ПРАВИЛА ДЛЯ АВТОРОВ

1. Общие положения

- 1.1. Ежемесячный международный журнал «Биохимия»/Віосhemistry (Moscow), учредителем которого является Российская академии наук, издается и распространяется одновременно на русском и английском языках.
- **1.2.** Журнал «Биохимия» публикует работы по всем разделам биохимии, а также концептуально важные работы по биохимическим аспектам смежных областей (молекулярной биологии, биофизики, биоорганической химии, микробиологии, иммунологии, физиологии, нейробиологии, геронтологии, биомедицинских наук и др.), направленные на понимание молекулярных и клеточных основ биологических процессов. В журнале печатаются описания новых экспериментальных методик в области биохимии, теоретических достижений, имеющих значение для биохимии, а также обзоры современных биохимических тем исследования и мини-обзоры. Журнал не рассматривает чисто феноменологические работы, которые описывают изменения биохимических параметров или маркеров биологических процессов без связи с механизмами, вызвавшими эти изменения или являющимися следствием таких изменений, а также работы по клонированию и экспресиии (в том числе в трансгенных животных и растениях) индивидуальных генов и материалы по анализу геномных полиморфизмов.
- 1.3. К публикации принимаются законченные оригинальные работы, содержащие новые экспериментальные результаты; методические работы, включающие описание новых методов биохимических исследований; материалы теоретического характера с изложением новых принципов, подходов для решения тех или иных биохимических задач. Не принимаются статьи с результатами, новизна которых заключается только в том, что изучаемый хорошо известный объект получен из другого источника.

Раздел «**Краткие сообщения**» публикует короткие экспериментальные статьи заявочного, приоритетного характера, требующие скорейшей публикации. В сопроводительном письме в редакцию авторам следует мотивировать необходимость ускоренного прохождения материала. Срок публикации таких сообщений 1—2 месяца.

Журнал печатает заказанные редколлегией (или предлагаемые авторами и одобренные редколлегией) обзоры по наиболее актуальным проблемам биохимии и смежных наук. К обзорным статьям предъявляются следующие требования: 1) у авторов должны быть свои работы по теме обзора; 2) список цитированной литературы должен включать работы, опубликованные по данной теме в течение последних 5 лет; 3) обзор не должен быть пересказом и подчас дословным цитированием кусков ранее опубликованных работ, в нем должен быть критический разбор цитируемых материалов и своя концепция, свое видение проблемы, побудившее авторов написать данный обзор. Редакция и рецензенты строго следят за плагиатом.

Раздел «Дискуссии» предоставляет авторам возможность опубликовать комментарии, критические замечания и иные соображения по поводу напечатанных ранее на страницах журнала работ, выступить с новой гипотезой. Раздел носит полемический характер и печатает ответные реплики затронутых в публикациях сторон.

- 1.4. Журнал индексируется и включен в библиографические базы данных Web of Sciences, Biochemistry and Biophysics Citation Index, Biological Abstracts, BIOSIS Database, Chemical Abstracts, Chemical Titles, Current Contents/Life Science, Excerpta Medica, Index Internacional de Cardiologia, Index Medicus (MEDLINE/Pubmed), International Abstracts of Biological Sciences, The ISI Alerting Service, Science Citation Index, Science Citation Index, Science Citation Index, Science Citation Index Ехрапded, SCOPUS, Сотрепдх; РИНЦ. Журнал включен в Перечень рецензируемых научных изданий ВАК.
- **1.5.** Правила для авторов и информацию о журнале можно найти на сайтах журнала:

http://protein.bio.msu.ru/biokhimiya https://biochemistrymoscow.com,

а также на порталах издательств Pleiades

https://pleiades.online/ru/journal/biochmsc/ и Springer

https://link.springer.com/journal/10541.

На сайте журнала на английском языке представлены содержания всех выпусков, начиная с 1996 г., с резюме статей, ключевыми словами и адресами авторов, а также в полном объеме — тематические выпуски журнала, посвященные наиболее актуальным проблемам биохимии.

- **1.6.** Импакт-фактор Biochemistry (Moscow) в 2020 г. составил 2.487, импакт-фактор РИНЦ для «Биохимии» 3.038. По данным Scopus, журнал находится во 2-й квартили (Q2) среди журналов медико-биологического профиля.
- 1.7. Для увеличения охвата читательской аудитории и повышения цитируемости своей работы вы можете опубликовать статью в Biochemistry (Moscow) в режиме открытого доступа (Open Access). Всю информацию о публикации статьи в свободном доступе можно найти на сайте издательства:

http://pleiades.online/ru/authors/openaccess/ или обратившись в редакцию.

2. Порядок подачи рукописей

2.1. Редакция принимает на рассмотрение рукописи, присланные по электронной почте в форме присоединенных файлов (attachment) на адреса редакции:

editorial@biochemistrymoscow.com ozrina@bio.chem.msu.ru,

а также поданные через Авторский портал издательства:

https://publish.sciencejournals.ru.

2.2. Материал статьи — текст, включая резюме на русском и английском языках, список литературы, рисунки с подписями и таблицы — оформляется одним файлом; каждый рисунок дополнительно оформляется отдельным файлом. Если пересылаемый материал велик по объему, следует использовать программы для архивирования.

Все страницы рукописи, в том числе содержащие список литературы, таблицы и подписи к ним, следует пронумеровать; строки также следует последовательно пронумеровать.

На отдельной странице прилагаются сведения об авторах с указанием адресов, контактных телефонов, факса и электронной почты, а также указывается автор, ответственный за переписку с редакцией и работу с корректурой.

- **2.3.** Одновременно с русским желательно представить аутентичный английский вариант рукописи.
- 2.4. При подаче рукописи авторам следует прислать в редакцию сопроводительное письмо, в котором надо указать, что: 1) представленный материал (или его части) не был ранее нигде опубликован и не находится на рассмотрении на предмет публикации в других изданиях; 2) авторы ознакомились с этическими

нормами, предписанными международными соглашениями о публикациях научных статей, и соблюдают их; 3) авторами представлена информация о потенциальных конфликтах интересов; 4) авторы ознакомились с правилами проведения исследований с участием человека и/или животных и соблюдают их; 5) каждый соавтор сообщает о своем согласии на авторство в статье (см. соответствующие Положения на сайтах журнала и на порталах Springer и Pleiades).

3. Требования к оформлению рукописей

- **3.1.** Текст статьи должен быть изложен по возможности сжато и тщательно отредактирован, но без ущерба для ее понимания и воспроизведения результатов.
- 3.2. Рукопись должна быть построена следующим образом: 1) индекс УДК; 2) заглавие; 3) инициалы и фамилии авторов; 4) полные названия учреждений, индекс, город и электронная почта (аффилиация); 5) резюме на русском языке; 6) ключевые слова; 7) краткое заглавие статьи (колонтитул); 8) текст статьи, включающий список цитированной литературы, таблицы, подписи к рисункам; 9) резюме на английском языке (с переводом названия статьи, фамилий авторов, аффилиации и ключевых слов).

Индекс УДК (уникальной десятичной классификации) выделяется *курсивом* и ставится в верхнем левом углу первой страницы.

Заглавие должно быть максимально кратким, информативным и без сокращений.

Если авторы статьи являются сотрудниками разных учреждений, то учреждения следует пронумеровать и после каждой фамилии надстрочным знаком указать соответствующий номер; звездочкой справа от цифры необходимо отметить автора, ответственного за переписку с редакцией. Для каждого из авторов приводится полное название учреждения с индексом, городом и страной; для автора, ответственного за переписку, указывается также адрес электронной почты. Авторы, внесшие равный вклад в работу, обозначаются знаком решётки (#).

Резюме должно быть кратким (не более 250 слов), сжато и ясно описывающим основные конкретные результаты работы и вытекающие из них выводы.

Kлючевых слов — не более 15.

При использовании нестандартных сокращений должен быть добавлен раздел *Принятые* сокращения.

Текст экспериментальной статьи следует разбить на разделы: 1) Введение, 2) Материалы и методы, 3) Результаты исследования, 4) Обсуждение результатов (объединенный раздел «Результаты и их обсуждение» допускается в тех случаях, когда обсуждение невелико по объему), 5) Заключение, 6) Список литературы, 7) Резюме на английском языке.

Во введении кратко излагается история вопроса с обязательным рассмотрением работ, в которых аналогичные или близкие исследования уже проводились, и формулируется цель исследования.

Основное требование к изложению методов исследования состоит в том, чтобы процедуры были описаны максимально кратко, но по описанию можно было воспроизвести эксперименты; сюда же должны быть включены использованные в работе материалы, реактивы и приборы с указанием фирмы и страны-производителя, например: глицерин («Sigma-Aldrich», США), электронный микроскоп JEM 100С («JEOL», Япония). Только новые методы следует детально описывать; на ранее опубликованные и общеизвестные — достаточно сослаться в списке литературы, указав автора и/ или название метода (например, концентрацию белка определяли по методу Бредфорда [7]). Если метод известен не слишком широко, желательно изложить его принцип и указать автора. Не допускаются ссылки на методы по типу «нуклеазу измеряли методом [7]» или «по [7]» (ссылка не может быть самостоятельным членом предложения).

Результаты исследования обычно представлены рисунками и таблицами; те эксперименты, которые не нуждаются в документации, описываются в тексте. В этом разделе не следует приводить обсуждение результатов, можно ограничиться объяснением причинно-следственных связей между описываемыми экспериментами.

Раздел «Обсуждение результатов» должен содержать интерпретацию результатов (но не их повторение) и сравнение с ранее опубликованными результатами. Желательно основные результаты иллюстрировать простой и наглядной схемой.

В случае необходимости рукопись завершается заключением, которое отделяется от раздела «Обсуждение результатов» отбивкой. В связи с участием журнала в Международном комитете по этике публикаций (Committee on Publication Ethics — COPE) авторам следует внести в конце статьи несколько фраз, демонстрирующих приверженность международным этическим стандартам. Ниже приведены образцы представления соответствующих разделов в заключительной части статьи.

- 1) Следует описать вклад каждого из авторов в работу и подготовку рукописи (раздел «Вклад авторов»). Например: А.Б. Иванов и В.Г. Петров концепция и руководство работой; Д.Е. Сидоров и З.И. Дроздов проведение экспериментов; А.Б. Семенов и В.Г. Петров обсуждение результатов исследования; С.И. Холодов и В.Г. Антонов написание текста; А.Б. Иванов, В.Г. Петров, А.Б. Семенов редактирование текста статьи.
- 2) Если работа выполнена при поддержке какой-либо организации, в разделе «Финансирование» следует указать, каким фондом и грантом поддержано данное исследование и каждая часть работы в отдельности, если источники финансирования разные. Следует приводить полные названия институтов и организаций-спонсоров.
- 3) В разделе «Благодарности» по желанию авторов сообщается информация о любой помощи в проведении работы и подготовке статьи: о полезных обсуждениях и дискуссиях, благодарности коллегам; о предоставлении материалов, научных данных, компьютерного оборудования, приборов; о проведении исследований в центрах коллективного пользования; о помощи в технической подготовке текста.
- 4) В разделе «Конфликт интересов» авторы заявляют о наличии или отсутствии конфликта интересов в финансовой или какой-либо иной сфере. Данный раздел является обязательным.
- 5) Обязательным является также раздел «Соблюдение этических норм». Если исследования проводились на животных, то в данном разделе указывается: «Все процедуры, выполненные в исследованиях с участием животных, соответствовали этическим стандартам учреждения, в котором проводились исследования, и утвержденным правовым актам РФ и международных организаций». Если исследования проводились с участием людей, то в разделе «Соблюдение этических норм» указывается: «Все процедуры, выполненные в исследованиях с участием людей, соответствуют этическим стандартам национального комитета по иссле-

довательской этике и Хельсинкской декларации 1964 года и ее последующим изменениям или сопоставимым нормам этики. От каждого из включенных в исследование участников было получено информированное добровольное согласие». Если в статьях не содержится описания исследований с участием людей или использованием животных и выполненных кем-либо из авторов, в разделе «Соблюдение этических норм» указывается: «Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов».

6) Если статья содержит персональную информацию об участниках исследования, то необходимо включить следующее положение в раздел «Информированное согласие»: «От всех участников, чья персональная информация содержится в этой статье, получено дополнительное письменное добровольное согласие».

Список цитируемой литературы должен быть максимально кратким (не более 150 ссылок), но содержащим ссылки на все принципиально важные последние публикации по данному вопросу. В журнале принята последовательная нумерационная система цитирования, т.е. по ходу изложения указывается порядковый номер процитированного источника (в квадратных скобках), соответствующий номеру в Списке литературы. Авторам следует очень внимательно проверить последовательность нумерации ссылок в тексте и соответствие номера каждой ссылки в тексте и списке литературы. Не допускается включение в список литературы ссылок на веб-сайты, необходимо ссылаться на публикации авторов, предлагающих эти электронные ресурсы (программы/базы данных). Если такие публикации отсутствуют, ссылка дается в тексте так же, как на другие неопубликованные материалы (например, База данных структур бактериальных углеводов, http://csdb.glycoscience.ru/bacterial).

Ссылки на **неопубликованные** данные не допускаются. Можно сослаться на личное сообщение кого-либо, в таком случае необходимо указать инициалы и фамилию источника, а также место работы.

Следует избегать появления дублированных ссылок в списке литературы, а также ссылок на отозванные статьи.

Список литературы печатается как отдельный раздел рукописи с указанием фамилий и инициалов всех авторов, названия цитируемой

статьи и выходных данных. Кроме этого, желательно дать doi статьи. Ниже приводятся примеры ссылок на журналы, книги, сборники, диссертации.

- 1. Beltrami, C., Besnier, M., Shantikumar, S., Shearn, A. I. U., Rajakaruna, C., et al. (2017) Human pericardial fluid contains exosomes enriched with cardiovascular-expressed microRNAs and promotes therapeutic angiogenesis, *Mol. Ther.*, **25**, 679-693, doi: 10.1016/j.ymthe.2016.12.022.
- Tran, Q. M., Fong, C., Rothery, R. A., Maklashina, E., and Cecchini, G. (2012) Out of plane distortions of the heme b of Escherichia coli succinate dehydrogenase, PLoS One, 7, e32641, doi: 10.1371/journal.pone.0032641.
- 3. Анисимов В. Н. (2008) *Молекулярные и физиологические механизмы старения*, Наука, СПб.
- Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, Cold Spring Harbor Laboratory Press, N.Y.
- 5. Tanphaichitr, V. (2001) in *Handbook of Vitamins* (Rucker, R., and Suttie, J., eds) Marcell Dekker, N.Y., pp. 275-316.
- 6. Гендролис А. А., Серебрянников Н. В., Гандель В. Г. (1978) В кн. *Простагландины* (под ред. Ажгихина И.С.) Медицина, Москва, с. 332-347.
- 7. Гандельман О. А. (1992) Кинетика и механизм биолюминесцентного окисления люциферина светляков. Дис. канд. хим. наук, МГУ, Москва.
- 8. Rosenkranz, A. A., Slastnikova, T. A., Durymanov, M. O., and Sobolev, A. S. (2013) Malignant melanoma and melanocortin 1 receptor, *Biochemistry (Moscow)*, **78**, 1228-1237, doi: 10.1134/S0006297913110035.

Для авторов, использующих систему EndNote, редакция предоставляет стиль, который поддерживает форматирование цитат в тексте и список литературы. Стилевой файл можно найти на сайтах журнала:

http://protein.bio.msu.ru/biokhimiya https://biochemistrymoscow.com в разделах для авторов.

В конце статьи дается резюме на английском языке, являющееся аутентичным переводом заглавия статьи, инициалов и фамилий авторов в английской транскрипции, названий учреждений с индексами, названиями городов и адресами электронной почты, текста аннотации и ключевых слов.

3.3.1. Объем экспериментальной статьи, включая список литературы, таблицы, рисунки (3 рисунка считаются за 1 страницу) и подписи к ним, резюме на английском языке, не должен превышать 20 машинописных страниц, количество рисунков — не более 8; краткое сообщение — не более 12 страниц (включая

не более 4 рисунков и/или таблиц); **мини-об- зор** — не более 16 страниц (включая не более 5 рисунков); **обзор** — не более 35 страниц (включая не более 8 рисунков); сообщения в разделе «Дискуссии» — до 4 страниц.

3.3.2. Текстовые файлы следует представлять в формате Microsoft Word (версия 6.0 и более поздние), шрифты для основного текста — Times New Roman, размер букв 12, полтора интервала, в одну колонку без выравнивания по правому краю, без переноса слов, с полями 3 см с левой стороны, на странице — не более 30 строк.

Для оформления текста можно использовать курсив, полужирные начертания, подстрочные и надстрочные индексы, греческие и математические символы (шрифт Times New Roman) в соответствии со стилевым оформлением журнала.

Стиль оформления текстового материала должен быть простым: **без запрограммированных заголовков**, **вставок**, **шаблонов**, **ссылок на литературные источники (гиперссылок)**; без увеличения межстрочных и межбуквенных интервалов; без использования шаблонов — в окне «стиль» должно быть «обычный»). Особенно это относится к «Списку литературы», т.к. запрограммированные порядковые номера при переносе в издательскую программу исчезают.

Авторы не должны использовать такие функции программы Word, как «Закладка», «Примечание», «Сноска», «Концевая сноска», потому что они неправильно интерпретируются издательской программой. Если в тексте встречается сноска (или концевая сноска), то сразу после предложения или абзаца с ее номером, следует набрать «{Footnote}», т.е. «{Chocka}», и далее непосредственно текст сноски.

Если при подготовке статьи была использована функция «Рецензирование», то перед сохранением файла нужно отменить функцию «Рецензирование» и затем использовать функцию «Принять все изменения в документе».

Таблицы следует приводить в тех случаях, когда данные не могут быть приведены в тексте. Каждая таблица оформляется на отдельной странице и имеет свой заголовок. Колонки в таблице должны быть озаглавлены с указанием через запятую размерности приводимых величин. Необходимо стремиться к максимальной краткости заголовков колонок, не давать величин, легко выводимых из имеющихся (например, разность или проценты). Повторение одних и тех же данных в тексте, в таблицах или

на рисунках не допускается. Таблицы принимаются только в формате Word (doc, docx). Если таблицы содержат графические вставки, эти вставки следует прислать в виде отдельных графических файлов высокого качества.

- 3.3.4. Рисунки с подрисуночными подписями следует располагать в тексте по месту ссылки на каждый рисунок. Кроме того, рисунки должны быть представлены в виде отдельных файлов, удовлетворяющих следующим требованиям:
- для схем и графиков **без полутоновых вставок**: файлы в формате tiff, jpg или pdf, в черно-белом режиме (Line-art, Black-and-White, Bitmap). Пикселизированные (растровые) рисунки принимаются только в форматах tiff или jpg;
- для **полутоновых рисунков** или графиков **с полутоновыми вставками**: файлы в формате tiff, jpg или pdf, в полутоновом черно-белом режиме (градации серого Grayscale). Пикселизированные (растровые) рисунки принимаются только в форматах tiff или jpg;
- для **цветных рисунков**: файлы в формате tiff, jpg или pdf, в цветном режиме CMYK (для цветной печати), RGB (для цветных рисунков в электронной версии). Пикселизированные (растровые) рисунки принимаются только в форматах tiff или jpg;
- независимо от типа графики, рисунок должен обладать высоким реальным разрешением: не ниже 300 dpi для полутоновых иллюстраций; не ниже 600 dpi для штриховых и смешанных (полутоновых/штриховых) иллюстраций. Пикселизация изображений в форматах растровой графики не должна быть грубой. Линии рисунков должны быть толщиной не менее 3 пунктов (роіпt). Следует избегать чрезмерно мелких обозначений (букв, цифр, значков и т.д.). Пикселизированные (растровые) рисунки не следует вставлять в документ Word или переводить в формат pdf, так как это ухудшает их качество;
- рисунки должны иметь размеры, соответствующие их информативности. Размер рисунка на одну колонку не должен быть менее 8 см; на две колонки менее 17 см. Рисунки не должны быть чрезмерно крупными;
- векторные иллюстрации не должны содержать точечных закрасок, таких как «Noise», «Black & White noise», «Тор noise». Для векторной графики все использованные шрифты должны быть включены в файл;
- шрифты внутри рисунков выбираются из гарнитуры Arial размером 9 пунктов;
- следует избегать сканирования рисунков из книг и других печатных изданий, так как

такие файлы дают низкое качество при печати и имеют неоправданно большой размер.

Общие требования к подготовке графиков, диаграмм и формул:

- график должен содержать обозначения координатных осей (измеряемый параметр и единица измерения), а также кривых и других деталей. Надписи по осям выполняются вдоль осей шрифтом Arial с заглавной буквы, единица измерения отделяется запятой, а не скобками (например, Объем элюента, мл). Линии внутри рисунка следует пронумеровать (цифры выполняются $\kappa y p c u s o m - 1$, 2 и т.д.), и в подрисуночной подписи (не на рисунке) дать пояснения к каждой линии. Экспериментальные точки предпочтительно представлять заштрихованными и незаштрихованными кружками, квадратами, треугольниками, ромбами. Отдельные кривые могут различаться также сплошным или штриховым изображением. Все линии должны быть изображены четко с толщиной линий (обычно 3 пункта), позволяющей уменьшить рисунок до конечного размера в журнале. Координатные оси в большинстве случаев необходимо отображать черными (не серыми) линиями. Фон графика или диаграммы должен быть белым, без линий координатной сетки (за исключением случаев, когда иной цвет фона или наличие сетки необходимы для правильного восприятия);
- на диаграммах и фотографиях отдельные элементы (столбцы, дорожки геля и пр.) следует пронумеровать *курсивными* арабскими цифрами (1, 2 и т.д.) и в подрисуночной подписи (не на рисунке) дать пояснения к каждой цифре. Если помимо арабских требуется введение римских цифр (I, II, III и т.д.), эти цифры должны быть прямого начертания;
- если рисунок состоит из нескольких частей (диаграмм, графиков, схем, структур белков, фотографий, в т.ч. электрофореграмм), их нужно обозначить строчными *курсивными* буквами (a, δ , ϵ и т.д.) гарнитурой Times, размером большим, чем основной текст, и поместить эти буквы в верхних левых углах соответствующих частей. В подрисуночной подписи следует дать пояснение к каждой части рисунка;
- для написания **химических формул** в тексте используется программа ChemWindows;
- длинные и сложные математические формулы следует представлять в виде рисунков без подписей в одном из допустимых форматов (pdf, tiff или jpg). Каждую формулу нужно дать отдельным файлом, название которого соответствует номеру формулы; при подготовке

- данных файлов следует руководствоваться правилами подготовки графических материалов. Функцией «Редактор уравнений» надо пользоваться только для развернутых уравнений (как нумерованных, так и встречающихся в тексте), но не для небольших выражений (обозначений), вкрапленных в текст, например, ΔG , $T\Delta S$, $K_{\rm m}$. (Для таких небольших выражений должны использоваться основные функции программы Word, как и для всего остального текста статьи.) Для выражений, в которых требуется «кернинг» (нижний и верхний индексы, расположенные один под другим), надо использовать только надстрочные и подстрочные знаки (например, NH₃+), а «кернинг» будет выполнен макетчиком. Эти требования обусловлены тем, что издательская программа неправильно воспринимает данные, полученные с помощью функции «Редактор уравнений»;
- в ширину формула не должна превышать 8,5 см (ширина колонки журнала). Более длинные формулы должны быть разбиты автором на несколько строк. Формулы должны быть набраны шрифтом Times New Roman. В случае если формулы предоставляются в виде пикселизированных (растровых) изображений, они должны быть представлены в черно-белом режиме (Line-art, Black-and-White, Bitmap) в формате tiff или jpg. Такие изображения должны обладать высоким реальным разрешением (пикселизация не должна быть грубой). Особое внимание следует уделять качеству графической передачи надписей, цифр и мелких элементов пикселизированного изображения. Пикселизированные (растровые) изображения не стоит вставлять в документ Word или переводить в формат pdf, так как это зачастую ухудшает их качество:
- аминокислотные, нуклеотидные и пр. последовательности часто изображаются в форме, требующей строго вертикального расположения компонентов. Поэтому во избежание ошибок и необходимости проверять большие количества сложной информации авторы должны представлять в редакцию материалы такого рода в виде, пригодном для репродукции.

Обращаем внимание на общие условия публикации иллюстраций:

надписи и обозначения на рисунках могут меняться в русской и английской версиях при переводе, поэтому для фотографий и рисунков, где надписи наложены на сложный, неоднотонный фон, желательно предоставить второй вариант без текста и всех обозначений,

для остальных иллюстраций — располагать надписи на иллюстрации так, чтобы они не соприкасались с другими ее частями. Авторы также могут сами подготовить версии рисунков с английскими надписями;

- рисунок должен иметь заголовок и информативную подрисуночную подпись, делающую его смысл понятным без обращения к тексту указываются условия, специфические для данного эксперимента; ссылки на основной текст допускаются только чтобы избежать повторений и неясностей;
- цветные иллюстрации публикуются бесплатно для авторов в том случае, если они будут размещены только в электронной версии статьи, а в печатной версии журнала они будут в черно-белом исполнении. При этом авторы должны иметь в виду, что в печатной версии с черно-белыми рисунками сохранятся подрисуночные подписи из цветной электронной версии, поэтому следует избегать указаний на цвет в подрисуночных подписях. Авторам необходимо подбирать цвета таким образом, чтобы при черно-белой печати не утратилась информативность. Цветные линии графиков желательно размечать обозначениями, цифрами или спецсимволами или делать различающиеся типы линий для каждого цвета. Цветные области на иллюстрациях желательно размечать различающимися обозначениями или спецсимволами, а не одинаковыми символами разных цветов. Если цветовое разделение областей находится примерно в одном цветовом тоне, то желательно провести тонкую линию границы между ними. При большом количестве цветных областей в схожих цветовых тонах желательно дополнительно обозначить области символами или штриховкой. Все надписи и обозначения желательно делать не цветными, а черными или белыми, в зависимости от подложки;
- если электронная версия статьи содержит несколько цветных рисунков, в печатной версии возможна платная публикация всех этих рисунков в цвете либо бесплатная публикация всех этих рисунков в черно-белом исполнении. Публикация в печатной версии только части цветных рисунков в цветном исполнении невозможна;
- подготовленные рисунки желательно распечатать, чтобы убедиться, что они хорошо выглядят в напечатанном виде: все элементы рисунка должны быть хорошо видны на распечатке, фон должен быть чистым, надписи и цифры должны легко читаться. Зачастую

бывает достаточно сложно оценить качество рисунка только по тому, как он выглядит на экране компьютера;

— если авторы используют в своей рукописи иллюстрации или таблицы из других публикаций (в том числе своих собственных), то им необходимо запросить у правообладателей этих публикаций разрешение на перепечатку или использование материалов.

Несоблюдение правил подготовки графического материала приводит к необходимости переработки рисунков авторами и задержке публикации рукописи.

3.3.5. Дополнительные материалы к статьям. Для более полного описания исследования к статье могут прилагаться дополнительные материалы (аудио- и видеофайлы, презентации, дополнительные таблицы, рисунки и пр.) при условии, что автор является правообладателем данных материалов и автором ранее не были переданы авторские права на их использование иным (кроме издателя) лицам либо автор имеет письменное разрешение правообладателя на их использование в целях опубликования и распространения в журнале. Дополнительные материалы должны быть законченным произведением. Не допускается выносить в дополнительные файлы материалы, критически важные для понимания статьи. Дополнительные материалы не правятся и не обрабатываются, публикуются в исходном авторском исполнении. Файлы дополнительных материалов должны именоваться по порядку, например, «ESM 1. jpg», «ESM 2.pdf», «ESM 3.xls». В тексте статьи должна быть указана ссылка на наличие дополнительных материалов («...дополнительные данные приведены в Online Resource 1», «...как показано в таблице Online Resource 2»). Дополнительные материалы являются частью статьи, на которую распространяются все правила и требования, предъявляемые к основному тексту. Дополнительные материалы публикуются только в электронной версии журнала на сайтах:

https://www.springer.com,

http://protein.bio.msu.ru/biokhimiya/,

https://biochemistrymoscow.com.

3.3.6. Все физические величины рекомендуется приводить в Международной системе СИ.

3.3.7. Физико-химические символы в тексте, структурные формулы органических соединений и математические формулы должны быть набраны на компьютере. В буквенных обозначениях отношений единиц в качестве знака деления следует применять косую черту, например,

моль/с (моль в секунду). В более сложных выражениях одновременно с косой чертой применяют скобки, чтобы избежать двусмысленности: a/(bc), но не a/b/c или a/bc; (a/b)c, но не $a/b \cdot c$. Отношения можно также представить в виде произведения символов единиц, возведенных в степень (положительную и отрицательную), например, моль \cdot с⁻¹. Не допускаются выражения типа мА/гель, мкмоль/мин·мг белка и т.п. В таких случаях следует писать: мА на 1 столбик геля, мкмоль/мин на 1 мг белка и т.п.

3.3.8. При подготовке статьи необходимо учесть правила использования символов, сокращений, условных обозначений и пр., рекомендованные Комиссией по биохимической номенклатуре Международного союза биохимии и молекулярной биологии (https://iubmb.org).

3.3.9. Номенклатура веществ, меченных изотопами. Символ изотопа помещается в квадратных скобках перед названием соединений (без пробела): $[^{14}C]$ мочевина, $[\alpha^{14}C]$ лейцин, L-[метил¹⁴С]метионин. Если соединение содержит больше одного атома изотопа, и позиция этих атомов не указывается, то число атомов изотопа обозначается подстрочным индексом справа от символа: [14С2]гликолевая кислота. Символом U обозначается равномерное распределение метки: запись [U-14C]глюкоза означает, что изотоп ¹⁴С распределен равномерно между всеми шестью положениями. Символ G указывает, что все позиции содержат изотоп, но его распределение между позициями необязательно равномерно: [G-14C]глюкоза. В последнем случае достаточно писать: [14С]глюкоза.

Приставка, указывающая изотоп, ставится перед той частью названия вещества, к которой она относится: йод[14 С]уксусная кислота, 1-амино-[14 С]метилциклопентанол (14 С $^$

Если вещество содержит изотопы нескольких элементов, их символы располагаются в алфавитном порядке: [3^{-14} C, 2,3- D^{15} N]серин. Дейтерий можно обозначать символами 2 H или D, тритий — 3 H или T.

Положение изотопа в соединении следует обозначать арабскими цифрами, греческими буквами или приставками, которые помещаются внутри квадратных скобок перед символом изотопа и отделяются от него дефисом:

[1- 3 Н]этанол, L-[α - 14 С]лейцин, [карбокси- 14 С] лейцин, [3,4- 14 С, 35 S]метионин, L-[метил- 14 С] метионин.

Те же правила применяются и в том случае, если соединения обозначены стандартными символами: [α - 32 P]ATP, [32 P]CMP (не CM 32 P!). Однако радиоактивные неорганические фосфат и пирофосфат можно обозначить 32 P_i и 32 PP_i соответственно.

Изотопы в простых молекулах, написанных формулами, обозначаются без квадратных скобок: $^{14}\text{CO}_2$, $\text{H}_2^{\,18}\text{O}$, D_2O , $\text{H}_2^{\,35}\text{SO}_4$, $^{32}\text{PO}_4^{\,3-}$ (но [^{32}P] фосфат). Квадратные скобки не ставятся, когда символ изотопа присоединяется к словам, не являющимся названием определенного соединения, а также к словам, обозначающим групповые названия соединений: ^{131}I -меченный, ^{3}H -лиганды, ^{14}C -стероиды, ^{14}C -аминокислоты.

При описании результатов экспериментов с использованием изотопов радиоактивность следует, если возможно, выражать в абсолютных величинах — кюри (Ки) или беккерелях (Бк), или распадах/мин (DPM), или имп/мин (СРМ).

3.3.10. Ниже приведены рекомендации по оформлению конкретных разделов, принятые в международной биохимической литературе [см. *Biochem. J.*, **289**, 1-15 (1993)].

Животные, растения, микроорганизмы. Для всех экспериментальных животных, кроме обычных лабораторных, следует указывать полные родовое и видовое названия; то же относится и к растениям. Необходимо указать разновидности, штаммы и, если возможно, источник материала. В сообщениях о влиянии изменений в питании приводится состав питательных смесей.

Названия микроорганизмов в резюме и при первом упоминании в тексте должны быть приведены полностью, с указанием родового и видового названий и напечатаны курсивом (Italic); далее по тексту родовое название обозначается одной заглавной (первой) буквой, а видовое печатается полностью. Необходимо указать номер в коллекции, из которой получены микроорганизмы, или номер штамма (прямым начертанием). Если обсуждаются два рода с одинаковой первой буквой, можно использовать сокращения типа *Strep*. и *Staph*.; если в тексте речь идет о семействах (например, эубактерии, молочнокислые бактерии) или о роде в целом (например, стафилококковые), то соответствующие названия печатаются обычным шрифтом.

Центрифугирование. Если условия центрифугирования имеют решающее значение, то следует сообщить необходимые сведения, позволяющие воспроизвести эксперимент: описание центрифужного ротора, количественный состав суспензионной среды, температуру процесса, время работы ротора с постоянной скоростью (исключая время на разгон и торможение), скорость центрифугирования в единицах g, приведенную к усредненному радиусу вращения столбика Например, «центрифугирование проводили в течение 15 мин при 2 °C и 10 000 g $(r_{\rm cp} 8 {\rm cm})$ ».

При центрифугировании в градиенте плотности нужно указать тип использованной центрифуги и ротора, температуру, состав градиента. Результаты лучше всего представлять в виде зависимости от расстояния до центра ротора, а не от номера фракции; в таком случае не обязательно указывать верхнюю и нижнюю части градиента. Если используются номера фракций, то верх и низ градиента должны быть отмечены.

Ультрацентрифугирование описывается следующими символами и единицами: коэффициент седиментации (не константа) — s; коэффициент седиментации при нулевых концентрациях в воде при $20\,^{\circ}\mathrm{C}-s^{0}_{20,\mathrm{B}}$; единицы Сведберга — $(10^{-13}\,\mathrm{c})$ — S ; удельный объем частицы — v; коэффициент диффузии — D, коэффициент диффузии в воде при $20\,^{\circ}\mathrm{C}-D^{0}_{20,\mathrm{B}}$. Нужно указывать температуру, при которой проводились седиментация и диффузия.

Хроматография. Фотографии и рисунки бумажных и тонкослойных хроматограмм публикуются только тогда, когда несут информацию, которую сложно описать в тексте. Скорость движения вещества относительно фронта растворителя в бумажной или тонкослойной хроматографиях описывается величиной $R_{\rm p}$. Соотношение смеси растворителей лучше всего описывать так: бутан-1-ол: ${\rm CH_3COOH: H_2O}$ (4:4:1, по объему).

Диаграммы элюирования для колоночной хроматографии должны быть представлены так, чтобы объем элюента возрастал слева направо. Единицы концентрации и объема должны быть указаны. Следует также приводить размеры колонки и, если возможно, ее свободный объем (V_0). Максимум пика элюции характеризуется величиной $V_{\rm e}$ (объем элюции) или, лучше, коэффициентом распределения (α или $K_{\rm D}$). Калибровочные кривые для колонок (зависи-

мость распределения молекулярных масс от $V_{\rm e}$ или $K_{\rm D}$) не представляются.

Электрофорез. Фотографии электрофоретического разделения в гелях публикуются, если содержат важную информацию. В тексте должны быть оговорены состав среды, рН, температура, электрофоретические подвижности (*m*), рабочее напряжение. Для обозначения изоэлектрических точек используется символ рІ.

Ферменты. В вопросах номенклатуры ферментов авторам следует придерживаться рекомендаций последнего издания «Enzyme Nomenclature» (Acad. Press, San Diego, New York, 1992) с учетом дополнений (http:// www.enzyme-database.org/news.php). Упоминание фермента необходимо сопровождать его номенклатурным номером. В каждой статье следует оговаривать единицы количества ферментов, что может быть сделано в терминах скорости реакции, катализируемой в определенных условиях. Единица СИ для скорости составляет 1 моль превращенного субстрата (или 1 моль образующегося продукта) в 1 секунду. Это значение скорости соответствует единице количества фермента, называемой katal (символ – kat). За единицу активности фермента также можно принять его количество, обеспечивающее иную скорость реакции, например, 1 мкмоль субстрата в 1 мин.

При определении концентрации белков часто используют стандартные белковые растворы (например, БСА); в таких случаях следует указать тип белка, его источник и, если возможно, влажность.

Константы скорости прямых и обратных реакций в многостадийном ферментативном процессе следует обозначать k_{+n} и k_{-n} соответственно. Константа Михаэлиса (K_{m}) определяется как концентрация субстрата ([S]), при которой v-V/2, где $V\left(V_{\max}\right)$ — скорость реакции в условиях насыщения фермента субстратом, *v* — скорость образования продукта или расходования субстрата. Если в реакции участвуют два субстрата — A и B, то $K_{_{\mathrm{m}}}^{\mathrm{A}}$ — [A] при v-V/2 и [B], стремящейся к бесконечности; значение [А] при v - V/2 и конечной концентрации В, которая должна быть указана, следует называть кажущейся константой Михаэлиса для А ($K_{\text{m каж}}^{\text{A}}$). В ферментативной кинетике используются такпонятия: $K_{\rm s}$ – константа диссоциации фермент-субстратного комплекса, K_i — константа диссоциации фермент-ингибиторного комплекса, $[I]_{50}$ – концентрация ингибитора, вызывающая полумаксимальное торможение реакции, h — коэффициент Хилла — параметр уравнения Хилла, используемого для описания негерперболических зависимостей v от концентрации субстрата или модификатора [см. также рекомендации по символам и терминологии в ферментативной кинетике в «*Arch. Biochem. Biophys.*» за 1983 г. (224, 732—740)].

Количество вещества, молекулярная масса и дальтон, молярная концентрация. В Международной системе единиц СИ за единицу количества вещества (п) принят моль - количество вещества, содержащее столько же структурных единиц (молекул, атомов, ионов, электронов или др.), сколько атомов углерода содержит 0.012 - кг углерода¹² (постоянная Авогадро $N_{\rm A}-6,02\cdot 10^{23}$ 1/моль показывает число структурных единиц в 1 моле любого вешества). Молярная масса (M) — масса 1 моля вещества (m/n), имеет размерность г/моль или кг/моль. Ясно, что масса вещества (m, Γ) , количество вещества (n, моль) и молярная масса $(M, \Gamma/\text{моль})$ — понятия разные и между ними существует простое соотношение: m - nM. Для обозначения массы биохимических объектов преимущественно используют величины относительной молекулярной массы (M_{\star} , прежнее наименование - «молекулярный вес») - отношение массы молекулы вещества к 1/12 массы атома углерода¹², следовательно, величина безразмерная, и молекулярной массы - массы одной молекулы вещества, выраженной в дальтонах (Да — дальтон — 1/12 массы атома углерода 12или M/N_{Λ}). Таким образом, про некий белок можно сказать, что он имеет относительную молекулярную массу 50 000 ($M_r = 50$ 000) или молекулярную массу 50 000 Да (лучше 50 кДа). Некорректно выражать $M_{.}$ в дальтонах, по всей статье следует использовать либо M_{r} , либо молекулярную массу (кДа).

При описании растворов следует давать молярную концентрацию (М, мМ, мкМ и т.д.), показывающую, сколько молей вещества содержится в 1 л раствора, но не нормальную концентрацию (н.). Концентрацию указывают в десятичной системе (0,25 М HCl). Использование процентных выражений концентрации следует уточнять дополнением: m/m или m/V или V/V, например, 5%-ный раствор (m/V) означает 5 г на 100 мл. Для растворов солей, выраженных в процентах, следует указывать, были ли использованы кристаллогидраты или безводные соли.

Нуклеотидная последовательность. Авторам следует помнить, что последовательность ну-

клеотидов должна быть определена в обеих цепях ДНК. Для публикации обычно достаточно четкого описания таких определений и наличия полной последовательности.

Степени в таблицах и на рисунках. Часто авторы, желая избежать чисел с большим количеством знаков, в заголовках таблиц или на рисунках используют степени; в таких случаях необходима большая аккуратность. Здесь лучше пояснить примерами: 1) концентрацию 0,00015 M можно записать $15 \cdot 10^{-5} \text{ M}$, лучше степень заменить соответствующей приставкой -0,15 мМ или 150 мкМ; если же речь идет о выражении данной концентрации в таблице или на рисунке, то под заголовком «Концентрация, мМ» следует писать 0,15 или под заголовком «Концентрация, мкМ» — 150, или, если заголовок «Концентрация \times 10⁵, М», то 15 (но не 15 под заголовком «Концентрация, $M \times 10^5$ »!); 2) если значение некоего k равно 0,002, то следует писать 2 под заголовком « $10^3 k$ »; если указано 2 под заголовком « 10^{-3} k», то это означает, что k равно 2000; 3) сложные количественные выражения записываются аналогично: выражение $1/[S] = 200 \text{ M}^{-1}$ будет выглядеть как 2 под заголовком « $10^{-2}/[S]$, м M^{-1} » или как 0,2 под заголовком «1/[S], м M^{-1} ». Удобно пользоваться квадратными скобками для обозначения концентрации.

Комбинация приставки и символа единиц измерения считается одним символом и может возводиться в степень без скобок, например, ${\rm MM}^{-1}$ и ${\rm cm}^2$.

Буферные растворы следует описывать так, чтобы читатель мог воспроизвести условия эксперимента. Полезно бывает дать в разделе «Материалы и методы» или при первом упоминании полный состав буферного раствора, например: 0,09 M CH, COONa/0,01 M CH, COOH, рН 5,6 (это означает, что буферная смесь приготовлена из данных компонентов в указанных концентрациях). Далее по тексту можно коротко указать: 0,1 М натрий-ацетатный буфер, рН 5,6 — суммарную концентрацию всех входящих в раствор ионизированных веществ. Если буфер содержит два и более видов ионизированных веществ, например, пиридин и СН₃СООН, то следует указать концентрацию каждого компонента.

Некоторые буферы широко известны по тривиальным названиям, образованным первыми буквами их химических названий, и не нуждаются в расшифровке.

Для инкубационных сред типа раствора Кребса—Рингера, среды Игла, среды Веймоуса следует дать ссылку на литературный источник либо указать их состав.

Спектры и данные спектроскопии. Полные спектры печатаются только в тех случаях, если они содержат новую или важную информацию. Спектры поглощения в УФ- и видимой областях, флуоресценции, кругового дихроизма и дисперсии оптического вращения должны иметь шкалу длин волн (в нм или мкм). По возможности при описании поглощения, оптического вращения или кругового дихроизма нужно пользоваться терминами молярности. Как указывалось выше, аббревиатуры методов ДОВ, КД, ЭПР, ЭСР, ЯМР являются общепринятыми и не требуют расшифровки.

Видимая и УФ-абсорбционная спектро**скопия.** Величина $\lg(I_0/I)$ характеризует оптическую плотность раствора; если рассеянием и отражением можно пренебречь, то эта величина практически характеризует поглощение. Если рассеяние учитывается, например, при количественной оценке клеточной плотности в культуре, следует употреблять более общий термин — пропускание (T). В других случаях используется термин «поглощение» (абсорбция, A), но не «экстинкция» или «оптическая плот**ность**». Принятые символы: A — поглощение (lg (I/I_0)), a — удельный коэффициент поглощения $(\pi/\Gamma$ на 1 см), иногда используют $A^{1\%}$; ε — молярный коэффициент поглощения (численно равен поглощению 1 М раствора в кювете с длиной оптического пути 1 см), можно использовать единицы л/моль на 1 см или $M^{-1} \cdot cm^{-1}$, но не $cm^2 \cdot моль^{-1}$. Длины волн (нм), при которых проводилось измерение, приводят без указания единиц: A_{280} . Знак равенства не пишется между ε или A и численной величиной.

ИК-Спектры приводятся в процентах трансмиссии (T) как функция длины волны (в мкм) или частоты (в см $^{-1}$).

Оптическое вращение описывается величиной удельного вращения $[\alpha]_{\lambda}{}^{t}$, численно равной вращению (в градусах) в растворе с концентрацией 1 г/мл при длине оптического пути 1 дм (10 см), длине волны λ и температуре t. Необходимо указывать концентрацию раствора (г/100 мл) и растворитель, например, $[\alpha]_{420}$ 27,5° (2 г на 100 мл метанола). Можно представлять данные в молярном выражении (молярное вращение): $[M] - [\alpha] \cdot M_r$ и $[m] - [\alpha] \cdot M_r/100$.

В случае биополимеров приводят дисперсию оптического вращения за счет усредненного остатка $([m]_{m.r.w.})$; размерность [m] — град · см²/дмоль.

Дисперсия оптического вращения характеризуется как изменение [α] или [m] в зависимости от длины волны или частоты.

Круговой дихроизм описывается величиной молярного адсорбционного коэффициента ($\Delta \varepsilon = \varepsilon_L - \varepsilon_R$, где ε_L и ε_R — коэффициенты поглощения света, поляризованного по кругу влево и вправо) или молярной эллиптичностью [θ]_м. Для биополимеров часто используют молярные концентрации в расчете на усредненный остаток (M_p). Единицы молярного адсорбционного коэффициента — л/моль на 1 см или $M^{-1} \cdot cm^{-1}$, единицы молярной эллиптичности те же, что для оптического вращения [m] в расчете на усредненный остаток; соотношение между $\Delta \varepsilon$ и [θ]_м выражается уравнением [θ]_м = 3300 · $\Delta \varepsilon$.

Флуоресцентная спектроскопия. При описании спектров возбуждения и излучения флуоресценции (F) следует указывать, является ли спектр относительным, нормализованным или корректированным (указать способ коррекции). Данные поляризации флуоресценции и спектры описываются величиной степени поляризации P или анизотропии A, обе величины безразмерные.

Статистическая обработка результатов. Данные значительного числа независимых экспериментов должны быть представлены так, чтобы можно было оценить их воспроизводимость и значимость. Если целью работы являлось определение количественных или статистических характеристик популяции, то существенная информация обычно выражается следующим образом: 1) число независимых экспериментов (повторные измерения на одном животном или результаты, полученные из целого ряда тканей, и т.д. дают только одну независимую оценку); 2) среднее значение; 3) стандартное отклонение; коэффициент вариации стандартной ошибки в оценке среднего значения. Следует ясно указать, использовались ли стандартное отклонение или стандартная ошибка. Удобной формой включения этих данных в таблицу является, например, такая: 263 ± 2.5 (10), где цифра в скобках указывает число значений, использовавшихся для подсчета среднего.

Если утверждается значимость результатов, то следует провести тест на определение значимости и оценить вероятность. Если не указано другое, подразумевается, что используется статистика для нормального распределения.

Громоздкие данные, которые трудно или невозможно привести в печатном варианте журнала (такие как большие таблицы идентифици-

рованных белков в протеомных исследованиях), рекомендуется давать в виде приложений, которые будут доступны читателю только на интернет-сайте журнала. Текст статьи должен содержать ссылки на такие приложения.

4. Порядок работы с рукописями (рецензирование, редакционная подготовка, корректура)

- 4.1. Поступившей в редакцию правильно оформленной рукописи присваивается регистрационный номер и фиксируется дата поступления, о чем редакция информирует авторов по электронной почте. Рукописи, оформленные не по правилам, возвращаются авторам без рассмотрения.
- **4.2.** Рецензирование. При подаче рукописи авторы могут указать двух потенциальных рецензентов (ФИО, адрес электронной почты) из числа специалистов в данной области исследований, а также тех, чье участие в рецензировании нежелательно.

Все рукописи рассматривает Ответственный ученый секретарь (Executive Editor-in-Chief) и направляет Ответственному Редактору по соответствующей конкретной области исследований; он, в свою очередь, указывает двухтрех специалистов для рецензирования рукописи. Список Ответственных Редакторов и членов редколлегии размещен на сайте журнала, а также на сайтах Biochemistry (Moscow) на порталах Pleiades и Springer.

На основании экспертных заключений редколлегия определяет дальнейшую судьбу рукописи и в спорных случаях привлекает дополнительных рецензентов. По решению редколлегии рукопись может быть принята к публикации в представленном виде, отправлена авторам на доработку или отклонена. Основанием для отклонения рукописи являются недостаточно высокие оценки при рецензировании вследствие несоответствия профилю или уровню публикаций журнала.

Рукопись, получившая высшую оценку двух независимых рецензентов, печатается со специальной пометкой «Ускоренная публикация» (срок публикации -1-2 месяца).

В случае необходимости рукопись направляется авторам на доработку по замечаниям рецензентов и редакторов, после чего она повторно рецензируется, и редколлегия вновь решает вопрос о приемлемости рукописи для публикации. В начале публикуемой статьи приводятся

даты первоначального поступления рукописи в редакцию, поступления после окончательной доработки и принятия к публикации.

Переработанная рукопись должна быть возвращена в редакцию в течение трех месяцев после получения авторами отзывов; в противном случае рукопись рассматривается как вновь поступившая — ей присваивается новый регистрационный номер и ставится новая дата поступления в редакцию.

В журнале принято «одностороннее слепое рецензирование» (single-blind review), т.е. авторам недоступны имена рецензентов, и редакция строго соблюдает конфиденциальность рецензентов. Все редакционные письма авторам идут за подписью Ответственного ученого секретаря журнала.

- **4.3.** С 2003 г. редакция приступила к практике предварительной публикации рукописей (Papers in Press) на сайте Biochemistry (Moscow) (http://protein.bio.msu.ru/biokhimiya) до выхода в свет статьи. На сайте размещаются экспериментальные статьи на английском языке, получившие высшие оценки при рецензировании и принятые к публикации.
- **4.4.** На всех стадиях работы с рукописями, а также для общения с авторами, редакторами и рецензентами редакция использует электронно-почтовую связь, поэтому авторы должны быть очень внимательны к указанному в рукописи адресу электронной почты и должны своевременно сообщать о произошедших изменениях.
- **4.5.** Через месяц после сдачи очередного выпуска журнала в печать редакция рассылает авторам по электронной почте корректуру статьи в виде pdf-файла и инструкцию по работе с ней.

На стадии корректуры не допускаются замены текста, рисунков или таблиц. Если все же это необходимо, то вопрос решается редколлегией; в крайнем случае статья переносится в другой номер.

4.6. Мы приветствуем размещение препринтов — неопубликованных и не прошедших рецензирование рукописей — на серверах препринтов, веб-сайтах авторов или исследовательских организаций. При подаче рукописи в журнал авторы должны проинформировать редакцию о размещении препринта, включая doi и условия лицензирования. После публикации рукописи автор несёт ответственность за появление на странице препринта ссылки на публикацию, включая doi и URL-ссылку на опубликованную статью.