———— МЕХАНИКА ——

УДК 539.3

ИЗГИБНЫЕ КОЛЕБАНИЯ МНОГОСЛОЙНЫХ ПЛАСТИН

© 2020 г. Академик РАН Н. Ф. Морозов^{1,2,*}, П. Е. Товстик^{1,2,**}, Т. П. Товстик^{2,***}

Поступило 21.05.2020 г. После доработки 21.05.2020 г. Принято к публикации 22.05.2020 г.

Рассматриваются малые длинноволновые свободные изгибные колебания многослойной пластины с чередующимися мягкими и жесткими слоями. Обсуждаются приближенные способы определения податливости на поперечный сдвиг необходимой при замене многослойной пластины эквивалентной однослойной пластиной Тимошенко—Рейсснера. Проводится сравнение с точным решением трехмерной задачи теории упругости. Исследуется зависимость податливости на сдвиг и частот колебаний от отношения модулей Юнга слоев и от расположения слоев.

Ключевые слова: многослойная пластина, длинноволновые колебания, обобщенная модель Тимошенко—Рейсснера, жесткость на поперечный сдвиг

DOI: 10.31857/S2686740020040112

введение

Классическая модель Кирхгофа–Лява (КЛ) [1, 2], основанная на гипотезе прямой недеформируемой нормали, является основной двухмерной моделью теории тонких пластин (и оболочек). Область применимости этой модели ограничена однослойными пластинами из однородного изотропного материала. Для анизотропных пластин с малой жесткостью на поперечный сдвиг, для пластин с косой анизотропией, для многослойных пластин с чередующимися мягкими и жесткими слоями модель КЛ приводит к большим погрешностям. Модель Тимошенко-Рейсснера (ТР) [3, 4], учитывающая поперечный сдвиг, приводит к существенному уточнению результатов по сравнению с моделью КЛ. Для многослойных пластин вводится в рассмотрение эквивалентная однослойная пластина ТР из однородного материала [5–10], моделирующая многослойную пластину при исследовании ее прогибов, колебаний и устойчивости. Если эквивалентная изгибная жесткость может быть найдена по тем же формулам, что и в модели КЛ, то определение жесткости на поперечный сдвиг представляет определенные трудности и подробно обсуждается ниже на примере задачи о свободных колебаниях многослойной пластины с трансверсально изотропными слоями. Проводится сравнение с точным решением трехмерной задачи.

1. СВОБОДНЫЕ КОЛЕБАНИЯ МНОГОСЛОЙНОЙ ПЛАСТИНЫ

Рассмотрим свободные изгибные колебания пластины с прогибом

$$w(x, y, t) = w_0 \sin px \sin qy \sin \omega t.$$

Такую форму могут иметь колебания бесконечной пластины, а также прямоугольной пластины с шарнирно опертыми сторонами длиной L_x , L_y

(тогда
$$p = p_m = \frac{m\pi}{L_x}, q = q_n = \frac{n\pi}{L_y}, m, n = 1, 2, ...).$$
 По

модели TP с учетом поперечного сдвига для трансверсально изотропной однородной пластины частота колебаний ω связана с безразмерным

параметром частоты $\lambda = \frac{\rho h^2 \omega^2}{E_0}$ и определяется из соотношений

$$\lambda = \lambda^{TR} = \frac{\lambda^{KL}}{1+\alpha}, \quad \lambda^{KL} = D\mu^4, \tag{1}$$

где $E_0 = \frac{E}{1-v^2}, \mu = rh = \frac{2\pi h}{L}, r^2 = p^2 + q^2$. Здесь ρ – плотность материала, h – толщина пластины, $L = (L_x^{-2} + L_y^{-2})^{-\frac{1}{2}}$ – характерная длина волны, E – модуль Юнга, v – коэффициент Пуассона, μ –

¹ Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

² Институт проблем машиноведения Российской академии наук, Санкт-Петербург, Россия

^{*}E-mail: morozov@nm1016.spb.edu

^{**}*E-mail: peter.tovstik@mail.ru*

^{***}E-mail: tovstik_t@mail.ru

η	A_g	$A_{ m v}$	J	$J_{ m v}$	а	D*
1	0.299	0.0928	0.1150	0.0308	0.502	0.0824
10	1.461	0.0875	0.1114	0.0081	0.384	0.1202
100	12.921	0.0844	0.1149	0.0026	0.354	0.1253
1000	127.515	0.0840	0.1154	0.0019	0.350	0.1259

Таблица 1. Члены второго порядка малости

малый параметр толщины, $D = \frac{1}{12}$ — безразмерный параметр изгибной жесткости, $g = \frac{E_0 \mu^2}{10G_{13}}$ параметр влияния поперечного сдвига, G_{13} — модуль упругости поперечного сдвига. Для изотропных слоев $G_{13} = \frac{E}{2(1 + \nu)}$, а для трансверсально изотропных слоев G_{13} — независимый параметр. При $\frac{E}{G_{13}}$ ~ 1 слагаемым g в (1) можно пренебречь,

а при $G_{13} \ll E$ поправка на сдвиг становится существенной. Без учета сдвига (g = 0) формула (1) переходит в формулу КЛ $\lambda^{KL} = D\mu^4$. Целью работы является применить формулу вида (1) для многослойных пластин.

2. АСИМПТОТИЧЕСКОЕ ИНТЕГРИРОВАНИЕ ТРЕХМЕРНЫХ УРАВНЕНИЙ

Для многослойной пластины модули упругости и плотность становятся кусочно-постоянными функциями поперечной координаты $z, 0 \le z \le h$. Точное значение параметра частоты λ может быть найдено из трехмерной краевой задачи, которая приводится к системе обыкновенных уравнений с малым параметром. Ее асимптотическое интегрирование [6–8] дает выражение для параметра частоты λ в виде, аналогичном (1):

$$\lambda = \frac{\rho_* h^2 \omega^2}{E_*} = \frac{\lambda^{KL}}{1+g}, \quad \lambda^{KL} = D_* \mu^4,$$

$$D_* = \frac{1}{E_*} \int_0^1 E_0(z) (z-a)^2 dz,$$
(2)

где

$$g = g^{a} + O(\mu^{4}), \quad g^{a} = \mu^{2}(A_{g} + A_{v} + J + J_{v}),$$
$$\{E_{*}, \rho_{*}\} = \int_{0}^{1} \{E_{0}(z), \rho(z)\} dz, \quad a = \frac{1}{E_{*}} \int_{0}^{1} E_{0}(z) z dz,$$

$$A_{g} = \frac{1}{E_{*}D_{*}} \int_{0}^{1} \frac{\left(\int_{0}^{z} E_{0}(z_{1})(z_{1}-a)dz_{1}\right)^{2}}{G_{13}(z)} dz.$$
 (3)

Здесь $E_*, \rho_* - средние по толщине значения жест$ $кости на растяжение и плотности, <math>D_*$ – параметр жесткости на изгиб, a – координата нейтрального слоя. Слагаемые второго порядка малости g^a учитывают податливость на поперечный сдвиг (A_g) , пуассоновское растяжение нормального волокна (A_v) , инерцию его вращательного движения (J) и инерцию пуассоновского растяжения (J_v) (величины A_v, J и J_v здесь не приводятся, см. [8]).

3. ЖЕСТКОСТЬ НА ПОПЕРЕЧНЫЙ СДВИГ

Вычисления по формулам (2), (3) для многослойных пластин, связанные с вычислением повторных интегралов от кусочно постоянных функций, весьма громоздки, поэтому рассмотрим возможность их упрощения. Рассмотрим пластину с чередующимися изотропными жесткими и мягкими слоями и через η обозначим отношение модулей Юнга жестких и мягких слоев. Если параметр η растет, то модули G_{13} мягких слоев пластины уменьшаются и в силу формулы (4) коэффициент A_g также растет в то время, как остальные коэффициенты второго порядка малости A_v, J, J_v остаются существенно меньшими A_g .

Рассмотрим, например, трехслойную пластину с толщинами слоев $h_1 = 0.3$, $h_2 = 0.6$, $h_3 = 0.1$. Модули Юнга жестких и мягкого слоев, соответственно, равны $E_1 = E_3 = 1, E_2 = \frac{1}{\eta}$. Коэффициенты Пуассона $v_1 = v_3 = 0.3, v_2 = 0.35$. Для ряда значений η коэффициенты второго порядка малости приведены в табл. 1.

Положим приближенно $g^a = \mu^2 A_g$, возвращаясь тем самым к модели TP, учитывающей из членов второго порядка малости только сдвиг. Расчеты [7, 8] показали, что при $\eta \le 1000$, $\mu = 0.1$ погрешность формулы (3) при $g = g^a = \mu^2 A_g$ не превосходит 4%. Ниже погрешность указанной замены обсуждается более подробно.

4. ТОЧНОЕ ЗНАЧЕНИЕ ЖЕСТКОСТИ НА СДВИГ

В силу формулы (3) имеет место оценка

$$g^{a} = \mu^{2} A_{g} = O(\mu^{2} \eta).$$
(4)

При весьма больших η (т.е. при большом отношении жесткостей слоев) $g^a > 1$, формула (2) при $g = g^a$ становится неточной, и нужно найти точное значение $g = g^e$, при котором формула (3) дает точное значение $\lambda = \lambda^e$. Для его вычисления рассмотрим вспомогательную краевую задачу

$$\frac{du}{dz} = w + \mu^2 c_g(z)\sigma, \quad \frac{d\sigma}{dz} = E_0(z)u,$$

$$\sigma(0) = \sigma(h) = 0,$$
(5)

в которой из эффектов второго порядка малости удержан только сдвиг $c_g = \frac{1}{G_{13}}$. После ее решения находим $\lambda = -\int_{0}^{1} \sigma(z) dz$ и значение

$$g^{e} = \frac{1}{\mu^{2}} \left(\frac{D_{*}}{\lambda} - 1 \right). \tag{6}$$

5. О МОДЕЛИ ТИМОШЕНКО–РЕЙССНЕРА ДЛЯ ОДНОРОДНОЙ ТРАНСВЕРСАЛЬНО ИЗОТРОПНОЙ ПЛАСТИНЫ

Согласно модели ТР параметр частоты λ для однородной трансверсально изотропной пластины

определяется по формуле (2), в которой $g = g_0 = \frac{q}{10}$,

 $q = \frac{\mu^2 E_0}{G_{13}}$. Оценим погрешность этой формулы при

 $g_0 > 1$. Для однородной пластины задача (5) имеет явное решение

$$\sigma = \frac{G}{\mu^2} \left(\frac{\operatorname{ch}(\sqrt{q(z-0.5)})}{\sqrt{q/2}} - 1 \right)$$

и формула (6) дает

$$g^{e} = \frac{q}{12(2\operatorname{th}(\sqrt{q/2})/\sqrt{q}-1)} - 1.$$
(7)

Вычисления по формуле (7) дали следующие результаты:

$\frac{q}{10}$	0.1	1	10	100	1000
g^e	0.0999	0.989	9.42	88.0	849

из которых следует, что с ростом q точная величина g^e отклоняется в меньшую сторону от значения q/10, рекомендуемого по модели **ТР**.

6. ДРУГИЕ СПОСОБЫ АНАЛИЗА МНОГОСЛОЙНЫХ ПЛАСТИН

В классической работе [5] для вычисления *g* была предложена формула

$$g = \sum_{n=1}^{N} \frac{\gamma_n}{G_n},\tag{8}$$

в которой для вычисления *g* складываются податливости слоев на сдвиг. В ней G_n – модули поперечного сдвига слоев, N – их число, γ_n – не зависящие от G_n коэффициенты, формулы для которых не приводятся. Заметим, что формула (3) для A_g после вычисления интегралов приводится к виду (8).

В монографии [9] Э.И. Григолюком и Г.М. Куликовым (ГК) был предложен алгоритм учета эффекта поперечного сдвига для многослойных пластин и оболочек. К этому алгоритму целесообразно вернуться, ибо в недавней книге [10], а также в ряде других работ он был использован для решения частных задач. Этот алгоритм основан на гипотезе о распределении деформаций поперечного сдвига по толщине пластины. Согласно [9] формула для *g* может быть записана в виде

$$g = \left(\left(\sum_{n=1}^{N} \frac{\alpha_n}{G_n} \right)^{-1} + \sum_{n=1}^{N} \beta_n G_n \right)^{-1}, \qquad (9)$$

где α_n и β_n — не зависящие от G_n коэффициенты. Явный вид формулы для *g* приведен в [9, 10]. Расчеты показали, что алгоритм ГК можно использовать лишь для пластин с небольшим отношением η модулей Юнга слоев (о чем написано и в [9]). С ростом η погрешность $\Delta(\eta)$ формулы (10) быстро растет. Например, для пластины, рассмотренной в табл. 1, погрешность $\Delta(1) = 1.2\%$, $\Delta(10) = 42\%$, а при $\eta = 100$ найденная по формуле (10) величина *g* в 10 раз превосходит точное значение. По-видимому, гипотезы, положенные в основу модели ГК и нарушающие непрерывность напряжений сдвига на границе слоев, нуждаются в корректировке.

Еще одной возможностью анализа многослойных пластин является раздельное рассмотрение слоев с выполнением условий непрерывности на границах слоев [11].

7. ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

Рассмотрим пластину с параметрами $h_1 = h_3 = 0.3$, $h_2 = 0.4$, $E_1 = E_3 = 1$, $E_2 = \frac{1}{\eta}$, $v_1 = v_2 = v_3 = 0.3$, $\rho_1 = \rho_3 = 1$, $\rho_2 = \frac{1}{\eta}$. Осталось два свободных параметра: параметр толщины μ и отношение модулей Юнга η . Как следует из оценки (4), учет поперечного сдвига связан с величиной $\mu^2\eta$, поэтому вве-

дем совмещенный параметр $p = \mu^2 \eta$ и проведем расчеты при фиксированном значении параметра $\mu = 0.1$.

В табл. 2 для ряда значений *p* приведены: приближенное значение параметра сдвига $g^a = \mu^2 A_g$, найденное по асимптотической формуле (3), и точное значение g^e , найденное по формуле (6);

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ФИЗИКА, ТЕХНИЧЕСКИЕ НАУКИ том 493 2020

1	2	3	4	5	6	7	8
р	η	g ^a	G^e	λ^e	λ^{ap}	λ^{TR}	λ^{KL}
0.01	1	0.00286	0.00286	0.0913	0.0913	0.0913	0.0916
0.1	10	0.0174	0.0174	0.1321	0.1325	0.1325	0.1348
1	100	0.163	0.161	0.1222	0.1223	0.1224	0.1420
10	1000	1.62	1.47	0.0578	0.0578	0.0545	0.1432
100	10000	16.2	8.1	0.0157	0.0157	0.0083	0.1432

Таблица 2. Параметры сдвига и частоты в зависимости от p при $\mu = 0.1$

точное значение λ^{e} параметра частоты λ , полученное при решении трехмерной задачи (2). Остальные значения параметра λ приближенные. Они получены по формуле (2), причем значения λ^{ap} , λ^{TR} , λ^{KL} вычисляются при $g = g^{e}$, $g = g^{a} = \mu^{2}A_{g}$ и g = 0 соответственно. Значение λ^{TR} соответствует модели ТР при учете сдвига по приближенной модели (3). Значение λ^{KL} соответствует модели КЛ, не учитывающей поперечный сдвиг.

Сравнение столбцов 3–4 и 5–8 позволяет судить об областях применимости приближенных моделей. Модель КЛ применима лишь при $\eta \le 10$ (или при $p \le 0.1$). Асимптотический подход второго порядка точности, приведший к значениям g^a и λ^{TR} , безусловно, применим при $\eta \le 100$ и дает заметную погрешность при $\eta \le 1000$. При этом параметр g^a превышает точное значение g^e . Использование значения g^e дает достаточно точные результаты во всем рассмотренном диапазоне $\eta \le 10000$, о чем говорит сравнение столбцов 5 и 6 (при вычислении λ^{ap} точно учитывается только сдвиг, а остальные эффекты второго порядка игнорируются).

Были проведены расчеты также при $\mu = 0.316$ и при $\mu = 0.0316$, однако численные результаты не приводятся, ибо они отличаются от приведенных в табл. 2 менее, чем на 1% (за исключением параметра η , который в 10 раз меньше или больше, соответственно).

В табл. 2 приведены результаты для симметричной по толщине пластины. Аналогичные выводы относительно определяющей роли совмещенного параметра p были получены также в результате расчетов для несимметричных по толщине трехслойных и многослойных пластин.

8. ОБСУЖДЕНИЕ

Установлено, что частота изгибных колебаний многослойной пластины вычисляется по формуле (2), соответствующей модели ТР, в которой знаменатель 1 + g учитывает влияние поперечного сдвига. Введен совмещенный параметр $p = \mu^2 \eta$, определяющий область применимости различ-

ных подходов при вычислении *g*. При $p \le 1$ для однородной пластины $g = \frac{E_0 \mu^2}{10G_{13}}$, а для многослойной $g = g^a = \mu^2 A_g$ (см. (3)). Если же p > 1, эти формулы становятся неточными. Для однородной пластины *g* вычисляется по явной формуле (7). Тем самым дана оценка погрешности модели TP при $g = \frac{E_0 \mu^2}{10G_{13}}$. Для многослойной пластины величину $g = g^e$ вычисляем по формуле (6). Использование этого значения *g* дает достаточно точные результаты во всем рассмотренном диапазоне параметров

$$0.3 \le \mu \le 0.001, \quad 1 \le \eta \le 10000,$$

что подтверждается сравнением с точным решением трехмерной задачи.

Полученные результаты для множителя 1 + g, учитывающего влияние поперечного сдвига, без изменений применимы и для задачи о прогибе многослойной пластины под действием статической гармонической нагрузки вида

$$f = f_0 \sin px \sin qy$$
.

Для многослойных трансверсально изотропных пластин представленные результаты могут считаться окончательными. В [12] для неоднородной по толщине пластины с анизотропией общего вида (с 21 модулем упругости) построено асимптотическое приближение второго порядка точности, приводящее к весьма громоздкой модели, требующей упрощений и соответствующего анализа погрешностей. В частности, многослойная пластина с ортотропными слоями в общем случае не имеет нейтрального слоя, в результате чего продольные и изгибные деформации не разделяются и расчет усложняется. Получены лишь частные результаты [13] и требуются дальнейшие исследования.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Исследования выполнены при финансовой поддержке Российского фонда фундаментальных исследований (гранты 18-01-00884а, 19-01-00208а, 20-51-52001 МНТ-а).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kirchhoff G.* Vorlesungen uber Matematische Physik. Mechanik. Leipzig. 1876.
- 2. *Love A.E.H.* A treatise on the mathematical theory elasticity. Cambridge: Cambridge Univ. Press, 1927.
- 3. *Timoshenko S.P.* On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars // Philos. Mag. 1921.V. 4. Ser. 6. № 242.
- Reissner E. The Effect of Transverse Shear Deformation on the Bending of Elastic Plates. Trans. ASME // J. Appl. Mech. 1945. V. 12. P. 69–77.
- Hill R. A Self-Consistent |Mechanics of Composite Materials // J. Mech. Phys. Solids. 1965. V. 13. № 4.
- 6. *Товстик П.Е., Товстик Т.П.* Уравнение изгиба тонкой пластины второго порядка точности // ДАН. 2014. Т. 457. № 6. С. 660–663.
- 7. Морозов Н.Ф., Товстик П.Е., Товстик Т.П. Обобщенная модель Тимошенко-Рейсснера сильно

неоднородной по толщине пластины // ДАН. 2016. Т. 469. № 5. С. 562–566.

- Tovstik P.E., Tovstik T.P. Generalized Timoshenko– Reissner models for beams and plates, strongly heterogeneous in the thickness direction // ZAMM. 2017. V. 97. № 3. P. 296–308.
- 9. Григолюк Э.И., Куликов Г.М. Многослойные армированные оболочки. М.: Машиностроение, 1988.
- 10. *Mikhasev G.I., Altenbach H.* Thin-walled Laminated Structures. Buckling, Vibrations, and Their Suppression. Springer. 2019.
- 11. *Родионова В.А., Титаев Б.Ф., Черных К.Ф.* Прикладная теория анизотропных пластин и оболочек. СПб.: Изд-во СПб. ун-та, 1996.
- 12. Товстик П.Е. Двухмерная модель анизотропной пластины второго порядка точности // Вестник СПбГУ. Математика. Механика. Астрономия. 2019. Т. 6 (64). Вып. 1. С. 157–169.
- 13. *Belyaev A.K., Morozov N.F., Tovstik P.E., Tovstik T.P.* Two-Dimensional Linear Models of Multilayered Anisotropic Plates // Acta Mech. 2019. V. 230. Iss. 8. P. 2891–2904.

BENDING VIBRATIONS OF MULTILAYERED PLATES

Academician of the RAS N. F. Morozov^{a,b}, P. E. Tovstik^{a,b}, and T. P. Tovstik^b

^a Saint Petersburg State University, Saint Petersburg, Russian Federation

^b Institute of Problems of Mechanical Engineering of the Russian Academy of Sciences, Saint Petersburg, Russian Federation

Small free bending vibrations of a multilayered plate with alternating hard and soft layers are considered. The approximate ways of a transversal shear complaisance definitions, that needs to replace this plate by an equivalent one-layered Timoshenko–Reissner plate, are discussed. A comparison with the exact 3D solution is performed. A dependence of frequency on the ratio of Young modules of layers and of their position is investigated.

Keywords: multilayered plate, long-wave bending vibrations, models of transversal shear stiffness