СКУЛЬПТУРА ПОВЕРХНОСТИ ПЫЛЬЦЕВЫХ ЗЕРЕН НЕКОТОРЫХ ВИДОВ РОДА *TULIPA* (LILIACEAE) ИЗ КОЛЛЕКЦИИ ЦСБС СО РАН

© 2022 г. Л. В. Герасимович

Центральный сибирский ботанический сад СО РАН ул. Золотодолинская, 101, Новосибирск, 630090, Россия e-mail: gerasimovitch77@mail.ru Поступила в редакцию 19.01.2022 г. После доработки 11.05.2022 г. Принята к публикации 12.05.2022 г.

В статье представлены результаты исследований скульптуры поверхности спородермы пыльцы 12 видов из 4-х секций рода *Tulipa* L. Скульптура экзины сложная, трех типов: бугорчатая и ленты (*Leiostemones, Spiranthera*); струйчатая с отверстиями (*Eriostemones*); сетчатая (*Orithyia*). Апертура без оперкулума (*Leiostemones*) или с ним (*Spiranthera*, *Eriostemones*, *Orithyia*). Палиноморфологические особенности соответствуют секциям рода, и исключение секции Spiranthera мы считаем нецелесо-образным. А близкородственные *Tulipa urumiensis* и *T. tarda* следует рассматривать как самостоятельные виды.

Ключевые слова: Tulipa, спородерма, скульптура экзины, классификация **DOI:** 10.31857/S0006813622070043

Исследования рода *Tulipa*, наравне с другими родами, вносят вклад и в познание морфологического разнообразия пыльцы и в палинологию как науку.

И.М. Данелия и В.Н. Косенко (Danelia, Kosenко, 1990; Кosenko, 1999) показали, что пыльцевые зерна тюльпанов имеют большое морфологическое разнообразие. В своих статьях авторы приводят морфологические описания различных типов пыльцевых зерен. Палиномофология тюльпанов изучается наравне с другими родами (Kumiko et al., 2001; Blackmore, 2007; Furness et al., 2015; Luo et al., 2015). Уделяется внимание фертильности и прорастанию пыльцы (Okazaki et al., 2005; Cordea et al., 2018; Remizowa, 2019).

Для филогенетического внутриродового анализа немаловажную роль играют палиноморфологические исследования. Для решения данного вопроса была поставлена цель — исследовать скульптуру поверхности пыльцевых зерен видов рода *Tulipa*.

МАТЕРИАЛ И МЕТОДЫ

Нами исследован пыльцевой материал образцов 12 видов рода *Tulipa* из 4 секций по классификации, предложенной А.И. Введенским во "Флоре СССР" (Vvedensky, 1935) и З.П. Бочанцевой (Botschantzeva, 1962): *T. kaufmanniana* Regel и *T. tschim*- ganica Botschantz. (Узбекистан, 2009: 70°04' с.ш. 41°30' в.д.); *T. kolpakowskiana* Regel, *T. alberti* Regel, *T. behmiana* Regel, *T. buhseana* Boiss. (Казахстан, 2014: 76°45' с.ш. 43°55' в.д.; 74°51' с.ш. 44°27' в.д.; 75°38' с.ш. 44°15' в.д.; 80°33' с.ш. 47°49' в.д.); *T. patens* Agardh ex Schult. et Schult. fil. (Казахстан, 2014: 82°03' с.ш. 50°16' в.д.; Алтайский край, 2017: 85°55' с.ш. 52°13' в.д.); *T. lanata* Regel (Таджикистана, 2009); *T. uniflora* (L.) Bess. ex Baker (Алтайский край, 2017: 85°55' с.ш. 52°13' в.д.). Растения собраны в дикой природе и привезены лично автором. *T. urumiensis* Stapf, *T. tarda* Stapf, *T. sylvestris* L. в коллекции с 1980 г. (УНУ № USU 440534).

Строго сухие зерна, расположенные на черном скотче, напыляли золотом с палладием, исследовали с помощью СЭМ Carl Zeiss EVO MA 10 с программой SmartSEM, на базе Центра коллективного пользования микроскопического анализа биологических объектов ЦСБС СО РАН.

Описания скульптуры экзины пыльцевых зерен сделаны с использованием работ Л.А. Куприяновой, Л.А. Алешиной (Kupriuanova, Alyoshina, 1972), А.Е. Боброва и др. (Bobrov et al., 1983), П.И. Токарева (Tokarev, 2002) и В.В. Головко (Golovko, 2004). Материал собран с 2–5 экземпляров одного вида (кроме *Tulipa lanata*). Все фотографии, представленные в статье, авторские.

Вид Species	Число в 100 мкм ² Number per 100 µm ²	Размер/Size, µm	
		длина/length	ширина/width
T. urumiensis	23–45	0.1-1.7	0.1-1.1
T. tarda	23-40	0.1-1.0	0.1-0.6
T. patens	12-70	0.1–1.4	0.1-1.0
T. sylvestris	33–46	0.1-2.2	0.1-1.2
T. buhseana	28-45	0.1-0.2	0.1-0.2

Таблица 1. Число и размеры отверстий в спородерме пыльцевых зёрен видов *Tulipa* секции *Eriostemones* **Table 1.** Number and size of holes in the sporoderm of pollen grains of the *Tulipa* section *Eriostemones* species

Для описания скульптуры экзины мы используем дополнительный термин. **Ленты** (tape) представляют собой своеобразные участки на поверхности спородермы, проходящие от одного экваториального полюса к противоположному. На проксимальной стороне ленту по Л.А. Куприяновой (1948) мы будем называть киль. Между видами существуют отличия в орнаменте лент.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Скульптура поверхности пыльцевого зерна тюльпанов очень разнообразна и может включать насколько орнаментов. По результатам наших исследований скульптура экзины спородермы пыльцевых зерен сложная, делится на три типа: 1) бугорчатая, представлена бугорками разного размера и лентами с различным орнаментом; 2) сетчатая; 3) струйчатая с отверстиями, размеры и число которых являются видовыми признаками (табл. 1). Так, можно заметить, что самые крупные отверстия у *Tulipa sylvestris* до 2.2 μ m, и их число на 100 μ m² практически одинаково с *T. urumiensis*, при этом размеры у последнего вида не превышают 1.7 μ m.

Ниже приводятся описания отличительных особенностей скульптуры экзины пыльцы у видов по секциям.

I Секция Spiranthera Vved.

Апертура с оперкулумом. Основная часть поверхности спородермы представлена разноразмерной бугорчатой экзиной. Ленты различной ширины. Края лент со стороны апертуры слабо бахромчатые, с латеральных сторон бахрома имеет различные размеры и формы.

Т. kaufmanniana Regel (рис. 1а–1с). Оперкулум четко выражен, разной длины и ширины. Редко встречаются зерна, где оперкулум сливается с лентами на экваторе. Сами ленты четкие, непрерывные. Бугорчатая экзина апертуры отличается от проксимальной экзины. У первой она мелкобугорчатая, на второй бугорки частично сливаются между собой, образуя узор. Скульптура оперкулума идентична лентам, очень мелкобугорчатая, мелко перфорированная.

БОТАНИЧЕСКИЙ ЖУРНАЛ том 107 № 7 2022

Т. tschimganica Botschantz. (рис. 1d–1f). Зерна с нечетко выраженным оперкулумом, имеющим своеобразный орнамент из очень крупных бугорков. Проксимальная экзина разнобугорчатая, крупные бугорки с узором. Ленты имеют коротко-мелко-морщинистую скульптуру и могут прерываться, редко наблюдается мелкая и редкая перфорация.

II Секция *Leiostemones* Boiss.

У апертуры отсутствует оперкулум. Основная часть поверхности спородермы представлена разно-размерной бугорчатой экзиной. Секция отличается наличием разно выраженных лент, даже в пределах одного растения. Проксимальная экзина чаще имеет менее крупные бугорки.

Т. kolpakowskiana Regel (рис. 1g–1i). Зерна отличаются четко выраженными лентами. Ленты имеют типичный рифленый орнамент, мелко и редко перфорированные. Экзина разнобугорчатая, бугорки располагаются не плотно, хорошо просматривается подстилающий слой, на бугорках наблюдаются узоры. Также у зерен данного вида можно наблюдать своеобразную особенность – появление около апертуры места, где экзина изменяет свою скульптуру.

Т. alberti Regel (рис. 1m-1o). Пыльца данного вида имеет большое морфологическое разнообразие. Зерна отличаются узкими лентами. Встречаются зерна с одинаковой экзиной как на дистальной, так и на проксимальной стороне. На экваторе апертура имеет вытянутые угловатые образования. Экзина разнобугорчатая, дистальная чаще образует крупные бугорки с узором. В узоре между бугорками можно увидеть подстилающий слой. Ленты слабоморщинистые, перфорированные.

Т. behmiana Regel (рис. 1j–11). Ленты четко выраженные с морщинистой скульптурой, редкоперфорированные. Экзина разнобугорчатая, с дистальной стороны более крупные бугорки. Узоры на бугорках встречаются везде. На лентах есть своеобразные образования в виде длинных выростов.

Рис. 1. Пыльцевые зерна тюльпанов и их скульптура, секции *Spiranthera* и *Leiostemones*: a, b, c – *T. kaufmanniana*; d, e, f – *T. tschimganica*; g, h, i – *T. kolpakowskiana*; j, k, l – *T. behmiana*; m, n, o – *T. alberti*; p, q, r – *T. lanata*. a, d, g, j, m, p – общий вид; b, e, h, l, n, q – проксимальная сторона; c, f, i, k, o, r – дистальная сторона. **Fig. 1.** Pollen grains of tulips and their sculpture, sections *Spiranthera* and *Leiostemones*: a, b, c – *T. kaufmanniana*; d, e, f – *T. tschimganica*; g, h, i – *T. kolpakowskiana*; j, k, l – *T. behmiana*; m, n, o – *T. alberti*; p, q, r – *T. lanata*. a, d, g, j, m, p – general view; b, e, h, l, n, q – proximal side; c, f, i, k, o, r – distal side.

Рис. 2. Пыльцевые зерна тюльпанов и их скульптура, секции *Eriostemnes* и *Orithyia*. а, в, с – *T. patens*; d, e, f – *T. buhseana*; g, h, i – *T. sylvestris*; j, k, l – *T. urumiensis*, m, n, o – *T. tarda*; p, q, r – *T. uniflora*. a, d, g, j, m, p – общий вид; b, e, h, k, n, q – дистальная сторона; c, f, i, l, o, r – проксимальная сторона. **Fig. 2.** Pollen grains of tulips and their sculpture, sections *Eriostemnes* and *Orithyia*. а, в, с – *T. patens*; d, e, f – *T. buhseana*; g, h, i – *T. sylvestris*; j, k, l – *T. urumiensis*, m, n, o – *T. tarda*; p, q, r – *T. uniflora*. a, d, g, j, m, p – general view; b, e, h, k, n, q – distal side; c, f, i, l, o, r – proximal side.

БОТАНИЧЕСКИЙ ЖУРНАЛ том 107 № 7 2022

Т. lanata Regel (рис. 1p–1r). Ленты рыхлые, края не четкие, морщинисто-разно-перфорированные. Дистальная и проксимальная экзины идентичны. Иногда на поверхности апертуры встречаются крупные бугорки разных форм и размеров.

III Секции *Eriostemones* Boiss.

Апертура с оперкулумом разной ширины. Мембрана апертуры с бугорчатой экзиной, разной плотности. Экзина струйчатая, струны у всех одинаковой ширины (0.2 μ m), но имеют различную длину и разнонаправленные, частично параллельны. Виды между собой отличаются размерами отверстий и их числом на 100 μ m² (табл. 1), края отверстий неровные, различного очертания.

T. patens Agardh ex Schult. et Schult. fil. (рис. 2а– 2c). Струны 0.4–3.5 µm длиной, перфорации крупные, их плотность может резко меняться. Оперкулум, относительно апертуры, короткий и узкий.

T. buhseana Boiss. (рис. 2d–2f). Экзина образована плотным сплетением струн 0.3–1.5 µm длиной. Перфорации очень мелкие, практически незаметные и частые. Экзина мембраны мелкобугорчатая, редкая. Оперкулум имеет экзину идентичную основной.

T. sylvestris L. (рис. 2h–2o). Струны 0.5–5.0 µm длиной, разнонаправленные. Перфорации крупные и частые. Оперкулум длинный, чаще узкий. Экзина мембраны разно-мелкобугорчатая, редкая.

T. urumiensis Stapf (рис. 2j–2l). Струны редкие и разнонаправленные, 0.4–4.5 µm длиной, перфорации крупные, плотность значительно колеблется. Оперкулум длинный и узкий. Экзина мембраны разно-мелкобугорчатая, редкая настолько, что просматривается подстилающий слой.

T. tarda Stapf (рис. 2m–2o). Струны частые и плотные, редко параллельные, 0.4–5.0 µm длиной, перфорации мелкие. Оперкулум длинный и узкий. Экзина мембраны разно-мелкобугорчатая, достаточно плотная.

IV Секция Orithyia Baker

T. uniflora Bess. ex Baker (рис. 2p–2r). Скульптура экзины почти гладкая, сетчатая. Перфорации неровные, местами по площади больше чем ткань или наоборот очень мелкие и редкие. Оперкулум округлой формы.

Вопросы классификации

Мы придерживаемся внутриродовой классификации предложенной А.И. Введенским (Vvedensky, 1935) и дополненной З.П. Бочанцевой (Botschantzeva, 1962), где исследуемые нами виды тюльпанов распределены по четырем секциям. Вид *T. urumiensis*, как близкородственный *T. tarda*, включен нами в ту же секцию.

Особое внимание следует уделить отличительным особенностям видов *T. urumiensis* и *T. tarda*, которые некоторые авторы объединяют в один (Christenhusz et al., 2013). Существующие отличия в скульптуре спородермы пыльцевых зерен этих видов описаны выше, но следует уточнить: вопервых, это плотность и направленность струн; во-вторых, это характер перфораций, в-третьих, это плотность бугорков на апертуре. На основании полученных данных виды не следует объединять в один вид.

В современной классификации (Christenhusz et al., 2013) секция *Spiranthera* упразднена, и ее представители вошли в секцию *Leiostemones*. Как показывают результаты исследования скульптуры экзины двух видов из секции *Spiranthera*, *Tuliра kaufmanniana* и *T. tschimganica*, у них есть важный общий признак (наличие у апертуры оперкулума), который может служить обоснованием для выделения этих видов в отдельную секцию, также скульптура лент этих видов отличается от скульптуры видов секции *Leiostemones*.

ЗАКЛЮЧЕНИЕ

По результатам палинологического изучения скульптуру спородермы пыльцевых зерен у исследованных нами видов можно разделить на три типа: бугорчатая и ленты (Leiostemones, Spiranthera), струйчатая (Eriostemones) и сетчатая (Orithyia). Апертура с оперкулумом (Spiranthera, Eriostemones, Orithyia) или без него (Leiostemones).

Палиноморфологическое изучение тюльпанов из 4 секций подтверждает классификацию рода, предложенную А.И. Введенским, и объединение секций *Spiranthera* и *Leiostemones* (Christenhusz et al., 2013) мы считаем нецелесообразным. Близкородственные виды *Tulipa urumiensis* и *T. tarda* следует рассматривать как самостоятельные виды.

БЛАГОДАРНОСТИ

Исследования выполнены в рамках проекта "Анализ биоразнообразия, сохранение и восстановление редких и ресурсных видов растений с использованием экспериментальных методов" (АААА-А21-121011290025-2).

СПИСОК ЛИТЕРАТУРЫ

Blackmore S. 2007. Pollen and spores: Microscopic keys to understanding the earth's biodiversity. – Plant Syst. Evol. 263: 3–12.

https://doi.org/10.1007/s00606-006-0464-3

[Bobrov et al.] Бобров А.Е., Куприянова Л.А., Литвинцева М.В., Тарасевич В.Ф. 1983. Споры папоротникообразных и пыльца голосеменных и одно-

БОТАНИЧЕСКИЙ ЖУРНАЛ том 107 № 7 2022

дольных растений флоры европейской части СССР. Л. 208 с.

- [Botschantzeva] Бочанцева З.П. 1962. Тюльпаны. Ташкент. 408 с.
- Christenhusz M.J.M., Govaerts R., David J.C., Hall T., Borland K., Roberts P.S., Tuomisto A., Buerki S., Chase M.W., Fay M.F. 2013. Tiptoe through the tulips - cultural history, molecular phylogenetics and classification of Tulipa (Liliaceae). - Bot. J. Linn. Soc. 172(3): 280-328. https://doi.org/10.1111/boj.12061
- Cordea M.I., Pop I.D., Bors-Oprişa S., Mihalescu L. 2018. Pollen analysis in some tulip cultivars. - Scientific Papers. Series B, Horticulture, Vol. LXII. https://www.researchgate.net/publication/329714318 POLLEN_ANALYSIS_IN_SOME_TULIP_CULTIVARS (доступ: 25.05.2021)
- [Danelia, Kosenko] Данелия И.М., Косенко В.Н. 1990. Морфология пыльцы кавказских видов Tulipa (Liliaceae). – Бот. журн. 75(3): 293–298.
- [Golovko] Головко В.В. 2004. Экологические аспекты аэропалинологии. Новосибирск. 107 с.
- Handa Kumiko, Seiichiro Tsuji, Minoru N. Tamura. 2001. Pollen morphology of Japanese Asparagales and Liliales (Lilianae) – Jpn. J. Histor. Bot. 9(2): 85–125.
- Kosenko V.N. 1999. Contributions to the pollen morphology and taxonomy of the Liliaceae. - Grana. 38(1): 20-30.
 - https://doi.org/10.1080/001731300750044672

- [Kupriuanova] Куприянова Л.А. 1948. Морфология пыльцы однодольных растений (материалы к филогении класса). – В кн.: Флора и систематика высших растений. Вып. 7. М. Л. С. 163-262.
- [Kupriuanova, Alyoshina] Куприянова Л.А., Алешина Л.А. 1972. Пыльца и споры растений флоры европейской части СССР. Т. 1. Л. 171 с.
- Okazaki K., Kurimoto K., Miyajima I., Enami A., Mizuochi H., Matsumoto Y., Ohia H. 2005. Induction of 2n pollen in tulips by arresting the meiotic process with nitrous oxide gas. – Euphytica. 143: 101–114. https://doi.org/10.1007/s10681-005-2910-7
- [Remizova] Ремизова М.В. 2019. Траектории роста пыльцевых трубок в гинецее однодольных. – В кн.: Проблемы ботаники Южной Сибири и Монголии. 18(1): 174-175. https://doi.org/10.14258/pbssm.2019034
- Furness C.A., Gregory T., Rudall P.J. 2015. Pollen Structure and Diversity in Liliales. - Int. J. Plant Sci. 176(8): 697-723. https://doi.org/10.1086/682211
- [Tokarev] Токарев П.И. 2002. Морфология и ультраструктура пыльцевых зерен. М. 51 с.
- [Vvedensky] Ввеленский А.И. 1935. Рол *Tulipa* L. Флора СССР. Л. 4: 246-280.
- Yang Luo, Lu Lu, Alexandra H. Wortley, De Zhu Li, Hong Wang, Stephen Blackmore. 2015. Evolution of Angiosperm Pollen. 3. Monocots. - Ann. Missouri Bot. Gard. 101: 406-455.

SCULPTURE OF POLLEN GRAIN SURFACE IN SOME TULIPA SPECIES (LILIACEAE) IN THE COLLECTION OF THE CENTRAL SIBERIAN **BOTANICAL GARDEN SB RAS**

L. V. Gerasimovich

Central Siberian Botanical Garden SB RAS Zolotodolinskaya Str., 101, Novosibirsk, 630090, Russia e-mail: gerasimovitch77@mail.ru

The article presents the results of studies of the surface sculpture of pollen sporoderm of 12 species from 4 sections of the genus *Tulipa* L. according to the classification by A.I. Vvedensky in "Flora URSS". The pollen was examined under a scanning electron microscope. The sporoderm sculpture in the pollen grains is simple, three types being distinguished: tuberculate with tapes (Leiostemones, Spiranthera), striated (Eriostemones) and reticulate (Orithyia). The aperture is without (Leiostemones) or with operculum (Spiranthera, Eriostemones, Orithyia). Our study of pollen morphology from 4 sections confirms the classification of the genus by Vvedensky, and we do not consider it appropriate to abolish the section Spiranthera as it was done by modern scientists. *Tulipa urumiensis* and *T. tarda*, should be considered as closely related but separate species on the base of our results.

Keywords: Tulipa, sporoderm, exine sculpture, classification

ACKNOWLEDGEMENTS

The research was carried out within the project "Analysis of biodiversity, conservation and restoration of rare and resource plant species using experimental methods" (number of state registration AAAA-A21-121011290025-2).

REFERENCES

Blackmore S. 2007. Pollen and spores: Microscopic keys to understanding the earth's biodiversity. - Plant Syst. Evol. 263: 3-12.

https://doi.org/10.1007/s00606-006-0464-3

Bobrov A.E., Kupriyanova L.A., Litvintseva M.V., Tarasevich V.F. 1983. Spory paporotnikoobraznykh i pyl'tsa golosemennykh i odnodol'nykh rasteniy flory yevropeyskoy chasti SSSR [Spores of ferns and pollen of gymnosperms and monocotyledons of flora of the European part of the USSR]. Leningrad. 208 p. (In Russ.).

- Botschantzeve Z.P., Varekamp H.Q. 1982. Tulips: taxonomy, morphology, cytology, phytogeography and physiology. Bakelma, Rotterdam. 230 p.
- Christenhusz M.J.M., Govaerts R., David J.C., Hall T., Borland K., Roberts P.S., Tuomisto A., Buerki S., Chase M.W., Fay M.F. 2013. Tiptoe through the tulips – cultural history, molecular phylogenetics and classification of *Tulipa* (Liliaceae). – Bot. J. Linn. Soc. 172(3): 280–328. https://doi.org/10.1111/boj.12061
- Cordea M.I., Pop I.D., Bors-Oprişa S., Mihalescu L. 2018. Pollen analysis in some tulip cultivars. – Scientific Papers. Series B, Horticulture. Vol. LXII. https://www.researchgate.net/publication/329714318_ POLLEN_ANALYSIS_IN_SOME_TULIP_CULTIVARS (accessed: 25 May 2021)
- Danelia I.M., Kosenko V.N. 1990. Pollen morphology in Caucasian species of the genus *Tulipa* (Liliaceae). – Bot. Zhurn. 75(3): 293–298 (In Russ.).
- Golovko V.V. 2004. Ekologicheskiye aspekty aeropalinologii [Environmental aspects of aeropalinology]. Novosibirsk. 107 p. (In Russ.).
- Handa Kumiko, Seiichiro Tsuji, Minoru N. Tamura. 2001. Pollen morphology of Japanese Asparagales and Liliales (Lilianae) – Jpn. J. Histor. Bot. 9(2): 85–125.
- Kosenko V.N. 1999. Contributions to the pollen morphology and taxonomy of the Liliaceae – Grana. 38(1): 20–30.

https://doi.org/10.1080/001731300750044672

- Kupriuanova L.A. 1948. Morfologiya pyl'tsy odnodol'nykh rasteniy (materialy k filogenii klassa) [Pollen morphology of monocotyledonous plants (materials for the phylogeny class)]. – In: Flora and taxonomy of higher plants. Ed. 7. Moscow, Leningrad. P. 163–262 (In Russ.).
- Kupriuanova L.A., Alyoshina L.A. 1972. Pollen and spores of plants from the flora of European part of the USSR. Vol. 1. Leningrad. 171 p.
- Okazaki K., Kurimoto K., Miyajima I., Enami A., Mizuochi H., Matsumoto Y., Ohia H. 2005. Induction of 2n pollen in tulips by arresting the meiotic process with nitrous oxide gas. – Euphytica. 143: 101–114. https://doi.org/10.1007/s10681-005-2910-7
- Remizowa M.V. 2019. Pollen tube growth in monocot gynoecia. – In: Problemy botaniki Yuzhnoy Sibiri i Mongolii [Problems of Botany of Southern Siberia and Mongolia]. 18(1): 174–175. https://doi.org/10.14258/pbssm.2019034
- Rudall P.J. 2015. Pollen Structure and Diversity in Liliales. – Int. J. Plant Sci. https://doi.org/10.1086/682211
- Tokarev P.I. 2002. Morfologiya i ul'trastruktura pyl'tsevykh zoren [Morphology and ultrastructure of pollen grains]. Moscow. 51 p. (In Russ.).
- Vvedensky A.I. 1935. Genus *Tulipa* L. Flora of the U.S.S.R. Leningrad, Translated by Dr. N. Landau, 1968. Vol. 4. P. 246–280. https://www.biodiversitylibrary.org/item/95464#page/288/mode/1up
- Yang Luo, Lu Lu, Alexandra H. Wortley, De Zhu Li, Hong Wang, Stephen Blackmore. 2015. Evolution of Angiosperm Pollen. 3. Monocots. – Ann. Missouri Bot. Gard. 101: 406–455.