———— ФИЗИКА ———

УДК 534.2

АНГАРМОНИЗМ И ОТНОШЕНИЕ КВАДРАТОВ СКОРОСТЕЙ ЗВУКА В СТЕКЛООБРАЗНЫХ ТВЕРДЫХ ТЕЛАХ

© 2021 г. Д. С. Сандитов^{1,2}, А. А. Машанов^{1,*}

Представлено академиком РАН А.А. Берлиным 08.12.2020 г. Поступило 08.12.2020 г. После доработки 08.12.2020 г. Принято к публикации 21.12.2020 г.

Полученная зависимость отношения квадратов скоростей продольной и поперечной акустических волн v_L^2/v_s^2 от параметра Грюнайзена γ – меры ангармонизма – находится в согласии с экспериментальными данными. Величина v_L^2/v_s^2 оказывается однозначной функцией отношения тангенциальной и нормальной жесткостей межатомной связи.

Ключевые слова: скорости упругих волн, ангармонизм, уравнения Грюнайзена, Леонтьева, Беломестных—Теслевой, тангенциальная и нормальная жесткости межатомной связи, стекла

DOI: 10.31857/S2686740021010119

введение

Принято считать, что параметры теории упругости (модули упругости, коэффициент Пуассона) как гармонические линейные величины не должны быть связаны с ангармонизмом — с отклонением силы межатомного взаимодействия от линейной зависимости при смещении атома из равновесного положения. Тем не менее в последнее время наблюдается заметный интерес к взаимосвязи упругих свойств и параметра Грюнайзена [1–7] — меры ангармонизма.

Параметр Грюнайзена ү, характеризующий нелинейность силы межатомного взаимодействия и ангармонизм колебаний решетки, входит в уравнение состояния твердого тела. Основным соотношением для экспериментального определения ү является уравнение (закон, формула) Грюнайзена

$$\gamma = \frac{\beta V B}{C_V},\tag{1}$$

где β — коэффициент объемного теплового расширения, V — молярный объем, B — изотермический модуль объемного сжатия, C_V – молярная теплоемкость при постоянном объеме.

Помимо этого уравнения, на наш взгляд, заслуживают внимания формулы Леонтьева [3]

$$\gamma = \frac{3}{2} \left(\frac{B_A}{\rho v_\kappa^2} \right) \tag{2}$$

и Беломестных-Теслевой [1]

$$\gamma = \frac{3}{2} \left(\frac{1+\mu}{2-3\mu} \right). \tag{3}$$

Здесь B_A — адиабатический модуль объемного сжатия, ρ — плотность, v_{κ} — средняя квадратичная скорость волн деформации, квадрат которой является инвариантом суммы квадратов скоростей распространения продольной (v_L) и поперечной (v_s) упругих волн

$$v_{\kappa}^{2} = \frac{v_{\rm L}^{2} + 2v_{\rm S}^{2}}{3},\tag{4}$$

μ – коэффициент Пуассона, который иногда называют коэффициентом поперечной деформации. Формулы Леонтьева (2) и Беломестных— Теслевой (3) привлекательны тем, что в отличие от уравнения Грюнайзена (1) позволяют рассчитывать γ по более доступным экспериментальным данным. Установлено, что они находятся в удовлетворительном согласии с уравнением Грюнайзена [1–4] (см., например, рис. 1).

¹ Бурятский государственный университет имени Доржи Банзарова, Улан-Удэ, Россия

² Институт физического материаловедения

Гибирского отделения Российской академии наук, Улан-Удэ, Россия

^{*}E-mail: mashanov@bsu.ru

Рис. 1. Линейная корреляция между значениями параметра Грюнайзена γ , полученными по уравнению Грюнайзена γ (1) и по формуле Беломестных–Теслевой γ (3), для различных кристаллов (использованы данные [1, 2]). 1 - Be, 2 - LiF, 3 - NaCl, 4 - LiCl, 5 - KCl, 6 - KBr, 7 - Al, 8 - Ag, 9 - Pb, 10 - Au.

Вместе с тем обращает внимание то обстоятельство, что в формулах (2) и (3) в левых частях равенств находится мера ангармонизма γ , а в правые части входят на первый взгляд только гармонические характеристики (ρ , B_A , v_{κ}^2) и μ . Тем самым наблюдается как бы противоречие.

В настоящем сообщении развито представление о том, что правые части равенств (2) и (3) зависят от ангармонизма через зависимость отношения квадратов скоростей звука $\frac{V_L^2}{V_c^2}$ от параметра

Грюнайзена ү и указанное противоречие на самом деле является кажущимся противоречием.

ЛИНЕЙНАЯ ЗАВИСИМОСТЬ $\frac{v_{\rm L}^2}{v_{\rm S}^2}$ ОТ ПАРАМЕТРА ГРЮНАЙЗЕНА

При изучении формул (2) и (3) обнаруживается тот факт, что их правые части являются функциями отношения квадратов скоростей распространения продольной и поперечной акустиче-

ских волн $\frac{V_{\rm L}^2}{v_{\rm S}^2}$. Так, например, в уравнении Леонтьева (2) за счет величины v_{κ}^2 правая часть

равенства оказывается функцией указанного от-

ношения $\left(\frac{v_{\rm L}}{v_{\rm S}}\right)^2$ (см. соотношение (4))

$$v_{\kappa}^{2} = \frac{v_{\mathrm{S}}^{2}}{3} \left[\left(\frac{v_{\mathrm{L}}}{v_{\mathrm{S}}} \right)^{2} + 2 \right].$$

Далее, в правой части уравнения Беломестных– Теслевой (3) коэффициент Пуассона µ, согласно известной формуле теории упругости [8], также является функцией отношения квадратов скоро-

стей звука $\frac{V_{\rm L}^2}{V_{\rm s}^2}$:

Отмеченное наблюдение в отношении рассматриваемых формул наводит на мысль о том, что их правые части, возможно, зависят от ангармонизма за счет отношения квадратов скоростей

продольной и поперечной акустических волн $\frac{V_{\rm L}}{V_{\rm S}^2}$

В самом деле, наши исследования ряда стеклообразных твердых тел и кристаллов показали [9]: если между параметром Грюнайзена γ и квадратами скоростей v_L^2 и v_S^2 в отдельности фактически нет определенной взаимосвязи, то их отношение $\frac{v_L^2}{v_S^2}$ оказывается линейной функцией параметра Грюнайзена γ – меры ангармонизма. В качестве примера на рис. 2 демонстрируется линейная корре-

ляция между отношением $\frac{V_{L}}{V_{S}^{2}}$ и γ для натриевоалюмосиликатных стекол (табл. 1, [10]).

ТЕОРЕТИЧЕСКИЙ ВАРИАНТ ЗАВИСИМОСТИ $\frac{V_{L}^{2}}{V_{S}^{2}}$ ОТ γ

На рис. 2 приводится линейная корреляция между величинами $\frac{v_L^2}{v_S^2}$ и γ , полученная эмпирически на основе экспериментальных данных. Представляет интерес установление взаимосвязи этих величин с помощью существующих теоретических уравнений в данной области.

Формулу для зависимости отношения квадра-

тов скоростей звука $\frac{V_L^2}{V_S^2}$ от параметра Грюнайзена γ можно вывести из приведенных выше соотношений, а именно из уравнения Беломестных–Теслевой (3) и формулы теории упругости (5), которую разрешим относительно $\frac{V_{\rm L}^2}{2}$ и запишем в виде [8]

$$\left(\frac{v_{\rm L}}{v_{\rm S}}\right)^2 = \frac{2 - 2\mu}{1 - 2\mu}.\tag{6}$$

Выразив из уравнения Беломестных-Теслевой (3) коэффициент Пуассона µ через үи подставив его в формулу теории упругости (6), прихо-

дим к следующей зависимости отношения $\frac{V_{L}}{U_{L}^{2}}$ от γ

$$\left(\frac{v_{\rm L}}{v_{\rm S}}\right)^2 = 4\left(\frac{3+\gamma}{9-2\gamma}\right).$$
 (7)

Этот результат можно получить также из формулы Беломестных для акустического параметра Грюнайзена (соотношение (1) в работе [1]).

Теоретическая зависимость (7) находится в согласии с экспериментальными данными для стекол – прямая на графике в координатах уравнения (7) проходит через начало координат с тангенсом угла наклона, равным единице (рис. 3).

Возникает, естественно, вопрос, как согласовать соотношение (7) с эмпирической линейной корреляцией, наблюдаемой между величинами

Рис. 2. Линейная корреляция между отношением квадратов скоростей распространения акустических

волн $\frac{V_{L}}{2}$ и параметром Грюнайзена ү. Натриево-алюмосиликатные стекла Na₂O-Al₂O₃-SiO₂ с разным содержанием окислов. Номера точек соответствуют номерам стекол в табл. 1.

 $\frac{V_{\rm L}^2}{V_{\rm c}^2}$ и ү (рис. 2). Оказывается, из формулы (7) можно получить линейную зависимость $\frac{V_L^2}{r^2}$ от γ при условии 2γ ≪ 9

Таблица 1. Плотность ρ , скорости распространения продольных (v_1) и поперечных (v_5) акустических волн, модуль объемного сжатия B_A , коэффициент Пуассона μ и параметр Грюнайзена γ для стекол Na₂O–Al₂O₃–SiO₂ (использованы данные [10])

№	Состав по синтезу, мол. %			$\rho \times 10^{-3}$,			$B_A \times 10^{-8}$,		24
	Na ₂ O	Al ₂ O ₃	SiO ₂	кг/м ³	<i>v</i> _L , м/с	<i>v</i> _S , м/с	Па	μ	Ŷ
1	15	0	85	2339	5430	3340	342	0.196	1.28
2	15	5	80	2358	5570	3390	370	0.206	1.31
3	15	10	75	2410	5697	3510	386	0.194	1.26
4	15	15	70	2465	5737	3469	416	0.212	1.34
5	15	20	65	2428	5850	3540	425	0.211	1.34
6	15	25	60	2472	6000	3568	470	0.226	1.40
7	25	0	75	2439	5280	3140	359	0.226	1.40
8	25	5	70	2455	5480	3240	394	0.231	1.41
9	25	10	65	2461	5610	3330	411	0.228	1.40
10	25	20	55	2470	5680	3450	405	0.208	1.32
11	25	25	50	2499	5790	3490	432	0.215	1.35
12	25	30	45	2519	6026	3556	490	0.233	1.43
13	35	0	65	2497	5340	3070	398	0.253	1.52
14	30	5	65	2486	5500	3200	413	0.244	1.47
15	20	15	65	2450	5670	3490	390	0.195	1.28
16	17.5	17.5	65	2447	5746	3458	418	0.216	1.35

$$\left(\frac{v_{\rm L}}{v_{\rm S}}\right)^2 \approx 1.3 + 0.4\gamma. \tag{8}$$

Для рассмотренных стекол, у которых $\gamma \approx 1.2-1.5$ (табл. 1), данное условие более или менее приемлемо. Для ряда других твердых тел оно выполняется с натяжкой. Этот вопрос требует дальнейшего исследования.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

1. С точки зрения интерпретации полученных результатов на микроскопическом уровне представляет интерес модель случайно упакованных атомов в виде сфер, взаимодействующих друг с другом в месте контакта двумя взаимно перпендикулярными силами: нормальной к плоскости контакта $f_n = k_n x_n$ и тангенциальной (силой трения) $f_t = k_t r_t$ [11, 12]. В рамках данной модели Берлина–Ротенбурга–Басэрста (БРБ) коэффициент Пуассона μ определяется отношением тангенциальной k_t и нормальной k_n жесткостей межатом-

ной связи $\lambda = \frac{k_t}{k_n}$ [11, 12]

$$\mu = \frac{1 - \lambda}{4 + \lambda}.$$
 (9)

Из соотношений (6) и (9) следует, что отношение квадратов скоростей звука (v_L^2/v_S^2) определяется микроскопическим параметром λ :

$$\left(\frac{v_L}{v_S}\right)^2 = \frac{2(3+\lambda)}{2+3\lambda}.$$
 (10)

В свою очередь, как видно из равенств (3) и (9), параметр λ однозначно связан с ангармонизмом (γ)

$$\gamma = \frac{3}{2(1+\lambda)}.$$

Центральным силам ($k_n \ge k_l$, $\lambda \approx 0$) соответствуют следующие значения коэффициента Пуассона и параметра Грюнайзена:

$$\mu = \frac{1 - \lambda}{4 + \lambda} = 0.25$$
 и $\gamma = \frac{3}{2(1 + \lambda)} = 1.5.$

В случае другого предельного значения λ ($k_n \ll k_l$, $\lambda \approx \infty$) имеем

$$\mu = \frac{1-\lambda}{4+\lambda} \cong -1, \quad \gamma = \frac{3}{2(1+\lambda)} = 0.$$

Последний результат указывает на отсутствие ангармонизма ($\gamma = 0$): свойства тела являются гармоническими. В соответствии с определением μ [8] отрицательный коэффициент Пуассона означает поперечное расширении тела при его одноосном растяжении, что, вообще говоря, противоречит здравому смыслу. Однако необходимо признать, что появились публикации, подтверждающие существование изотропных тел с отрицательным коэффициентом поперечной деформации $\mu < 0$ [11–13].

2. В формуле Леонтьева (2) произведение ρv_k^2 , обладающее характерными признаками упругих модулей, названо эффективным модулем упругости [4, 14]:

$$K = \rho v_k^2$$
.

Из соотношений теории упругости для кубических кристаллов (см., например, [3])

$$B = \frac{C_{11} + 2C_{12}}{3} \quad \text{if} \quad \rho v_k^2 = \frac{C_{11} + 2C_{44}}{3}$$

видно, что при выполнении условия Коши $C_{12} = C_{44}$, когда между однородно деформированными областями кубической решетки действуют центральные силы, эффективный модуль упругости

 $K = \rho v_k^2$ совпадает с модулем объемного сжатия K = B. Во всех других случаях он отличен от *B*. Здесь C_{11} , C_{12} и C_{44} – упругие постоянные второго порядка.

С точки зрения формулы Леонтьева (2) параметр Грюнайзена определяется отношением модуля объемного сжатия и эффективного модуля упругости

$$\gamma = \frac{3}{2} \left(\frac{B}{K} \right)$$

При выполнении условия Коши B = K параметр Грюнайзена равен $\gamma = 1.5$ и твердое тело находится в поле центральных сил, а при $B \neq K$ наблюдается отклонение от этого поля (от значения $\gamma = 1.5$).

Из соотношений Леонтьева (2) и Беломестных—Теслевой (3) видно, что отношение $\left(\frac{B}{K}\right)$ оказывается однозначной функцией коэффициента Пуассона µ, как и в случаях отношения других упругих модулей [8].

$$\frac{B}{K} = \frac{1+\mu}{2-3\mu}$$

На основе данных табл. 1 легко убедиться, что это выражение находится в хорошем согласии с экспериментальными данными [4, 14]. Можно убедиться также, что упругие модули в отдельности представляют собой гармонические характеристики твердых тел, а их отношения оказываются однозначными функциями параметра Грюнайзена – меры ангармонизма.

3. Пинеда (Pineda) [6] теоретически исследовал изменения упругих свойств металлических стекол при их структурных изменениях. Он исходит из следующих трех основных предположений: 1) потенциал межатомного взаимодействия состоит из гармонической и ангармонической частей, 2) распределение расстояний между ближайшими атомами является гауссовым, 3) упругие свойства определяются первой координационной сферой (непосредственным окружением атомов).

Теория Пинеды в целом качественно правильно отражает изменение упругих характеристик в металлических стеклах, в частности, удовлетворительно объясняет эксперименты по структурной релаксации и по всестороннему сжатию этих систем.

Мы использовали данную теорию для проверки зависимости отношения упругих модулей $\left(\frac{B}{K}\right)$ и, следовательно, коэффициента Пуассона µ (см. [8]) от параметра ангармоничности потенциала у₁. Из теории следует, что такая зависимость существует. В самом деле, в соответствии с формулами упругие модули В и Спропорциональны гармоническому коэффициенту а – параметру межатомного потенциала, а их отношение $\left(\frac{B}{K}\right)$ практически не зависит от а и определяется главным образом пара-

метром ангармоничности $\gamma_1 = \frac{br_0}{a}$, который пропорционален параметру Грюнайзена $\gamma = \frac{br_0}{c}$ [4]. ба Это означает зависимость коэффициента Пуассона µ от параметра Грюнайзена у – меры ангармонизма. Известно, что величина и является однозначной функцией отношения упругих модулей $\left(\frac{B}{K}\right)$

[8]. Здесь *b* – ангармонический коэффициент, *r*₀ равновесное межатомное расстояние.

Таким образом, в рамках теории Пинеды получает определенное обоснование уравнение Беломестных-Теслевой (3), устанавливающее взаимосвязь коэффициента Пуассона и параметра Грюнайзена.

ЗАКЛЮЧЕНИЕ

Квадраты скоростей продольной и попереч-

ной акустических вол
н $v_{\rm L}^2$ и $v_{\rm S}^2$ в отдельности фактически не связаны с ангармонизмом, а их отношение $\frac{v_L^2}{v_L^2}$ оказывается линейной функцией параметра Грюнайзена ү, т.е. является ангармонической характеристикой твердых тел. Установлено, что величина $\frac{v_{\rm L}^2}{v_{\rm S}^2}$ определяется отношением тангенци-альной и нормальной жесткостей межатомной связи $\lambda = \frac{k_t}{k_n}$, которое, в свою очередь, является однозначной функцией параметра Грюнайзена γ. В формулах Беломестных-Теслевой (3) и Леонтьева (2) нет противоречия, касающегося взаимосвязи гармонических и ангармонических величин. В рамках теории Пинеды получает опреде-

СПИСОК ЛИТЕРАТУРЫ

ленное обоснование однозначная взаимосвязь коэффициента Пуассона и параметра Грюнайзена.

- 1. Беломестных В.Н., Теслева Е.П. // Журн. тех. физ. 2004. Т. 74. Вып. 8. С. 140-142.
- 2. Сандитов Д.С., Беломестных В.Н. // Журн. тех. физ. 2011. Т. 81. Вып. 11. С. 77-83.
- 3. Леонтьев К.Л. // Акуст. журн. 1981. Т. 27. № 4. C. 554–561.
- 4. Сандитов Д.С. // Усп. физ. наук. 2020. Т. 190. № 4. C. 355-370.
- 5. Козлов Г.В., Сандитов Д.С. Ангармонические эффекты и физико-механические свойства полимеров. Новосибирск: Наука, 1994. 260 с.
- 6. Pineda E. // Phys. Rev. 2006. B73. 104109.
- 7. Бодряков В.Ю., Повзнер А.А., Сафронов И.В. // Журн. тех. физ. 2006. Т. 76. Вып. 2. С. 69-76.

- 8. Ландау Л.Д., Лифшиц Е.М. Теория упругости. 3-е изд. М.: Наука, 1965. 204 с.
- 9. Сандитов Д.С., Машанов А.А. // ФТТ. 2021. Т. 63. Вып. 2. С. 284–290.
- Лившиц В.Я., Теннисон Д.Г., Гукасян С.Б., Костанян А.К. // Физ. и хим. стекла. 1982. Т. 8. № 6. С. 688-693.
- Берлин А.А., Ротенбург Л., Басэрст Р. // Высокомолекулярные соединения. Сер. А. 1992. Т. 34. № 7. С. 6–32 (Обзор).
- 12. Берлин А.А., Ротенбург Л., Басэрст Р. // Высокомолекулярные соединения. Сер. Б. 1991. Т. 33. № 8. С. 619-623.
- Конёк Д.А., Войцеховски К.В., Плескачевский Ю.М., Шилько С.В. // Механика композитных материалов и конструкций. 2004. Т. 10. № 1. С. 35–49 (Обзор).
- 14. *Сандитов Д.С., Дармаев М.В.* // Неорг. материалы. 2019. Т. 55. № 6. С. 660–665.

ANHARMONICITY AND THE RATIO OF THE SQUARES OF THE SPEEDS OF SOUND IN GLASSY SOLIDS

D. S. Sanditov^{*a,b*} and A. A. Mashanov^{*a*}

^a Banzarov Buryat State University, Ulan-Ude, Russian Federation ^b Institute of Physical Materials Science, Siberian Branch of Russian Academy of Science, Ulan-Ude, Russian Federation Presented by Academician of the RAS A.A. Berlin

The obtained dependence of the ratio of the squared velocities of the longitudinal and transverse acoustic waves v_L^2/v_S^2 on the Grüneisen parameter γ – the measure of anharmonicity – is in agreement with the experimental data. The quantity v_L^2/v_S^2 turns out to be a single-valued function of the ratio of the tangential and normal stiffness of the interatomic bond.

Keywords: velocities of elastic waves, anharmonicity, Grüneisen, Leont'ev, Belomestnykh–Tesleva equations, tangential and normal stiffness of interatomic bonds, glasses