———— ФИЗИКА ——

УДК 535.399

ТАММОВСКИЕ ПЛАЗМОН-ПОЛЯРИТОНЫ ДЛЯ ЗАХВАТА СВЕТА В ОРГАНИЧЕСКИХ СОЛНЕЧНЫХ ЭЛЕМЕНТАХ

© 2020 г. Р. Г. Бикбаев^{1,2,*}, С. Я. Ветров^{1,2}, И. В. Тимофеев^{1,2}, академик РАН В. Ф. Шабанов^{1,3}

Поступило 20.02.2020 г. После доработки 19.03.2020 г. Принято к публикации 20.03.2020 г.

Предложена модель органического солнечного элемента, в которой фоточувствительный слой принимает участие в формировании таммовского плазмон-поляритона, локализованного на ее границе с многослойным зеркалом. Показано, что при конструировании таких солнечных элементов можно полностью отказаться от использования металлических контактов, что позволяет избежать нежелательных потерь в системе. Установлено, что интегральное поглощение в активном слое может быть увеличено на 10% по сравнению с оптимизированным планарным солнечным элементом.

Ключевые слова: таммовский плазмон-поляритон, органический солнечный элемент, фоточувствительный слой, локализация света

DOI: 10.31857/S2686740020030074

Органические солнечные элементы (ОСЭ) на основе сопряженных полимеров привлекают к себе все большее внимание в связи с их низкой стоимостью, легкостью изготовления, малым весом и механической гибкостью солнечных панелей, полученных с помощью технологий рулонной печати [1, 2]. Подобные ОСЭ содержат объемный гетеропереход, вследствие чего идет поиск компромисса между эффективностями поглощения фотонов и транспортировки носителей заряда. Толщина фоточувствительного слоя (ФЧС) в этом случае составляет не больше 100 нм, что значительно ограничивает эффективность поглощения падающего света. В связи с этим широкое распространение получили методы манипуляции светом для увеличения поглощения в фоточувствительном слое. Введение периодических или случайных структур в ФЧС или в интерфейсы ОСЭ приводит к перераспределению оптическо-

¹ Институт физики им. Л.В. Киренского

Сибирского отделения Российской академии наук,

Красноярск, Россия

Красноярск, Россия

и технологий им М.Ф. Решетнева, Красноярск, Россия

*E-mail: bikbaev@iph.krasn.ru

го поля в них и усилению поглощения фотонов за счет внутреннего рассеяния или эффекта плазмонного резонанса. Так, в 2010 г. в оптически тонких пленках поли(3-гексилтиофен-2.5-диил)/ [6, 6]-фенил-С61-метиловый эфир масляной кислоты (РЗНТ:РС61ВМ) с плазмонно-резонансными серебряными нанопризмами наблюдалось трехкратное усиление генерации носителей заряда [3]. Впоследствии это направление получило широкое развитие благодаря активному освоению технологий изготовления наномасштабных объектов. Другим перспективным направлением является внедрение в ОСЭ одномерных фотонных кристаллов (ФК). Расположение ФК за металлическим контактом приводит к тому, что практически 100% излучения, падающего на него, отражается и проходит через активный слой вторично, тем самым увеличивая эффективность ОСЭ [4]. В этом случае открывается возможность использования более тонких металлических пленок в качестве контактов и, как следствие, уменьшения потерь в ОСЭ. Замена прозрачного контакта ФК-структурой приводит к тому, что активный слой остается между металлической пленкой и ФК. Как известно, в подобных структурах могут возбуждаться таммовские плазмон-поляритоны (ТПП) [5], на длине волны которых возникают дополнительные линии поглощения излучения в активном слое. Этот механизм увеличения эф-

² Сибирский федеральный университет,

³ Сибирский государственный университет науки

Рис. 1. а – Схематичное изображение органического солнечного элемента, допированного плазмонными наночастицами [10], б – схематическое изображение солнечного элемента на основе таммовского плазмон-поляритона.

фективности ОСЭ был продемонстрирован в работе [6]. В рассмотренных моделях фоточувствительный слой является пассивным поглощающим элементом, не принимающим участие в формировании локализованных состояний. Новой является идея использования допированного фоточувствительного слоя в качестве зеркала, ограничивающего одномерный фотонный кристалл. В этом случае на их границе раздела локализуется ТПП [7–9], что приводит к возникновению дополнительной полосы поглощения падающего на структуру излучения и, как следствие, увеличению эффективности ОСЭ. Привлекательность такой структуры заключается в том, что можно полностью отказаться от металлического контакта, обеспечив поглощение только в ФЧС-слое.

ОПИСАНИЕ МОДЕЛИ

Модель органического солнечного элемента, предложенного нами, изображена на рис. 16.

В отличие от ранее изученного солнечного элемента (рис. 1а) [10], в нашей модели фоточувствительный слой ограничивает не металлическую пленку, а одномерный фотонный кристалл. Слой РЗНТ:РС61ВМ толщиной 50 нм допирован серебряными наношарами с объемной концентрацией 20%. Толщина слоя поли(3,4-этилендиокси-

тиофен) полистиролсульфоната (PEDOT:PSS) равна 20 нм. В качестве контактов использованы пленки ITO с толщинами 15 нм и 45 нм. Элементарная ячейка фотонного кристалла сформирована из двуокиси кремния (SiO₂) и диоксида титана (TiO_2) с толщинами $d_{SiO_2} = 75$ нм, $d_{TiO_2} = 40$ нм и диэлектрическими проницаемостями $\epsilon_{SiO_2} = 1.45$ и $\varepsilon_{\text{TiO}_2} = 2.4$ соответственно. Мнимая часть показателя преломления ФЧС-слоя принимает максимальное значение в интервале длин волн от 350 до 600 нм и, как следствие, падающее на структуру излучение булет поглошаться ею в этом спектральном диапазоне. В длинноволновой области спектра поглощение близко к нулю. Эффективная диэлектрическая проницаемость ФЧС-слоя, допированного плазмонными наночастицами. определяется с помощью модели эффективной среды [11].

РЕЗУЛЬТАТЫ РАСЧЕТА

Зависимости действительной и мнимой части эффективной диэлектрической проницаемости, рассчитанные с помошью модели эффективной среды, показали, что ее мнимая часть достигает максимального значения на длине волны 600 нм. что обусловлено плазмонным резонансом в наночастицах. Также отметим, что действительная часть принимает отрицательные значения в широком интервале длин волн (от 360 до 570 нм), и, как следствие, в этом интервале активный слой выступает в качестве металлического зеркала. Сопряжение активного слоя, обладающего подобными спектральными характеристиками, с фотонным кристаллом приведет к формированию на их границе раздела таммовского плазмон-поляритона. Для подтверждения этого факта методом трансфер-матрицы [12, 13] был произведен расчет интегрального поглощения в ФЧС-слое для классического планарного солнечного элемента и солнечного элемента, сопряженного с ФК. Результаты расчета изображены на рис. 2а. Расчеты показали, что в предложенной модели ОСЭ интегральное поглощение в исследуемом интервале длин волн увеличивается на ≈10% (с 50.52% до 55.36%), в сравнении с аналогичным планарным ОСЭ (рис. 1а). Это достигается за счет формирования ТПП, локализованного на границе фотонного кристалла и активного слоя, допированного плазмонными наночастицами. На длине волны ТПП ($\lambda_{TПП} = 400$ нм) эффективная диэлектрическая проницаемость фоточувствительного слоя равна $\varepsilon_{\rm eff} = -1.007 + 2.716i$. Пространственное распределение поля на длине волны ТПП изображено на рис. Зб. Из рисунка видно, что поле локализовано на границе ФК и фоточувствительного слоя и экспоненциально затухает по обе стороны от их границы раздела. При этом поле локализо-

Рис. 2. а – Интегральное поглощение в фоточувствительном слое в структурах, изображенных на рис. 1а (*1*) и рис. 1б (*2*); б – пространственное распределение показателя преломления в структуре (*1*) и локальной интенсивности поля на длине волны ТПП (*2*).

вано в области, соизмеримой с длиной волны света. Важно отметить, что интенсивность поля на длине волны ТПП лишь в 3.5 раза больше интенсивности падающего поля.

Столь незначительное усиление может быть объяснено формированием на границе ФЧС–ФК таммовского плазмон-поляритона с широкой спектральной линией. Формирование такого рода состояний возможно в системах с большими потерями, как это было продемонстрировано в работе [14]. В исследуемой структуре мы имеем аналогичную ситуацию, так как действительная часть эффективной диэлектрической проницаемости ФЧС на длине волны ТПП практически в 3 раза меньше ее мнимой части.

ЗАКЛЮЧЕНИЕ

В работе предложена модель органического солнечного элемента, в котором фоточувствительный слой выступает не только в роли поглотителя, но и зеркала, принимающего участие в формировании локализованного состояния. Энергетические спектры структуры и распределение локальной интенсивности в ней рассчитаны методом трансфер матрицы. Показано, что в предложенной модели интегральное поглощение в фоточувствительном слое vвеличивается на 10% в сравнении с ранее предложенными моделями ОСЭ. Установлено, что увеличение поглощения в этом случае достигается за счет формирования дополнительной полосы поглощения в ОСЭ и обусловлено формированием на границе фоточувствительного слоя и фотонного кристалла таммовского плазмон-поляритона.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена при поддержке совместного гранта РФФИ, Правительства Красноярского края и

Красноярского краевого фонда поддержки научной и научно-технической деятельности № 19-42-240004.

СПИСОК ЛИТЕРАТУРЫ

- Atwater H.A., Polman A. Plasmonics for Improved Photovoltaic Devices // Nature Materials. 2010. V. 9. P. 205–213.
- Heeger A.J. Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation // Advanced Materials. 2014. V. 26. P. 10–28.
- Abhishek P. et al. Plasmon-Enhanced Charge Carrier Generation in Organic Photovoltaic Films Using Silver Nanoprisms // Nano Letters. 2010. V. 10. P. 1501– 1505.
- 4. *Wenjuan Yu. et al.* Semitransparent Polymer Solar Cells with One-Dimensional Photonic Crystals // Applied Physics Letters. 2012. V. 101. P. 153307.
- 5. *Kaliteevski M. et al.* Tamm Plasmon-Polaritons: Possible Electromagnetic States at the Interface of a Metal and a Dielectric Bragg Mirror // Physical Review B. 2007. V. 76. P. 165415.
- Xu-Lin Zhang et al. Optical Tamm States Enhanced Broad-Band Absorption of Organic Solar Cells // Applied Physics Letters. 2012. V. 101. P. 243901.
- Ветров С.Я. и др. Оптические таммовские состояния на границе фотонного кристалла и нанокомпозита с резонансной дисперсией // ЖЭТФ. 2013. Т. 144. С. 1129–1139.
- 8. *Vetrov S. Ya. et al.* The Optical Tamm States at the Edges of a Photonic Crystal Bounded by One or Two Layers of a Strongly Anisotropic Nanocomposite // Optics Communications. 2017. V. 395. P. 275–281.
- 9. Bikbaev R.G. et al. Epsilon-Near-Zero Absorber by Tamm Plasmon Polariton // Photonics. 2019. V. 6. P. 3.
- Kim K., Carroll D. Roles of Au and Ag Nanoparticles Inefficiency Enhancement of Poly(3-octylthiophene)/C60 Bulk Heterojunction Photovoltaic Devices // Applied Physics Letters. 2005. V. 87. P. 203113.

- Maxwell-Garnett J.C. Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions // II. Philos. R. Soc. London. 1906. V. 205. P. 237–288.
- Yeh P. Electromagnetic Propagation in Birefringent Layered Media // J. Optical Society of America. 1979. V. 69. P. 742.
- Коршунов М.А., Шабанов А.В., Буханов Е.Р., Шабанов В.Ф.
 Влияние длиннопериодической упорядоченности в структуре растений на первичные стадии фотосинтеза // ДАН. 2018. Т. 478. С. 280–283.
- Vyunishev A.M. et al. Broadband Tamm Plasmon Polariton // J. Optical Society of America B. 2019. V. 36. P. 2299–2305.

TAMM PLASMON POLARITON FOR LIGHT TRAPPING IN ORGANIC SOLAR CELL

R. G. Bikbaev^{a,b}, S. Ya. Vetrov^{a,b}, I. V. Timofeev^{a,b}, and Academician of the RAS V. F. Shabanov^{a,c}

^a Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation ^b Siberian Federal University, Krasnoyarsk, Russian Federation ^c Perhaman State University of Science and Technology, Krasnoyarsk, Pussian Federation

^c Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation

The paper proposes a model of an organic solar cell based on Tamm plasmon polariton localized at the boundary of the active layer doped with plasmon nanoparticles and a multilayer mirror. It is shown that the integral absorption in the active layer can be increased by 10% compared to the optimized planar solar cell.

Keywords: Tamm plasmon polariton, organic solar cell, photosensitive layer, light localization