожной стимуляции) были показаны и для ряда областей гиппокампа у крыс, в частности, для области СА1 и зубчатой фасции [25]. Также в одной из работ с помощью метода гибридизации in situ было показано различие в накоплении клетками мРНК гена Arc в дорсальной и вентральной частях CA1, CA3 и DG-областях гиппокампа через 30 мин после обучения с помощью электрокожной стимуляции. Полученные в статье данные говорят о достоверном увеличении экспрессии гена Аrc лишь в дорсальных областях гиппокампа [26].

В настоящей работе мы показали, что экспрессия генов *c*-*Fos* и *Arc* меняется после обучения как в модели условно-рефлекторного страха, так и после предъявления новой обстановки почти во всех исследуемых отделах гиппокампа. В работе Heroux et al. [27] также было показано, что предъявление новой обстановки без дополнительной стимуляции изменяло экспрессию гена *c-Fos* в дорсальном гиппокампе. Интересно, что мы не заметили отличий между предъявлением новой обстановки и сочетанием новой обстановки с электрокожной стимуляцией, поэтому обе эти экспериментальные группы были объединены в одну в процессе анализа полученных данных. Возможно, отсутствие различий между описанными выше группами связано с особенностями протокола эксперимента, в частности, слабым уровнем приручения мышей.

Поскольку было показано, что при консолидации памяти и при напоминании происходит активация одних и тех же генов, например гена *с-Fos*, мы решили проверить, будут ли наблюдаться подобные изменения во время обучения и в уровне экспрессии гена Igf2, так как ранее подобные изменения наблюдались через час после напоминания [3]. Мы не обнаружили достоверных различий в уровне экспрессии этого гена между группами через час после обучения или предъявления нового контекста. Анализ экспрессии других генов IGF-инсулинового пути с помощью исследования транскриптома показал, что уровень экспрессии некоторых генов меняется через час после обучения в модели условно-рефлекторного страха в первую очередь в дорсальной области CA1.

Дальнейший анализ уровня экспрессии генов с помощью ПЦР в реальном времени на выборке из 54 животных продемонстрировал достоверное повышение уровня экспрессии гена субстрата инсулинового рецептора 2 в дорсальной области СА1 и вентральной зубчатой фасции.

Ряд данных указывает на участие гена Irs2 в процессе формирования памяти и развитии мозговых структур. Мыши с полным нокаутом Irs2 в мозге демонстрировали улучшение пространственной памяти после предъявления нового контекста в сочетании с электрокожной стимуляцией. В той же работе было показано, что при полной делеции гена Irs2 в головном мозге увеличивалась экспрессия белка-маркера активных синапсов и плотность дендритных шипиков в области СА1 гиппокампа, что может оказывать положительный эффект на формирование памяти. Из этих данных авторы выдвигают предположение о негативном влиянии Irs2 на процесс обучения [7]. Однако в другой работе, где рассматривалось влияние нокаута гена Irs2 на эмбриональное развитие мышей, отмечались морфологические изменения мозга, проявлявшиеся в уменьшении размера не-

которых структур мозга, из чего было выдвинуто предположение об уменьшении скорости пролиферации нейронов в ходе развития мозга у нокаутных мышей [6].

Интересно, что регуляторные участки гена *Irs2* содержат области, которые могут регулировать его индуцибельную экспрессию. В частности, в работе Persaud et al. [28] демонстрируется, что каскад активации Ca²⁺/ CaMK(IV)/CREB регулирует экспрессию гена *Irs2*, но не *Irs1* в бета-клетках поджелудочной железы. Таким образом, ген *Irs2* может быть мишенью для кальций-зависимой регуляции. В другой работе было показано, что изменение уровня экспрессии гена *Irs2* после напоминания в модели активного избегания наблюдалось лишь в зубчатой фасции гиппокампа, но не в поле CA1 [22].

В настоящей работе мы обнаружили, что несмотря на сходство в активации ряда исследуемых генов, таких как *c-Fos* и *Arc*, экспрессия гена *Irs2* носит более локальный характер. Это можно объяснить как особенностями коннектома этих областей, так и различиями в физиологии пирамидальных клеток области CA1, гранулярных и других клеток зубчатой фасции.

Таким образом, нам удалось показать достоверные изменения уровня экспрессии гена *Irs2* в отдельных областях гиппокампа в одной временной точке. Полученные результаты требуют дальнейшего изучения с увеличением числа исследуемых образцов и вовлечением других временных точек для более полного понимания процессов, происходящих в отдельных областях гиппокампа при предъявлении новой обстановки и обучения.

авторов. Н.В. Баль, П.М. Бала-Вклад бан – концепция и руководство работой; А.М. Швадченко, М.В. Волобуева, В.О. Иванова, Г.Р. Смирнова, Н.В. Баль – проведение экспериментов; А.П. Белецкий, Н.В. Баль – статистический анализ; А.М. Швадченко, Н.В. Баль, М.В. Волобуева, А.П. Белецкий. П.М. Балабан – обсуждение результатов исследования; Н.В. Баль, А.М. Швадченко – написание текста; П.М. Балабан, Н.В. Баль, А.М. Швадченко – редактирование текста статьи.

Финансирование. Работа поддержана Министерством науки и образования РФ (грант № 075-15-2020-801) и Российским научным фондом (грант № 18-75-10112, исследования гена *Irs2*).

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм. Все принятые международные, национальные и институциональные принципы ухода и использования животных были соблюдены.

СПИСОК ЛИТЕРАТУРЫ

- Chen, D. Y., Stern, S. A., Garcia-Osta, A., Saunier-Rebori, B., Pollonini, G., et al. (2011) A critical role for IGF-II in memory consolidation and enhancement, *Nature*, 469, 491-497, doi: 10.1038/nature09667.
- Pascual-Lucas, M., Viana da Silva, S., Di Scala, M., Garcia-Barroso, C., González-Aseguinolaza, G., et al. (2014) Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice, *EMBO Mol. Med.*, 6, 1246-1262, doi: 10.15252/ emmm.201404228.
- Agis-Balboa, R. C., Arcos-Diaz, D., Wittnam, J., Govindarajan, N., Blom, K., et al. (2011) A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories, *EMBO J.*, **30**, 4071-4083, doi: 10.1038/emboj.2011.293.
- Dou, J. T., Chen, M., Dufour, F., Alkon, D. L., and Zhao, W. Q. (2005) Insulin receptor signaling in longterm memory consolidation following spatial learning, *Learn Mem.*, 12, 646-655, doi: 10.1101/lm.88005.
- Zhao, W. Q., Chen, H., Quon, M. J., and Alkon, D. L. (2004) Insulin and the insulin receptor in experimental models of learning and memory, *Eur. J. Pharmacol.*, **490**, 71-81, doi: 10.1016/j.ejphar.2004.02.045.

- Schubert, M., Brazil, D., Burks, D., Kushner, J., Ye, J., et al. (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation, *J. Neurosci.*, 23, 7084-7092, doi: 10.1523/JNEUROSCI.23-18-07084.2003.
- Irvine, E. E., Drinkwater, L., Radwanska, K., Al-Qassab, H., Smith, M. A., et al. (2011) Insulin receptor substrate 2 is a negative regulator of memory formation, *Learn. Mem.*, 18, 375-383, doi: 10.1101/lm.2111311.
- Khan, S. (2019) IGFBP-2 signaling in the brain: from brain development to higher order brain functions, *Front. Endocrinol. (Lausanne)*, **10**, 822, doi: 10.3389/ fendo.2019.00822.
- Gilbert, P., Kesner, R., and Lee, I. (2001) Dissociating hippocampal subregions: a double dissociation between dentate gyrus and CA1, *Hippocampus*, 11, 626-636, doi: 10.1002/hipo.1077.
- Hunsaker, M., and Kesner, R. (2008) Evaluating the differential roles of the dorsal dentate gyrus, dorsal CA3, and dorsal CA1 during a temporal ordering for spatial locations task, *Hippocampus*, **18**, 955-964, doi: 10.1002/hipo.20455.

- Gulyaeva, N. V. (2019) Functional neurochemistry of the ventral and dorsal hippocampus: stress, depression, dementia and remote hippocampal damage, *Neurochem. Res.*, 44, 1306-1322, doi: 10.1007/ S11064-018-2662-0.
- Strange, B., Witter, M., Lein, E., and Moser, E. (2014) Functional organization of the hippocampal longitudinal axis, *Nat. Rev. Neurosci.*, 15, 655-669, doi: 10.1038/nrn3785.
- Bannerman, D., Rawlins, J., McHugh, S., Deacon, R., Yee, B. K., et al. (2004) Regional dissociations within the hippocampus – memory and anxiety, *Neurosci. Biobehav. Rev.*, 28, 273-283, doi: 10.1016/ j.neubiorev.2004.03.004.
- Fanselow, M., and Dong, H., (2010) Are the dorsal and ventral hippocampus functionally distinct structures? *Neuron*, 65, 7-19, doi: 10.1016/j.neuron.2009.11.031.
- Moser, M., and Moser, E. (1998) Functional differentiation in the hippocampus, *Hippocampus*, 8, 608-619, doi: 10.1002/(SICI)1098-1063(1998)8:6 <608::AID-HIPO3>3.0.CO;2-7.
- Kenney, J., Raybuck, J., and Gould, T. (2012) Nicotinic receptors in the dorsal and ventral hippocampus differentially modulate contextual fear conditioning, *Hippocampus*, **22**, 1681-1690, doi: 10.1002/hipo.22003.
- Chomczynski, P., and Sacchi, N. (1987) Singlestep method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, *Anal. Biochem.*, **162**, 156-159, doi: 10.1006/abio.1987.9999.
- Анохин К. В. (1992) «Ранние гены» в механизмах обучения и памяти, Дисс. докт. биол. наук, МГУ, Москва.
- Aimone, J., Deng, W., and Gage, F. (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation, *Neuron*, **70**, 589-596, doi: 10.1016/J.NEURON.2011.05.010.
- Cembrowski, M., Wang, L., Sugino, K., Shields, B., and Spruston, N. (2016) Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons, *Elife*, 5, e14997, doi: 10.7554/ ELIFE.14997.
- 21. Cho, J., Yu, N., Choi, J.-H., Sim, S., Kang, S. J., et al. (2015) Multiple repressive mechanisms in the

hippocampus during memory formation, *Science*, **350**, 82-87, doi: 10.1126/science.aac7368.

- 22. Harris, R. M., Kao, H-Y., Alarcón, J. M., Fenton, A. A., and Hofmann, H. A. (2020) Transcriptome analysis of hippocampal subfields identifies gene expression profiles associated with long-term active place avoidance memory, *bioRxiv*, 2020.02.05.935759, doi: 10.1101/2020.02.05.935759.
- Katzman, A., Khodadadi-Jamayran, A., Kapeller-Libermann, D., Ye, X., Tsirigos, A., et al. (2021) Distinct transcriptomic profiles in the dorsal hippocampus and prelimbic cortex are transiently regulated following episodic learning, *J. Neurosci.*, 41, 2601-2614, doi: 10.1523/JNEUROSCI.1557-20.2021.
- Ivashkina, O., Toropova, K., Ivanov, A., Chekhov, S., and Anokhin, K. (2016) Waves of c-Fos and Arc proteins expression in neuronal populations of the hippocampus in response to a single episode of new experience, *Bull. Exp. Biol. Med.*, 160, 729-732, doi: 10.1007/S10517-016-3296-3.
- Murawski, N., Klintsova, A., and Stanton, M. (2012) Neonatal alcohol exposure and the hippocampus in developing male rats: effects on behaviorally induced CA1 c-Fos expression, CA1 pyramidal cell number, and contextual fear conditioning, *Neuroscience*, **206**, 89-99, doi: 10.1016/J.NEUROSCIENCE.2012.01.006.
- Chawla, M., Sutherland, V., and Olson, K. (2018) Behavior-driven Arc expression is reduced in all ventral hippocampal subfields compared to CA1, CA3 and dentate gyrus in rat dorsal hippocampus, *Hippocampus*, 28, 178-185, doi: 10.1002/hipo.22820.
- Heroux, N., Osborne, B., Miller, L., Kawan, M., Buban, K., et al. (2018) Differential expression of the immediate early genes c-Fos, Arc, Egr-1, and Npas4 during long-term memory formation in the context preexposure facilitation effect (CPFE), *Neurobiol. Learn. Mem.*, **147**, 128-138, doi: 10.1016/ J.NLM.2017.11.016.
- Persaud, S., Liu, B., Sampaio, H., Jones, P., and Muller, D. (2011) Calcium/calmodulin-dependent kinase IV controls glucose-induced Irs2 expression in mouse beta cells via activation of cAMP response element-binding protein, *Diabetologia*, 54, 1109-1120, doi: 10.1007/S00125-011-2050-7.

NEW CONTEXT SIGNIFICANTLY CHANGES EXPRESSION OF *Irs2* GENE IN HIPPOCAMPAL AREAS

A. M. Shvadchenko, M. N. Volobueva, V. O. Ivanova, A. P. Beletskiy, G. R. Smirnova, N. V. Bal, and P. M. Balaban*

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; E-mail: pmbalaban@gmail.com

Memory formation is a complex process involving changes in the synaptic activity and gene expression encoding the insulin-like growth factors. We analyzed changes in the expression of genes encoding the insulin/insulin-

like growth factors' proteins at the early period of learning in the CA1 region and dentate gyrus of the dorsal and ventral hippocampus in mice 1 hour after presentation of a new context (contextual fear conditioning) with and without negative reinforcement. It was found that in addition to changes in the expression of immediate early genes *c-Fos* (in all studied hippocampal fields) and *Arc* (in dorsal and ventral CA1, as well as in dorsal dentate gyrus), exposure to a new context significantly altered expression of the insulin receptor substrate 2 gene (*Irs2*) in dorsal CA1 and ventral dentate gyrus irrespectively of the negative reinforcement, which suggests participation of the insulin/IGF system in the early stages of neural activation during learning.

Keywords: learning, memory, Irs2, hippocampus, transcriptome, fear conditioning