———— МЕХАНИКА ———

УДК 534.511.4

СТРУКТУРЫ РАЗРЫВОВ В РЕШЕНИЯХ УРАВНЕНИЙ, ОПИСЫВАЮЩИХ ПРОДОЛЬНО-КРУТИЛЬНЫЕ ВОЛНЫ В УПРУГИХ СТЕРЖНЯХ

© 2021 г. Академик РАН А. Г. Куликовский^{1,*}, А. П. Чугайнова^{1,**}

Поступило 25.02.2021 г. После доработки 25.02.2021 г. Принято к публикации 01.03.2021 г.

Изучаются структуры разрывов (с учетом вязкости) в решениях гиперболической системы уравнений, описывающих связанные продольно-крутильные волны в упругих стержнях. Обнаружены условия существования особых разрывов, а также условия отсутствия структуры эволюционных разрывов.

Ключевые слова: ударные волны, структура разрыва, особые разрывы, законы сохранения **DOI:** 10.31857/S268674002102005X

Рассматриваются нелинейные волны малой амплитуды в упругих стержнях, когда имеется сильное взаимодействие продольных и крутильных движений. Ранее эти движения рассматривались независимо [1-6], а в некоторых случаях рассматривалось частичное взаимодействие этих движений [7]. В [8] была выписана гиперболическая система уравнений, выражающая законы сохранения продольного импульса и момента импульса и рассмотрены простые волны и образование разрывов. В [9, 10] были исследованы возможные разрывы в решениях этих уравнений на основе соотношений, обеспечивающих выполнение упомянутых законов сохранения. Была исследована ударная адиабата и неравенства между скоростью разрыва и скоростями малых возмущений по обе стороны разрыва. Как известно, кроме существования разрывов типа ударных волн, на которых выполняются соотношения, следующие из законов сохранения и обеспечивающие их эволюционность [11, 12], возможны разрывы, называемые особыми [13], соотношения на которых представлены, помимо соотношений, следующих из законов сохранения, некоторыми дополнительными соотношениями [14]. При теоретическом изучении дополнительные соотношения могут быть получены как условия существования стационарной структуры разрыва [15].

В предлагаемой работе, с целью изучения возможностей реализации разрывов обоих типов, изучается решение задачи о структуре разрывов в предположении, что главный механизм, определяющий структуру — вязкость.

Рассмотрим случай, когда при распространении волн в стержнях нелинейные эффекты происходят за счет нелинейной связи напряжений и деформаций, причем последние считаются малыми. Упругую энергию единицы лагранжевой длины стержня будем считать представленной в виде кубического многочлена от деформаций (растяжения u_1 и закрутки u_2), а кинетическую энергию в виде квадратичной формы с диагональной матрицей коэффициентов от скоростей v_1 и v_2 :

$$u_1 = \frac{\partial q}{\partial x}, \quad u_2 = \frac{\partial \varphi}{\partial x}, \quad v_1 = \frac{\partial q}{\partial t}, \quad v_2 = \frac{\partial \varphi}{\partial t}.$$
 (1)

Здесь q = q(x, t) – перемещения вдоль оси стержня, x – лагранжева координата вдоль оси стержня, t – время, $\phi = \phi(x, t)$ – угол поворота сечения стержня.

Если ввести новые переменные, отличающиеся от пар переменных u_1 , v_1 и u_2 , v_2 подходящим образом подобранными множителями λ_1 и λ_2 , то уравнения движения можно записать в виде (для новых переменных оставлены прежние обозначения)

$$\frac{\partial v_i}{\partial t} = \frac{\partial}{\partial x} \frac{\partial F}{\partial u_i} + \mu_i \frac{\partial^2 v_i}{\partial x^2}, \quad \frac{\partial u_i}{\partial t} = \frac{\partial v_i}{\partial x}, \quad i = 1, 2, \quad (2)$$

$$F = F(u_1, u_2) = Au_1^2 + Bu_2^2 + Cu_1^3 + Ru_1u_2^2,$$

(3)
$$A, B, C, R = \text{const.}$$

¹ Математический институт им. В.А. Стеклова Российской академии наук, Москва, Россия

^{*}E-mail: kulik@mi-ras.ru

^{**}E-mail: anna_ch@mi-ras.ru

Уравнения (2) представляют усредненные по сечению стержня уравнения нелинейной вязкоупругости, выражающие сохранение продольного импульса и момента импульса вокруг оси стержня. В уравнениях (2) по сравнению с уравнениями, использовавшимися в [10], учтены вязкие напряжения с постоянными коэффициентами вязкости μ_1 , μ_2 . Форма (3) принятой внутренней энергии $F(u_1, u_2)$ обусловлена предположением о четности функции *F* по переменной u_2 .

Под структурой разрыва будем понимать решение $u_i(\xi)$, $v_i(\xi)$ уравнений (2), где $\xi = -x + Wt$, W = const > 0. При $\xi \to \pm \infty$ решение стремится к предельным значениям. Из уравнений (2) следуют обыкновенные дифференциальные уравнения для структуры, из которых, после однократного интегрирования и исключения переменных v_1 и v_2 , получаем систему уравнений для переменных u_1 и u_2 . Введем вместо переменных u_1 и u_2 переменные Y_1 и Y_2 и вместо переменной ξ переменную η . Таким образом уравнения (2) примут вид

$$-\frac{\mu_1}{\kappa}\frac{dY_1}{d\eta} = U_1N_1,$$

$$N_1 = \frac{\partial N(Y_1, Y_2)}{\partial Y_1} = \frac{P}{\kappa} \left(Y_1 - \frac{s}{P}\right)^2 + Y_2^2 - \frac{P}{\kappa} \left(1 - \frac{s}{P}\right)^2 - 1,$$

$$-\mu_2 \frac{dY_2}{d\eta} = U_1N_2,$$

$$(5)$$

 $N_2 = \frac{\partial N(I_1, I_2)}{\partial Y_2} = 2(Y_1 - s)Y_2 - 2(1 - s).$

Здесь

$$Y_{1} = \frac{u_{1} - a}{U_{1}}, \quad Y_{2} = \frac{u_{2}}{U_{2}}, \quad a = \frac{B - A}{3C - R}, \quad \eta = R\xi, \quad (6)$$

$$s = \frac{W^{2} - b}{2RU_{1}}, \quad b = 2A + 6Ca,$$
(7)

$$P = \frac{3C}{R}, \quad \kappa = \frac{U_2^2}{U_1^2}, \quad U_1, U_2 = \text{const},$$

$$N(Y_1, Y_2) = \frac{1}{3\kappa} Y_1 + Y_1 Y_2 - \frac{1}{3\kappa} \left[\frac{Y_1^2}{\kappa} + Y_2^2 \right] - \left(\frac{P}{\kappa} \left(1 - \frac{s}{P} \right)^2 - 1 \right) Y_1 - 2(1 - s) Y_2.$$
(8)

Начальное состояние при $\eta = -\infty$ задается равенствами $Y_1 = 1$, $Y_2 = 1$ и соответствует состоянию перед структурой. На плоскости Y_1 , Y_2 начальная точка $Y_1 = 1$, $Y_2 = 1$ является особой точкой системы (4), (5) и одновременно стационарной точкой функции $N(Y_1, Y_2)$. Другие особые точки этой системы могут представлять состояние за структурой (разрывом). Цель предлагаемого исследования состоит в нахождении условий, при которых особые точки системы (4), (5) на плоскости Y_1 , Y_2 соединяются интегральными кривыми. Отметим, что согласно (4), (5) функция $N(Y_1(\eta), Y_2(\eta))$ убывает с ростом η : $\frac{dN}{dN} < 0$.

зает с ростом
$$\eta: \frac{d\eta}{d\eta} < 0.$$

Отметим также, что значения скоростной переменной *s* (см. (7)), соответствующие малым возмущениям $s = s_1$ и $s = s_2$, находятся как собственные значения матрицы вторых производных функции $N(Y_1, Y_2)$ и удовлетворяют уравнению

$$(P-s)(1-s) = \kappa.$$
(9)

Рассмотрим особые точки и интегральные кривые системы (4), (5) в случае, когда P > 0. Уравнения $N_1 = 0$ и $N_2 = 0$ представляют на плоскости Y_1, Y_2 эллипс и гиперболу, которые проходят через начальную точку $Y_1 = 1, Y_2 = 1$ и представляют изоклины линий уровня функции $N(Y_1, Y_2)$. Типичный вид линий уровня функции $N(Y_1, Y_2) = \text{const с}$ начальной точкой A_1 изображен на рис. 1а.

Упомянутые изоклины изображены более толстыми линиями. Штриховой линией обозначена вертикальная асимптота гиперболы. Точки A_1, A_4 – седла (как для функции N, так и для уравнений (4), (5)), A_2 – максимум функции N и одновременно узел для системы (4), (5) с выходящими с ростом η интегральными кривыми, A_3 – минимум функции N и узел с входящими в него интегральными кривыми.

Направление движения точки по интегральным кривым с ростом η при всех значениях $m = -\frac{\mu_1}{\mu_1}$ принадлежит тому же квадранту плоскости

 $\kappa\mu_2$ Y_1, Y_2 , что и вектор –grad N. В области внутри эллипса между ветвями гиперболы (рис. 1) направления движения точки по интегральным кривым с ростом *s* принадлежат четвертому квадранту. При малых значениях *m* интегральные кривые почти горизонтальны, а при больших значениях *m* – почти вертикальны. Это означает существование такого значения $m = m_a(s)$, при котором седла *А*₁ и *А*₄ соединены интегральной кривой, представляющей структуру особого разрыва. Интегральная кривая $A_1 \rightarrow A_4$ (седло-седло) может существовать только при s > 1, поскольку при s < 1 выполняется неравенство $N(A_1) < N(A_4)$, противоречащее убыванию функции N с ростом s. На рис. 2 представлен график $m_a(s)$, полученный численно для $\kappa = 2$, P = 0.6, s = 1.2 на интервале $1 < s < \overline{s_2}$ (кривая a).

Соединение седел A_1 и A_4 при $s > s_2$, когда начальная точка $A_2(1,1)$ – выходящий узел, опреде-

Рис. 1. Линии уровня (а) и ударная адиабата (б). $\kappa = 2$, P = 0.6, s = 1.2.

ляет граничное значение $m_b(s)$, такое, что при $m < m_b(s)$ точки A_2 и A_4 соединяются интегральной кривой, представляющей структуру быстрой ударной волны, а при $m > m_b(s)$ сепаратриса точки A_1 проходит между точек A_2 и A_4 и структура ударной волны $A_2 \rightarrow A_4$ не существует.

На рис. 2 представлен график функции $m_b(s)$ (кривая b), непрерывно продолжающий график функции $m_a(s)$ (кривая a), хотя аналитически это другая функция. Функция $m_b(s)$ построена численно при тех же параметрах, что и функция $m_a(s)$. Если задано значение m^* и $m^* < m_{\min}$, то при $s > s_2$ структура разрывов типа $A_2 \rightarrow A_4$ существует при всех s. Если $m^* > m_{\min}$, то существует такое значение $s = s_*$, что при $s < s_*$ структура разрыва типа $A_2 \rightarrow A_4$ не существует, а при $s > s_* -$ структура этого разрыва существует. При том же неравенстве $m^* > m_{\min}$ существует структура особого разрыва при $s = s^*$ (рис. 2).

На рис. 16 изображен один из вариантов качественно различных ударных адиабат, исследованных в [10] (0 < P < 1, $\kappa > 2 - P$), построенный численно для параметров $\kappa = 2$, P = 0.6, s = 1.2. Ударная адиабата (множество состояний за разрывами из начальной точки *O*) содержит три ветви – *QN*, *KM* и *GD*. На ударной адиабате жирными линиями отмечены части ударной адиабаты, соответствующие разрывам со структурой. Изображен случай $m^* > m_{min}$. Части ударной адиабаты *OM* и *FD* соответствуют состояниям за быстрыми ударными волнами, имеющим структуру, SF — за эволюционными быстрыми ударными волнами без структуры, OE — за медленными ударными волнами (все они имеют структуру). Точкой H отмечено состояние за особым разрывом. Если $m^* < m_{\min}$, то особого разрыва не будет, и весь эволюционный участок SD будет соответствовать быстрым ударным волнам со структурой. Остальные части ударной адиабаты не могут реализовываться либо в силу неустранимой неэволюционности, либо из-за типов особых точек, не позволяющих образоваться структуре. Исследование структуры разрывов при других значениях параметров P и к проводится аналогичным образом и будет опубликовано позднее.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ФИЗИКА, ТЕХНИЧЕСКИЕ НАУКИ том 497 2021

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследования выполнены при финансовой поддержке Российского фонда фундаментальных исследований (грант № 20-01-00071).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ergashov M*. A study of the propagation of elastic waves in wound structures taking into account their rotation under extension // J. Appl. Math. Mech. 1992. V. 56. № 1. P. 117–124.
- Умаров Х.Г. Задача Коши для уравнения крутильных колебаний нелинейно-упругого стержня бесконечной длины // ПММ. 2019. Т. 83. № 2. С. 249– 264.
- 3. *Ерофеев В.И., Клюева Н.В.* Распространение нелинейных крутильных волн в стержне из разномодульного материала // Известия РАН. Механика твердого тела. 2003. № 5. С. 147–153.
- Sugimoto N., Yamane Y., Kakutani T. Oscillatory structured shock waves in a nonlinear elastic rod with weak viscoelasticity // J. Appl. Mech. 1984. V. 51(4). P. 766– 772.
- 5. *Zhang S., Liu Z.* Three kinds of nonlinear dispersive waves in elastic rods with finite deformation // Appl. Math. Mech. 2008. V. 29 (7). P. 909–917.
- 6. *Singh Salam* Soliton solutions of nonlinear wave equation in finite de-formation elastic cylindrical rod by sol-

itary wave ansatz method // Intern. J. of Physical Research. 2016. V. 4(1). P. 12–14.

- 7. *Малашин А.А*. Продольно-поперечно-крутильные волны и колебания в музыкальных струнах // ДАН. 2009. Т. 424. № 2. С. 197–199.
- Куликовский А.Г., Чугайнова А.П. Длинные нелинейные волны в анизотропных цилиндрах // ЖВМиМФ. 2017. Т. 57. Вып. 7. С. 1198–1204.
- 9. *Куликовский А.Г., Чугайнова А.П*. Ударные волны в анизотропных цилиндрах // Тр. МИАН. Т. 300. С. 109–122.
- Chugainova A.P., Kulikovskii A.G. Longitudinal and torsional shock waves in anisotropic elastic cylinders // Z. Angew. Math. Phys. 2020. V. 71:1. № 17. 15 p.
- 11. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Физматлит, 1986. 736 с.
- 12. *Lax P.D.* Hyperbolic systems of conservation laws // Comm. Pure Appl. Math. 1957. V. 10. P. 537–566.
- 13. *Куликовский А.Г., Чугайнова А.П.* Классические и неклассические разрывы в решениях уравнений нелинейной теории упругости // УМН. 2008. Т. 63. № 2 (380). С. 85–152.
- 14. *Куликовский А.Г.* Сильные разрывы в течениях сплошных сред и их структура // Тр. МИАН СССР. 1988. Т. 182. С. 261–291.
- Куликовский А.Г. О поверхностях разрыва, разделяющих идеальные среды с различными свойствами: Волны рекомбинации // ПММ. 1968. Т. 32. Вып. 6. С. 1125–1131.

DISCONTINUITY STRUCTURES OF EQUATION SOLUTIONS DESCRIBING LONGITUDINAL-TORSIONAL WAVES IN ELASTIC RODS

Academician of the RAS A. G. Kulikovskii^a and A. P. Chugainova^a

^a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russian Federation

Discontinuity structures (taking into account viscosity) in hyperbolic system solutions describing coupled longitudinal-torsional waves in elastic rods are studied. Existence conditions of special discontinuities, as well as conditions for the absence of structures of evolutionary discontinuities, have been found.

Keywords: shock waves, discontinuity structure, special discontinuities, conservation laws