—— ФИЗИКА ——

УДК 538.971

О ПРИЧИНЕ ДЕГРАДАЦИИ БУФЕРНЫХ СЛОЕВ CaF₂/BaF₂ HA Si (111)

© 2020 г. Член-корреспондент РАН И. Г. Неизвестный^{1,*}, Д. В. Ищенко^{1,**}, И. О. Ахундов¹, С. П. Супрун¹, О. Е. Терещенко¹

Поступило 25.10.2019 г. После доработки 25.10.2019 г. Принято к публикации 08.11.2019 г.

Исследованы зависимости вольт-фарадных характеристик и химической стойкости буферных слоев CaF₂/BaF₂, полученных методом молекулярно-лучевой эпитаксии на Si, от температуры роста. Изучение границы раздела системы CaF₂/Si методами вторичной ионной масс-спектрометрии и рентгеновской фотоэлектронной спектроскопии позволяет предположить, что наблюдаемые изменения могут быть обусловлены обогащением поверхностного слоя Si кальцием.

Ключевые слова: фторид кальция на кремнии, адгезия, эпитаксия, граница раздела

DOI: 10.31857/S2686740020010174

Эпитаксиальные пленки фторидов щелочно-земельных металлов, а именно CaF₂/BaF₂, со структурой флюорита, обладающие свойствами диэлектрика, используются в качестве буферных слоев на кремнии для последующей эпитаксии твердых растворов халькогенидов свинца [1]. К настоящему времени структура и электрофизические свойства гетеросистемы Si/CaF₂, полученной методом молекулярно-лучевой эпитаксии (МЛЭ), изучены довольно подробно. Так, в работах [2, 3] показано, что величина диапазона модуляции емкости вольтфарадных характеристик (ВФХ) МДП-структур обратно пропорциональна температуре получения слоев CaF₂ на Si, а для пленок, выращенных при температуре подложки $T_{\pi} \approx 700^{\circ}$ С, модуляции емкости не наблюдается совсем. Исследования методом рентгеновской фотоэлектронной спектроскопии (РФЭС) позволили авторам работ [2, 3] сделать вывод, что причиной указанного эффекта могут быть физико-химические изменения в области гетерограницы Si/CaF₂. В ряде работ [4-6 и др.] было показано, что температура формирования границы раздела определяет ее химический состав и строение.

В целом гетероструктура Si/CaF₂ изучена достаточно подробно, хотя и остались некоторые невыясненные вопросы. До сих пор непонятен механизм деградации (изменение энергии связи пика Ca 2p3/2, регистрируемое методом РФЭС) эпитаксиальных слоев со временем, а также при отжиге и воздействии атмосферы. Остается открытым вопрос о связи электрофизических характеристик, таких как ВФХ, с технологическими условиями формирования структур.

Целью данного сообщения как раз и являлись исследования, направленные на выяснение деградации и зависимости химической стойкости буферных слоев CaF_2/BaF_2 на Si (111) от режимов их получения методом МЛЭ.

Условия роста эпитаксиальных слоев CaF₂/BaF₂ на Si (111) подробно описаны в работе [7]. Эллипсометрические измерения пленок CaF₂, проведенные с использованием гелий-неонового лазера ($\lambda =$ = 0.6328 мкм), показали разброс данных по показателю преломления в пределах (1.424–1.433). Таким образом, показатель преломления выращенных слоев соответствовал таковому для монокристалла. Значения толщины в разных точках образца лежали в интервале (0.430–0.438) мкм.

Были проведены измерения зависимости емкости и проводимости от напряжения МДП-структур. Оказалось, что диапазон изменения емкости для структур с Si/CaF₂ зависел от температуры получения диэлектрического слоя и для пленок, выращенных при 700°С, модуляция емкости отсут-

¹Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук, Новосибирск, Россия

^{*}*E-mail: neizv@isp.nsc.ru*

^{**}E-mail: ischenkod@isp.nsc.ru

Рис. 1. Профиль концентрации Са в Si, полученный методом ВИМС в образце, выращенном при 750°С в течение 60 мин.

ствовала вплоть до напряжения пробоя диэлектрика.

Для изучения возможности диффузии Ca в Si при формировании границы раздела нами был использован метод вторичной ионной масс-спектрометрии. Для этого была проведена эпитаксия слоя CaF₂ на Si (111) при 750°С в течение 60 мин. При анализе поверхности Si после удаления CaF₂ химическим травлением были получены профили концентрации Са в Si. Данные спрямляются в координатах $\ln N - x^2$ и демонстрируют две ярко выраженные области (на рис. 1 отмечены как 1 и 2). Первая область, известная в литературе как "аномальная" [8] (глубина менее 20 нм), характеризуется низкой приповерхностной диффузией и высокой концентрацией примеси. По наклону кривой во второй области был определен коэффициент диффузии Ca в Si: $D = 3.7 \times 10^{-15} \text{ см}^2 \text{ c}^{-1}$ при 750°C.

Необходимо отметить различие между структурами Si/CaF₂ и Si/BaF₂: в последних, полученных даже при температуре 780°С, внедрения металла в кремний не наблюдалось. Более того, измерения ВФХ МДП-структур *n*-Si (100)/BaF₂/Hg с площадью ртутного зонда 1.6×10^{-3} см² на частотах 1.66, 16.6 и 100 кГц демонстрировали не только модуляцию емкости от напряжения, но и низкую плот-

Рис. 2. ВФХ структур *n*-Si (100)/BaF₂/Hg, измеренные для трех значений частоты, C_d – емкость диэлектрика (380 нм).

ность электронных состояний: $N_{SS} \le 10^{11}$ эВ⁻¹см⁻² (рис. 2).

Обращает на себя внимание низкая плотность электронных состояний на границе раздела Si/BaF₂, несмотря на значительное расхождение в параметрах кристаллической решетки материалов (14% и порядка 10¹⁴ см⁻² оборванных связей со стороны Si). В качестве гипотезы, поясняющей наблюдаемое исключение имеющихся оборванных связей на границе раздела из электронных процессов обмена зарядом между полупроводником и интерфейсом, можно предположить, что существенную роль в этом случае играет наличие фтора в области границы. Из литературы известно, что присутствие этого элемента способствует "вытеснению" электронных состояний оборванных связей из области запрещенной зоны в область разрешенных состояний [9, 10].

Все буферные слои проходили контроль на время выдержки в травителе, который используется при фотолитографии по эпитаксиальным слоям PbSnTe состава 8%-й раствор Br и HBr в соотношении 1 : 1. Статистика наблюдений показала, что химическая стойкость (время выдержки до полного удаления слоя) уменьшалась с увеличением температуры роста и времени получения слоев от часа до нескольких секунд.

Было замечено, что если температура получения твердого раствора PbSnTe (300–350°C) на буферном слое превышала таковую при получении буферного слоя, то наблюдалось уменьшение времени его травления по сравнению с временем, измеренным до осаждения PbSnTe. Был проведен контрольный эксперимент для выяснения влия-

41

ния температуры на химическую стойкость буферных слоев. Структура Si/CaF₂/BaF₂ была выращена при $T_{\rm n} \approx 500^{\circ}$ С за 90 мин, время выдержки в травителе составило 32 мин. Позже эта пластина была выдержана при 600°С в течение 15 мин время травления упало до 21 мин.

При поиске причин деградации слоев фтористого кальция на кремнии нами были проведены исследования методом РФЭС. Для этого был выращен слой CaF₂ толщиной ≈2 нм на Si (111) при $T_{\rm m} \approx 300^{\circ} {\rm C}$ и после этого проведен отжиг образца при температуре 500°С в течение часа в аналитической камере NANOSCAN-50. При сравнении спектров до и после нагрева было зарегистрировано уменьшение интенсивности пиков F 2p и F 2s с одновременным ростом низкоэнергетичного плеча пика Ca 3*p*, т.е. компоненты, которая ассоциируется с кальцием в области интерфейса. Подобные изменения описаны в литературе [2, 5, 11] и интерпретировались как увеличение количества связей Si-Ca и уменьшение содержания F в области гетерограницы.

Необходимо отметить, что нами не обнаружена корреляция между толщиной эпитаксиального слоя CaF_2 и его химической стойкостью. Это может указывать на то, что эффект деградации является прежде всего "пограничным" явлением. На это указывает и различие в характеристиках структур Si/CaF₂ и Si/BaF₂.

С другой стороны, обращает на себя внимание корреляция между электрофизическими (ВФХ) свойствами и химической стойкостью слоев Si/CaF₂, которые зависят от одних и тех же переменных: температуры и времени. Как отмечалось выше, область с высокой концентрацией Са в Si в области интерфейса способна экранировать поле в МДП-структурах. Понятно, что высокая насыщенность кальцием поверхностного слоя Si может приводить к изменению адгезии верхнего слоя за счет изменения среднего значения энергии связи в области интерфейса, обусловленного изменением длины связи Si—Ca в области интерфейса (удлинение связи с 0.28 до 0.45 нм [12]) и состава [6].

Изложенные выше результаты позволяют сделать вывод, что насыщение Са поверхностного слоя подложки Si при эпитаксии пленок CaF_2 может являться причиной экранировки поля в МДП-структурах, что выражается в эксперименте как уменьшение диапазона модуляции емкости, а также приводить к ухудшению адгезии слоев, проявляющейся в уменьшении их химической стойкости. Это необходимо иметь в виду при разработке приборных структур, включающих эпитаксиальные слои CaF_2 , на Si.

БЛАГОДАРНОСТИ

Авторы выражают благодарность Е.В. Федосенко за проведенные измерения спектров РФЭС, Д.В. Щеглову — за измерения на АСМ.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Исследования выполнены при частичной поддержке Российского научного фонда (грант № 17–12– 01047) и Российского фонда фундаментальных исследований (грант 17–02–00575).

СПИСОК ЛИТЕРАТУРЫ

- Belenchuk A., Fedorov A., Huhtinen H., et al. Growth of (111)-oriented PbTe Films on Si(001) Using a BaF₂ Buffer // Thin Solid Films. 2000. V. 358. Is. 1/2. P. 277–282.
- Olmstead M.A., Uhrberg I.G., Bringans R.D., et al. Photoemission Study of Bonding at the CaF₂-on-Si(111) Interface // Physical Review B. 1986. V. 35. № 14. P. 7526–7532.
- Pasquali L., Suturin S.M., Ulin V.P., et al. Calcium fluoride on Si(001): Adsorption Mechanisms and Epitaxial Growth Modes // Physical Review B. 2005. V. 72. P. 045448–1–045448–15.
- 4. *Olmstead M.A.* Heteroepitaxy of Disparate Materials: From Chemisorption to Epitaxy in CaF₂/Si(111). In Thin Films: Heteroepitaxial Systems. Ed. W.K. Liu and M.B. Santos. Singapore: World Scientific, 1999. V. 15. Sec. 5. P. 211.
- Karlsson U.O., Himpsel F.J., Morar J.F., et al. Electronic Structure of Molecular Beam Epitaxy Grown CaF₂ on Si(111) // Journal of Vacuum Science & Technology B. 1986. V. 4. № 4. P. 1117–1120.
- Hirose Y., Horng S., Kahn A., et al. Electron Beam Patterning of Epitaxial CaF₂ and Ca_{0.5}Sr_{0.5}F₂/(100)GaAs // Journal of Vacuum Science & Technology A. 1992. V. 10. № 4. P. 960–964.
- Супрун С.П., Щеглов Д.В. Воздействие электронного пучка на эпитаксиальные слои CaF₂ и BaF₂ на Si // Письма в ЖЭТФ. 2008. Т. 88. № 6. С. 421–425.
- Болтакс Б.И. Диффузия и точечные дефекты в полупроводниках. Л.: Наука, 1972.
- Давыдов В.И., Лоскутова Е.А., Фефелова И.И. Влияние фтора на свойства систем оксид-полупроводниковое соединение AIIIBV // Микроэлекроника. 1986. Т. 15. С. 455–459.
- Kouvatsos D.N., Stevie F.A., Jaccodine R.J. Interface State Density Reduction and Effect of Oxidation Temperature on Fluorine Incorporation and Profiling for Fluorinated Metal Oxide Semiconductor Capacitors // Journal of Electrochemical Society. 1993. V. 140. P. 1160–1164.
- Himpsel F.J., Hillebrancht F.U., Hughes G., et al. Structure and Bonding at the CaF₂/Si (111) Interface // Applied Physics Letters. 1986. V. 43. P. 596–598.
- Lucas C.A., Loretto D., Wong G.C.L. Epitaxial Growth Mechanisms and Structure of CaF₂/Si(111) // Physical Review B. 1994. V. 50. № 19. P. 14340–14353.

ABOUT REASONS OF THE DEGRADATION OF CaF₂/BaF₂ BUFFER LAYERS ON Si (111)

Corresponding Member of the RAS I. G. Neizvestny¹, D. V. Ishchenko¹, I. O. Akhundov¹, S. P. Suprun¹, and O. E. Tereshchenko¹

¹Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation

Received October 25, 2019

The dependences of the capacitance-voltage characteristics and chemical stability of the Si/CaF₂/BaF₂ on growth temperature were studied. The samples under investigation were grown by molecular beam epitaxy and studied using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The results suggests that the changes observed on the CaF₂/Si interface occured due to the enrichment of the Si surface layer with calcium.

Keyword: calcium fluoride on silicon, adhesion, epitaxy, interface