УДК 577.23

ДОДЕЦИЛТРИФЕНИЛФОСФОНИЙ КАК ИНДУКТОР КАЛИЙ-ЗАВИСИМОЙ ПРОНИЦАЕМОСТИ МИТОХОНДРИЙ ПЕЧЕНИ КРЫС

© 2019 г. К. Н. Белослудцев^{*a*, *b*, *, К. С. Теньков^{*b*}, А. А. Ведерников^{*b*}, Н. В. Белослудцева^{*a*}, М. В. Дубинин^{*b*}}

^аИнститут теоретической и экспериментальной биофизики РАН, Россия, 142290 Пущино, Институтская 3 ^bМарийский государственный университет, Россия, 424001 Йошкар-Ола, пл. Ленина, 1

> *e-mail: bekonik@gmail.com Поступила в редакцию 15.04.2019 г. После доработки 25.05.2019 г. Принята к публикации 25.05.2019 г.

Додецилтрифенилфосфоний (C_{12} TPP) — мембраносвязанный проникающий катион с делокализованным зарядом, широко используемый для создания и доставки антиоксидантов, спиновых ловушек и различных зондов в митохондрии. Исследована способность C_{12} TPP в микромолярных концентрациях индуцировать увеличение проницаемости внутренней мембраны митохондрий печени крыс. Показано, что C_{12} TPP дозозависимо (10–30 мкМ) вызывает набухание митохондрий в инкубационной среде, осмолярность которой поддерживается КСІ. В то же время, в изотонической сахарозной среде C_{12} TPP вызывал сокращение объема митохондрий печени крыс. Установлено, что набухание митохондрий, вызванное C_{12} TPP, не ингибируется циклоспорином A, но подавляется ингибиторами ATP-чувствительного калиевого канала – глибенкламидом и ATP. Показано также, что C_{12} TPP-индуцированное набухание митохондрий ингибируется свободными жирными кислотами. В свою очередь, C_{12} TPP предотвращал циклоспорин A-нечувствительное набухание митохондрий и игибируется возможный механизм C_{12} TPP-индуцированное пальмитиновой кислотой и Ca^{2+} . Обсуждается возможный механизм

Ключевые слова: митохондрии, липофильные катионы, додецилтрифенилфосфоний, митохондриальный АТР-чувствительный калиевый канал, пальмитиновая кислота, кальций DOI: 10.1134/S0233475519050049

ВВЕДЕНИЕ

Липофильные катионы, заряд которых делокализован по большой органической молекуле, впервые были синтезированы и описаны в конце 60-х гг. XX века [1, 2]. В силу своей низкой гидратации эти ионы легко проникают через мембраны и в соответствии с законом Нернста накапливаются в клетке преимущественно в энергизованных митохондриях. Липофильные катионы достаточно широко используются в современной биологии и медицине. Их применяют для определения мембранного потенциала митохондрий и доставки различных соединений (в том числе, противораковых) внутрь этих органелл [3]. В настоящее время на основе липофильных катионов конструируют митохондриально-направленные антиоксиданты, которые предотвращают накопление активных форм кислорода в условиях ишемии/реперфузии органов и тканей [4-7].

Среди митохондриально-направленных катионов наиболее популярными являются конъюгаты трифенилфосфония, в частности, додецилтрифенилфосфоний (C₁₂TPP) (рис. 1). Взаимодействие С₁₂ТРР и его производных с митохондриальными и искусственными мембранами интенсивно изучают во многих лабораториях мира. На сегодняшний день выявлено несколько механизмов действия производных С₁₂ТРР. Во-первых, С₁₂ТРР и его производные (в том числе SkQ и MitoQ) являются разобщителями дыхания. Считается, что разобшающее действие проникающих митохондриально-направленных катионов опосредуется их способностью переносить анионы жирных кислот через митохондриальную мембрану [8, 9]. Так, предположили, что это свойство С₁₂ТРР препятствовало развитию ожирения мышей [10]. Вовторых, наличие в структуре молекулы пластохинона или убихинона (SkQ и MitoQ) придает антиоксидантные свойства данным молекулам. Показано, что такие митохондриально-направленные антиоксиданты предотвращали накопление активных форм кислорода, клеточную гибель и, как

Рис. 1. Структура додецилтрифенилфосфония.

следствие, дегенеративные процессы при многих патологиях [11, 12]. Помимо этого, наличие пластохинона и убихинона способствует переносу электронов через фосфолипидные мембраны [13].

Отличительной особенностью митохондриально-направленных антиоксидантов, сконструированных на основе С12ТРР, является их способность накапливаться во внутренней митохондриальной мембране в высоких концентрациях [11]. Как и в случае любых других антиоксидантов, избыточное накопление С12 ТРР может привести к прооксидантному эффекту, коллапсу мембранного потенциала, образованию митохондриальной поры и развитию митохондриальной дисфункции [14, 15]. Действительно, обнаружено, что высокие концентрации С₁₂ТРР (20-40 мкМ) способны индуцировать набухание митохондрий дрожжей Yarrowia lipolytica. Поскольку в митохондриях дрожжей не происходит образования МРТ поры (Mitochondrial Permeability Transition pore), предположили, что такое действие С₁₂ТРР опосредуется его детергентным эффектом [16]. Известно, что ряд соединений, в том числе и такой детергент, как тритон Х-100, способны в низких концентрациях работать в качестве переносчиков ионов, а в высоких концентрациях оказывать лизирующее действие на мембраны [17, 18]. В настоящей работе исследована способность С₁₂ТРР увеличивать проницаемость внутренней мембраны митохондрий печени крыс, изучен возможный механизм такого действия. Показано: 1) С₁₂ТРР в концентрациях 10-30 мкМ индуцирует набухание митохондрий печени крыс в среде, осмолярность которой поддерживается KCl, но не сахарозой. Это набухание нечувствительно к селективному ингибитору МРТ-поры – циклоспорину А; 2) Глибенкламид и АТР, ингибиторы митохондриального АТР-чувствительного калиевого канала, подавляют митохондриальное набухание, индуцированное C₁₂TPP; 3) Жирные кислоты ингибируют C₁₂TPP-индуцированное набухание митохондрий печени крысы. В свою очередь, С₁₂ТРР предотвращает набухание, вызванное открытием циклоспорин А-нечувствительной пальмитат/Са²⁺-зависимой поры в митохондриях.

МАТЕРИАЛЫ И МЕТОДЫ

Митохондрии из печени крыс линии Вистар (220–250 г) выделяли общепринятым методом дифференциального центрифугирования в соответствии с описанной ранее методикой [19]. Среда выделения содержала 210 мМ маннитол, 70 мМ сахарозу, 1 мМ EDTA, 10 мМ HEPES-KOH (pH 7.4). Полученная суспензия митохондрий содержала приблизительно 80 мг митохондриального белка на 1 мл. Концентрацию белка в полученной митохондриальной суспензии определяли по методу Лоури [20]. Значение дыхательного контроля полученных митохондрий, окисляющих сукцинат, было в диапазоне 3–4.

Набухание митохондрий регистрировали по изменению оптической плотности суспензии митохондрий (А) при длине волны 540 нм при постоянном перемешивании и термостатировании при 25°С на спектрометрической оптоволоконной оптической системе Ocean Optics USB 2000 (Ocean Optics, Inc, США). Среда инкубации содержала 5 мМ янтарную кислоту, 0.2 мМ EGTA, 1 мкМ ротенон, 10 мМ HEPES-Трис (рН 7.4). Осмолярность среды инкубации поддерживалась 130 мМ КСІ или 250 мМ сахарозой. Концентрация митохондриального белка в кювете составляла ~0.4 мг/мл. Скорость набухания митохондрий $(V_{\rm max} = \Delta A_{540} / {\rm мин}$ на 1 мг белка) рассчитывали как изменение оптической плотности суспензии в течение первых 30 с с момента начала высокоамплитудного набухания.

Выход ионов К⁺ из митохондрий печени крыс в безкалиевой среде регистрировали с помощью К⁺-селективного электрода (НикоАналит, Россия) и многоканальной электрометрической системы Record 4 [21]. Среда инкубации содержала 180 мМ сахарозу, 70 мМ маннитол, 1 мкг/мл олигомицин, 10 мМ Трис-HCl (рН 7.4). Концентрация митохондриального белка в кювете составляла 1–1.5 мг/мл.

SkQ1 был любезно предоставлен д.б.н. Ю.Н. Антоненко (НИИ ФХБ им. А.Н. Белозерского). С₁₂ТРР, тетрафенилфосфоний и все остальные реактивы, используемые в работе, приобретены в Sigma-Aldrich (США).

РЕЗУЛЬТАТЫ

 C_{12} TPP вызывает K⁺-зависимое набухание митохондрий печени крыс. Нами изучена способность катиона C_{12} TPP индуцировать пермеабилизацию митохондрий печени крыс. Как видно на рис. 2*a*, C_{12} TPP в концентрации 10–30 мкМ вызывает дозозависимое набухание органелл в среде инкубации, содержащей 130 мМ КСІ в качестве осмотического агента. Такое митохондриальное набухание было нечувствительно к 1 мкМ циклоспорину А – специфическому ингибитору МРТпоры (рис. 26).

Ранее было показано, что C_{12} ТРР индуцировал также набухание митохондрий дрожжей *Y. lipolytica* [16]. Было предположено, что этот эффект обусловлен его детергентным действием. Подобное действие предполагает, что C_{12} ТРР будет индуцировать деструкцию митохондрий в средах разного состава. В связи с этим мы проверили, способен ли C_{12} ТРР индуцировать митохондриальное набухание в среде, осмолярность которой поддерживалась 250 мМ сахарозой.

Из рис. За видно, что 20 мкМ C_{12} ТРР не вызывал набухания митохондрий в среде, осмолярность которой поддерживалась сахарозой. Более того, C_{12} ТРР вызывал в этой среде увеличение оптической плотности суспензии, что свидетельствует о сокращении объема митохондрий. Как известно, сокращение объема митохондрий может быть связано с выходом из органелл осмотически активного K⁺. Действительно, можно видеть, что 20 мкМ C_{12} ТРР индуцирует выброс K⁺ из митохондрий печени крыс (рис. 4).

В отличие от C_{12} TPP тетрафенилфосфоний и SkQ1 индуцировали несколько иные эффекты изменения объема митохондрий печени крыс. Так SkQ1 вызывал набухание как в калиевой, так и в сахарозной среде (рис. 36). В то же время тетрафенилфосфоний даже в концентрации 100 мкМ был не способен индуцировать набухание митохондрий печени крыс. В обеих средах он индуцировал увеличение оптической плотности суспензии митохондрий, т.е. сокращение их объема (рис. 3*в*). Таким образом, лишь действие C_{12} TPP на митохондрии печени крыс изменяется в зависимости от состава инкубационной среды.

 C_{12} TPP в концентрации 20 мкМ не способен индуцировать набухание митохондрий в среде с низким содержанием (10 мМ) хлорида калия, осмолярность которой поддерживалась 230 мМ сахарозой (рис. 5*a*). В этом случае наблюдалось увеличение оптической плотности суспензии митохондрий, как и в отсутствие хлорида калия. Подобные результаты получены и на средах, содержащих 10 мМ KNO₃, K₂SO₄. В то же время присутствие в сахарозной среде инкубации 10 мМ KH₂PO₄ приводило сначала к сокращению, а затем к набуханию митохондрий печени крыс. Мерсалил (10 мкМ), ингибитор фосфатного переносчика, препятствовал набуханию митохондрий в присутствии 10 мМ KH₂PO₄ (рис. 5*б*).

Глибенкламид и АТР подавляют набухание митохондрий печени крыс, индуцированное C_{12} TPP. Считается, что транспорт K⁺ в митохондрии происходит вследствие активации во внутренней мембране органелл калиевых каналов. Одной из основных K⁺-транспортирующих систем мито-

Рис. 2. C_{12} TPP индуцирует набухание митохондрий печени крыс в среде с KCl. *a* – Кинетика изменения оптической плотности суспензии митохондрий печени крыс, инкубируемых в присутствии 10 (*I*), 20 (*2*) и 30 мкМ C_{12} TPP (*3*). *б* – Влияние 1 мкМ циклоспорина А на набухание митохондрий печени крыс, индуцированное 20 мкМ C_{12} TPP. Состав среды инкубации: 130 мМ KCl, 5 мМ янтарная кислота, 1 мкМ ротенон, 0.2 мМ EGTA, 10 мМ HEPES-Трис (pH 7.4). Приведены средние ± ошибки средней (*n* = 3–6).

хондрий является митохондриальный ATP-чувствительный K⁺-канал (мито K_{ATP}), который подавляется ATP и глибенкламидом [22, 23]. В связи с этим в следующей части работы мы оценили влияние этих ингибиторов мито K_{ATP} на набухание митохондрий, индуцированное C_{12} TPP. Как видно из рис. 6, C_{12} TPP-индуцированное набухание митохондрий можно ингибировать микромолярными концентрациями глибенкламида. (рис. 6*a*, *б*). Подобным действием обладал и другой ингибитор мито K_{ATP} – ATP в концентрации 1 мМ (рис. 6*в*).

Жирные кислоты ингибируют индуцированное C_{12} TPP набухание митохондрий, C_{12} TPP подавляет открытие пальмитат/ Ca^{2+} -индуцированной поры. Ранее было показано, что C_{12} TPP и его конъюгаты способны в субмикромолярных и микромолярных концентрациях индуцировать процесс разоб-

Рис. 3. Кинетика изменений оптической плотности суспензии митохондрий печени крыс, индуцированных $C_{12}TPP(a)$, SkQ1 (δ) и тетрафенилфосфония (δ), в средах, осмолярность которых поддерживалась 130 мМ KCI (1) или 250 мМ сахарозой (2). Добавки: 20 мКМ $C_{12}TPP(a)$, 20 мКМ SkQ1 (δ), 100 мКМ тетрафенилфосфоний (TPP) (δ). Состав среды инкубации: 5 мМ янтарная кислота, 0.2 мМ EGTA, 1 мКМ ротенон, 10 мМ HEPES -Трис (pH 7.4) 130 мМ KCI (1) и 250 мМ сахароза (2).

щения дыхания. Считается, что это действие проникающих мембраносвязанных катионов опосредуется их взаимодействием с жирными кислотами, что облегчает диффузию анионов жирных кислот через мембрану митохондрий [9, 14]. В пользу достаточно прочного взаимодействия жирных кислот с С₁₂ТРР говорит и тот

Рис. 4. Выход ионов K⁺ из митохондрий печени крыс, индуцированный C₁₂TPP. Добавки: 20 мкМ C₁₂TPP и 0.1% тритон X-100. Среда инкубации содержала 180 мМ сахарозу, 70 мМ маннитол, 1 мкг/мл олиго-мицин, 10 мМ Трис-HCl (pH 7.4).

факт, что они подавляли индуцируемый проникающими катионами выброс флуоресцентных зондов из липосом [9]. В связи с этим в следующей части работы нами исследовано влияние жирных кислот на набухание митохондрий, индуцированное C_{12} TPP. Как видно из рис. 7, преинкубация митохондрий с 15 мкМ пальмитиновой или олеиновой жирными кислотами приводила к ингибированию набухания митохондрий, индуцированного 20 мкМ C_{12} TPP, в среде, осмолярность которой поддерживалась 130 мМ KCl.

С другой стороны можно предположить, что сам C_{12} TPP может снижать активность процессов, которые протекают с участием жирных кислот. Таким процессом может быть образование в митохондриях липидной циклоспорин А-нечувствительной поры, индуцированной пальмитиновой кислотой и Ca²⁺ [19, 24]. Как показано на рис. 8*a* и 8*b*, преинкубация митохондрий печени с 5–10 мкМ C_{12} TPP (концентрации, которые не вызывают изменения объема митохондрий) приводила к достаточно мощному ингибированию скорости циклоспорин А-нечувствительного набухания митохондрий, индуцированного 15 мкМ пальмитиновой кислотой и 30 мкМ Ca²⁺.

ОБСУЖДЕНИЕ

 C_{12} TPP — липофильный проникающий катион с делокализованным зарядом, широко используемый для создания и доставки антиоксидантов, спиновых ловушек и различных зондов в митохондрии [12, 25–29]. Согласно современным представлениям, существует несколько механизмов воздействия C_{12} TPP и его конъюгатов на функционирование митохондрий. К подобным

Рис. 5. *а* – Изменение оптической плотности суспензии митохондрий печени крыс, индуцированное 20 мкМ C_{12} TPP, в среде инкубации, осмолярность которой поддерживалась 250 мМ сахарозой (*1*), в присутствии 10 мМ KCl (*2*), 10 мМ KNO₃ (*3*), 5 мМ K₂SO₄ (*4*) и 10 мМ KH₂PO₄ (*5*). Среда инкубации содержала 230 мМ сахарозу, 5 мМ янтарную кислоту, 0.2 мМ EGTA, 1 мкМ ротенон, 10 мМ HEPES -Трис (рН 7.4). *б* – Набухание митохондрий печени крыс, индуцированное 20 мкМ C_{12} TPP, в среде инкубации, осмолярность которой поддерживалась 250 мМ сахарозой и 10 мМ KH₂PO₄ в отсутствие (*1*) и в присутствии (*2*) ингибитора фосфатного переносчика мерсалила (10 мкМ).

механизмам можно отнести прежде всего антиоксидантное и разобщающее действие [12]. Действительно, соединения, синтезированные на основе C_{12} TPP, способны в наномолярных концентрациях проявлять терапевтическое действие при заболеваниях, связанных с ишемией/реперфузией тканей, когда наблюдается избыточное образование активных форм кислорода [5–7]. В настоящей работе продемонстрирован еще один механизм воздействия C_{12} TPP на митохондрии активация транспорта K^+ через внутреннюю митохондриальную мембрану.

В настоящей работе показано, что C_{12} TPP способен индуцировать набухание митохондрий печени крыс в среде, осмолярность которой поддерживалась хлоридом калия (рис. 2). При этом трудно представить, что сам катион C_{12} TPP способен транспортировать осмотически активный катион калия. Поскольку в работе использованы достаточно высокие концентрации C_{12} TPP (10–30 мкМ), то можно предположить, что он оказывает детергентное действие на митохондрии. О подобном влиянии C₁₂TPP на митохондрии говорилось ранее в контексте дрожжевых митохондрий [16]. Однако С₁₂ТРР-индуцированное набухание отсутствовало в среде, осмолярность которой поддерживалась сахарозой (рис. 3). Более того, в сахарозной среде наблюдалось сокращение объема митохондрий. Исходя из этого становится понятным, что эффект С₁₂ТРР на митохондрии печени крыс не связан с детергентным действием этого соединения. Кроме того, действие С₁₂ТРР, по-видимому, не связано и с образованием митохондриальных пор (как чувствительной, так и нечув-

Рис. 6. Влияние глибенкламида и АТР на набухание митохондрий печени крыс, индуцированное 20 мкМ C_{12} TPP. *a* – Кинетика изменения светорассеяния суспензии митохондрий печени крыс, индуцированное 20 мкМ C_{12} TPP в отсутствие (*1*) и в присутствии 10 мкМ глибенкламида (*2*). *б* – Зависимость скорости набухания митохондрий печени крыс, индуцированного 20 мкМ C_{12} TPP, от концентрации глибенкламида. *в* – Влияние 1 мМ АТР на скорость набухания митохондрий печени крыс, индуцированного 20 мкМ C_{12} TPP, от концентрации глибенкламида. *в* – Влияние 1 мМ АТР на скорость набухания митохондрий печени крыс, индуцированного 20 мкМ C_{12} TPP. Состав среды инкубации как на рис. 2. Приведены средние ± ошибки средней (*n* = 3–6).

ствительной к циклоспорину A) [24, 30]. Полученные данные позволяют говорить о том, что действие C_{12} TPP опосредовано активацией систем транспорта ионов K⁺ через внутреннюю мембрану митохондрий. Стоит отметить, что в случае C_{12} TPP-индуцированного набухания ми-

тохондрий дрожжей *Y. lipolytica* была использована среда, содержащая хлорид калия [16].

Полученные нами данные позволяют выявить несколько параметров индуцированного $C_{12}TPP$ транспорта K^+ через митохондриальную мембрану. 1) $C_{12}TPP$ может индуцировать транспорт K^+ как

Рис. 7. Влияние пальмитиновой (2) и олеиновой (3) кислот на набухание митохондрий печени крыс, индуцированное 20 мкМ С₁₂ТРР (1). Состав среды инкубации как на рис. 2. Добавки: 15 мкМ пальмитиновой кислоты (2), 15 мкМ оле-иновой кислоты (3).

в митохондрии (когда концентрация K⁺ снаружи высокая), так и из органелл (когда снаружи митохондрий K⁺ либо отсутствует, либо его концентрация низка). 2) Транспорт K⁺ в митохондрии облегчается, когда параллельно происходит транспорт аниона (например, фосфата, у которого есть свой специализированный переносчик) через внутреннюю митохондриальную мембрану.

Считается, что в нормальных условиях вход ионов К⁺ в митохондрии опосредуется К⁺-каналами: митохондриальный АТР-чувствительный К⁺-канал, Са²⁺-активируемые К⁺ -каналы (ВКСа, IKCa, SKCa), потенциал-зависимые каналы (Kv1.3) и TASK-3 канал [22]. Выброс ионов К⁺ из митохондрий может быть опосредован K⁺/H⁺-обменником Letm1 [31]. Работа этих систем регулирует концентрацию К⁺ через внутреннюю митохондриальную мембрану и, как следствие этого, объем митохондрий. В основе механизма действия C_{12} TPP, как показано в настоящей работе, может лежать активация митохондриального АТР-чувствительного К⁺-канала. Несмотря на то, что структура этого канала до сих пор не определена, считается, что это белок с молекулярной массой 55-57 кДа, способный в зависимости от мембранного потенциала транспортировать К⁺ как в митохондрии, так и из митохондрий [23]. Общепризнано, что активация этого канала приводит к мягкому разобщению и снижению продукции активных форм кислорода при ишемии и последующей реперфузии тканей [22, 32, 33]. Как показано на рис. 6, ингибиторы митоК_{АТР} – глибенкламид и АТР – предотвращали и задерживали развитие набухания митохондрий, индуцированное C₁₂TPP.

Таким образом, можно предположить, что C₁₂TPP может быть новым активатором канала митоК_{атр}. Стоит отметить, что тетрафенилфосфоний и SkQ1 оказывают на проницаемость митохондриальной мембраны влияние, отличное от эффектов С₁₂ТРР (рис. 3). Тетрафенилфосфоний стимулировал сокращение объема митохондрий в обеих средах, которое можно объяснить выбросом К⁺ из митохондрий. В то же время SkQ1 индуцировал набухание органелл в обеих средах, что может говорить как о неспецифической пермеабилизации липидной мембраны, так и о детергентном действии. Таким образом, именно молекулярная форма C_{12} TPP, а не видоизмененных молекул способна стимулировать транспорт К⁺ в митохондриях печени крыс.

Считается, что разобщающее действие низких концентраций С12 ТРР в митохондриях опосредуется переносом анионов жирных кислот с матриксной стороны внутренней мембраны митохондрий на цитоплазматическую. По-видимому, в основе этого лежит электростатическое взаимодействие аниона жирной кислоты с катионом С₁₂ТРР [9, 14]. Можно предположить, что такие электростатические взаимодействия могут модулировать в мембранах как эффекты жирных кислот, так и С₁₂ТРР. Действительно, как показано ранее, жирные кислоты препятствовали переносу флуоресцентного зонда из липосом, опосредованному C₁₂TPP и SkQ1 [9]. В настоящей работе показано, что пальмитиновая и олеиновая жирные кислоты способны подавлять набухание митохондрий, индуцированное C₁₂TPP (рис. 7). Таким образом, взаимодействие С₁₂ТРР с жирными

Рис. 8. Влияние C_{12} TPP на открытие митохондриальной пальмитат/ Ca^{2+} -зависимой циклоспорин А-нечувствительной липидной поры. *а* – Кинетика набухания митохондрий печени крыс, индуцированная 15 мкМ пальмитиновой кислотой (ПК) и 30 мкМ Ca^{2+} в отсутствие (*1*) и в присутствии 5 мкМ C_{12} TPP (*2*). *б* – Зависимость скорости набухания митохондрий печени крыс, индуцированного 15 мкМ пальмитиновой кислоты и 30 мкМ Ca^{2+} , от концентрации C_{12} TPP. Среда инкубации содержала 210 мМ маннитол, 70 мМ сахарозу, 5 мМ янтарную кислоту, 1 мкМ ротенон, 10 мкМ EGTA, 10 мМ НЕРЕS-КОН (рН 7.4). Приведены средние ± ошибки средней (*n* = 3–5).

кислотами приводит к снижению свободного катиона в мембране митохондрий и неспособности активировать калиевый транспорт.

В свою очередь, C_{12} TPP, помимо участия в разобщающем действии жирных кислот, способен также влиять на другие мембранные процессы, в которых участвуют жирные кислоты. Один из таких патологических процессов — открытие во внутренней мембране митохондрий циклоспорин А-нечувствительной липидной поры, индуцированной пальмитиновой кислотой и Ca²⁺ [24]. Как показано на рис. 8, C₁₂TPP в концентрациях, в которых еще сам не индуцирует изменения объема органелл, подавлял пальмитат/Ca²⁺-зависимое набухание митохондрий печени крыс. В данном случае взаимодействие жирной кислоты с C₁₂TPP препятствует образованию комплексов пальмитиновая кислота/Ca²⁺ в митохондриаль-

БИОЛОГИЧЕСКИЕ МЕМБРАНЫ том 36 № 5 2019

ной мембране и тем самым формированию липидной поры. Подобное действие на образование в мембране липидной поры можно наблюдать в присутствии БСА или хелаторов Ca²⁺ – EGTA и адениновых нуклеотидов [24].

Таким образом, полученные в работе данные позволяют говорить о том, что наряду с известным разобщающим действием C_{12} TPP обладает способностью стимулировать транспорт ионов K⁺ в митохондриях, опосредованный, вероятно, активацией митохондриального ATP-чувствительного K⁺-канала, и является ингибитором митохондриальной циклоспорин A-нечувствительной липидной поры, индуцированной пальмитиновой кислотой и Ca²⁺. Вероятно, такое действие C₁₂TPP может способствовать выживанию клеток в различных патологических условиях.

Работа выполнена при финансовой поддержке РФФИ (18-315-20011-мол_а_вед), РНФ (№16-15-00157 (рис. 6)) и гранта президента РФ для поддержки молодых ученых (МК-61.2019.4).

СПИСОК ЛИТЕРАТУРЫ

- 1. Skulachev V.P., Sharaf A.A., Liberman E.A. 1967. Proton conductors in the respiratory chain and artificial membranes. *Nature*. **216** (5116), 718–719.
- Liberman E.A., Topaly V.P., Tsofina L.M., Jasaitis A.A., Skulachev V.P. 1969. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. *Nature*. 222 (5198), 1076–1078.
- 3. Kamo N, Muratsugu M, Hongoh R, Kobatake Y. 1979. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. *J. Membr. Biol.* **49** (2), 105–121.
- Chen Z.P., Li M., Zhang L.J., He J.Y., Wu L., Xiao Y.Y., Duan J.A., Cai T., Li W.D. 2016. Mitochondria-targeted drug delivery system for cancer treatment. *J. Drug Target.* 24 (6), 492–502.
- Isaev N.K., Stelmashook E.V., Genrikhs E.E., Korshunova G.A., Sumbatyan N.V., Kapkaeva M.R., Skulachev V.P. 2016. Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type. *Rev. Neurosci.* 27 (8), 849–855.
- Khailova L.S., Silachev D.N., Rokitskaya T.I., Avetisyan A.V., Lyamsaev K.G., Severina I.I., Il'yasova T.M., Gulyaev M.V., Dedukhova V.I., Trendeleva T.A., Plotnikov E.Y., Zvyagilskaya R.A., Chernyak B.V., Zorov D.B., Antonenko Y.N., Skulachev V.P. 2014. A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector. *Biochim. Biophys. Acta.* 1837 (10), 1739–1747.
- Plotnikov E.Y., Silachev D.N., Jankauskas S.S., Rokitskaya T.I., Chupyrkina A.A., Pevzner I.B., Zorova L.D., Isaev N.K., Antonenko Y.N., Skulachev V.P., Zorov D.B. 2012. Mild uncoupling of respiration and phosphorylation as a mechanism providing nephroand neuroprotective effects of penetrating cations of the SkQ family. *Biochemistry (Mosc)*. 77 (9), 1029–1037.
- Rokitskaya T.I., Sumbatyan N.V., Tashlitsky V.N., Korshunova G.A., Antonenko Y.N., Skulachev V.P. 2010. Mitochondria-targeted penetrating cations as carriers of hydrophobic anions through lipid membranes. *Biochim. Biophys. Acta.* **1798** (9), 1698–1706.
- Severin F.F., Severina I.I., Antonenko Y.N., Rokitskaya T.I., Cherepanov D.A., Mokhova E.N., Vyssokikh M.Y., Pustovidko A.V., Markova O.V., Yaguzhinsky L.S., Korshunova G.A., Sumbatyan N.V., Skulachev M.V., Skulachev V.P. 2010. Penetrating cation/ fatty acid anion pair as a mitochondria-targeted protonophore. *Proc. Natl. Acad. Sci. USA.* **107** (2), 663–668.
- Kalinovich A.V., Mattsson C.L., Youssef M.R., Petrovic N., Ost M., Skulachev V.P., Shabalina I.G. 2016. Mitochondria-targeted dodecyltriphenylphosphonium (C12TPP) combats high-fat-diet-induced obesity in mice. *Int. J. Obes.* 40 (12), 1864–1874

- Armstrong J.A., Cash N.J., Morton J.C., Tepikin A.V., Sutton R., Criddle D.N. 2019. Mitochondrial Targeting of Antioxidants Alters Pancreatic Acinar Cell Bioenergetics and Determines Cell Fate. *Int. J. Mol. Sci.* 20 (7), E1700.
- Feniouk B.A., Skulachev V.P. 2017. Cellular and Molecular Mechanisms of Action of Mitochondria-Targeted Antioxidants. *Curr. Aging Sci.* 10 (1), 41–48.
- Rokitskaya T.I., Murphy M.P., Skulachev V.P., Antonenko Y.N. 2016. Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes. *Bioelectrochemistry*. 111, 23–30.
- 14. Хайлова Л.С., Назаров П.А., Сумбатян Н.В., Коршунова Г.А., Рокицкая Т.И., Дедухова В.И., Антоненко Ю.Н., Скулачев В.П. 2015. Разобщающее и токсическое действие алкил-трифенилфосфониевых катионов на митохондрии и бактерии *Bacillus subtilis* в зависимости от длины алкильного фрагмента. *Биохимия*. 80, 1851–1860.
- Белослудцев К.Н., Белослудцева Н.В., Теньков К.С., Шарапов В.А., Косарева Е.А., Дубинин М.В. 2017. Влияние деквалиниума на дыхание и проницаемость внутренней мембраны митохондрий печени крысы. *Биол. мембраны.* 34 (6), 101–108.
- Trendeleva T.A., Rogov A.G., Cherepanov D.A., Sukhanova E.I., Il'yasova T.M., Severina I.I., Zvyagilskaya R.A. 2012. Interaction of tetraphenylphosphonium and dodecyltriphenylphosphonium with lipid membranes and mitochondria. *Biochemistry (Mosc)*. 77 (9), 1021–1028.
- Koley D., Bard A.J. 2010. Triton X-100 concentration effects on membrane permeability of a single HeLa cell by scanning electrochemical microscopy (SECM). *Proc. Natl. Acad. Sci. USA.* **107** (39), 16783–16787.
- Rokitskaya T.I., Kolodkin N.I., Kotova E.A., Antonenko Y.N. 2011. Indolicidin action on membrane permeability: Carrier mechanism versus pore formation. *Biochim. Biophys. Acta.* 1808 (1), 91–97.
- Belosludtsev K.N., Belosludtseva N.V., Agafonov A.V., Astashev M.E., Kazakov A.S., Saris N.-E.L., Mironova G.D. 2014. Ca²⁺-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: A comparative study. *Biochim. Biophys. Acta.* 1838 (10), 2600–2606.
- Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1), 265–275.
- Belosludtsev K.N., Belosludtseva N.V., Talanov E.Y, Tenkov K.S., Starinets V.S., Agafonov A.V., Pavlik L.L., Dubinin M.V. 2019. Effect of bedaquiline on the functions of rat liver mitochondria. *Biochim. Biophys. Acta*. 1861 (1), 288–297.
- 22. Augustynek B., Kunz W.S., Szewczyk A. 2017. Guide to the Pharmacology of Mitochondrial Potassium Channels. *Handb. Exp. Pharmacol.* **240**, 103–127.
- Mironova G.D., Kachaeva E.V., Kopylov A.T. 2007. Mitochondrial ATP-dependent potassium channel.
 The structure of the channel, the mechanisms of its functioning and regulation. *Vestn. Ross. Akad. Med. Nauk.* (2) 34–43.

БИОЛОГИЧЕСКИЕ МЕМБРАНЫ том 36 № 5 2019

- Белослудцев К.Н., Миронова Г.Д. 2012. Митохондриальная липидная пальмитат/Ca²⁺-индуцированная пора и ее возможная роль в деградации нервных клеток. Патологическая физиология и экспериментальная терапия. (3), 20–32.
- Smith R.A., Porteous C.M., Coulter C.V., Murphy M.P. 1999. Selective targeting of an antioxidant to mitochondria. *Eur. J. Biochem.* 263 (3), 709–716.
- 26. Xu Y., Kalyanaraman B. 2007. Synthesis and ESR studies of a novel cyclic nitrone spin trap attached to a phosphonium group-a suitable trap for mitochondria-generated ROS? *Free Radic. Res.* **41** (1), 1–7.
- Quin C., Trnka J., Hay A., Murphy M.P., Hartley R.C. 2009. Synthesis of a mitochondria-targeted spin trap using a novel Parham-type cyclization. *Tetrahedron*. 65 (39), 8154–8160.
- Robinson K.M., Janes M.S., Pehar M., Monette J.S., Ross M.F., Hagen T.M., Murphy M.P., Beckman J.S. 2006. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. *Proc. Natl. Acad. Sci.* USA. 103 (41), 15038–15043.
- Cocheme H.M., Quin C., McQuaker S.J., Cabreiro F., Logan A., Prime T.A., Abakumova I., Patel J.V., Fearnley I.M., James A.M., Porteous C.M., Smith R.A.,

Saeed S., Carre J.E., Singer M., Gems D., Hartley R.C., Partridge L., Murphy M.P. 2011. Measurement of H_2O_2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. *Cell Metab.* **13** (3), 340–350.

- Halestrap A.P., Richardson A.P. 2015. The mitochondrial permeability transition: A current perspective on its identity and role in ischaemia/reperfusion injury. *J. Mol. Cell Cardiol.* 78, 129–141.
- Li Y., Tran Q., Shrestha R., Piao L., Park S., Park J., Park J. 2019. LETM1 is required for mitochondrial homeostasis and cellular viability. *Mol. Med. Rep.* 19 (5), 3367–3375.
- 32. Costa A.D., Garlid K.D. 2009. MitoKATP activity in healthy and ischemic hearts. *J. Bioenerg. Biomembr.* **41** (2), 123–126.
- 33. Mironova G.D., Shigaeva M.I., Gritsenko E.N., Murzaeva S.V., Gorbacheva O.S., Germanova E.L., Lukyanova L.D. 2010. Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal's adaptation to hypoxia. J. Bioenerg. Biomembr. 42 (6), 473–481.

Dodecyltriphenylphosphonium As an Inductor of Potassium-Dependent Permeability of Rat Liver Mitochondria

K. N. Belosludtsev^{1, 2, *}, K. S. Tenkov², A. A. Vedernikov², N. V. Belosludtseva¹, and M. V. Dubinin²

¹Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, ul. Institutskaya 3, Pushchino, Moscow oblast, 142290 Russia ²Mari State University, pl. Lenina, 1, Yoshkar-Ola, 424001 Russia *e-mail: bekonik@gmail.com

Dodecyltriphenylphosphonium ($C_{12}TPP$) is a membrane-bound penetrating cation with a delocalized charge, widely used to target antioxidants, spin traps, and other chemical probes into mitochondria. In the present work, the ability of $C_{12}TPP$ at micromolar concentrations to induce the permeabilization of the inner membrane of rat liver mitochondria was investigated. It was found that $C_{12}TPP$ dose-dependently (10–30 μ M) causes swelling of rat liver mitochondria in an incubation medium, the osmolarity of which is maintained by KCl. At the same time, when isotonic sucrose medium is used, $C_{12}TPP$ induces the contraction of rat liver mitochondrial swelling induced by $C_{12}TPP$ is not inhibited by cyclosporin A but suppressed by the inhibitors of the ATP-sensitive potassium channel, glibenclamide and ATP. It was also observed that $C_{12}TPP$ -induced mitochondrial swelling is inhibited by saturated fatty acids. In turn, $C_{12}TPP$ prevents mitochondrial swelling induced by palmitic acid and Ca^{2+} . A possible mechanism of the $C_{12}TPP$ -induced permeabilization of the inner mitochondrial membrane is discussed.

Keywords: mitochondria, lipophilic cations, dodecyltriphenylphosphonium, mitochondrial ATP-sensitive potassium channel, palmitic acid, calcium