——— ФИЗИЧЕСКАЯ ХИМИЯ —

УДК 544.72. 544.032

ПЛЕНКИ БАКТЕРИАЛЬНОЙ ЦЕЛЛЮЛОЗЫ, ПРОДУЦИРОВАННОЙ Gluconacetobacter hansenii, КАК ИСТОЧНИК ОКИСЛЕННОЙ ФОРМЫ НАНОФИБРИЛЛЯРНОЙ ЦЕЛЛЮЛОЗЫ

© 2020 г. М. С. Рубина^{1,*}, М. А. Пигалёва², А. В. Наумкин¹, Т. И. Громовых³

Представлено академиком РАН А.Р. Хохловым 07.05.2020 г. Поступило 08.05.2020 г. После доработки 25.05.2020 г. Принято к публикации 15.06.2020 г.

В настоящей работе согласно методике TEMPO-катализируемого процесса окисления была получена нанофибриллярная целлюлоза. В качестве исходного материала для окисления выступала бактериальная целлюлоза, выращенная продуцентом *Gluconacetobacter hansenii*. В результате окисления была получена устойчивая водная дисперсия новой формы наноцеллюлозы, которую использовали для формирования пленки. Установлено, что пленка из окисленной бактериальной целлюлозы образована фибриллами со средней шириной около 6 нм и длиной от 300 нм до нескольких микрон. Методами ИК- и рентгеновской фотоэлектронной спектроскопии подтверждено наличие карбоксильных групп на поверхности пленки.

Ключевые слова: нанофибриллярная целлюлоза, бактериальная целлюлоза, окисление **DOI:** 10.31857/S2686953520030152

Нанофибриллярная целлюлоза (НФЦ) представляет собой один из типов наноструктурированных целлюлозных материалов с характерными размерами образующих единиц 100 нм (ширина) и 1–10 мкм (длина) [1]. Эта наноформа целлюлозы характеризуется высоким аспектным соотношением (отношение длины к ширине фибрилл), что обуславливает появление целого ряда уникальных механических, реологических, барьерных свойств. НФЦ находит применение в качестве носителей лекарственных средств, в качестве пленочных покрытий, пористых материалов в регенеративной медицине для лечения ран.

Одним из эффективных методов для получения НФЦ можно считать окисление целлюлозы гипохлоритом натрия в щелочной среде, катализируемое стабильным радикалом (2,2,6,6-тетраметилпиперидин-1-ил)оксилом (ТЕМРО). Известно, что процесс ТЕМРО-опосредованного окисления полисахаридов отличается региоселективностью и позволяет окислять первичные спиртовые группы в полисахаридном звене до альдегидных и карбоксильных групп в мягких условиях при комнатной температуре и нормальном давлении [2].

При использовании метода, предложенного в [3], где в качестве окислительной системы используется TEMPO/NaClO/NaBr при pH 10, практически все первичные спиртовые группы у С6 атомов в полисахаридных звеньях целлюлозы окисляются до карбоксильной группы. Полученная таким образом окисленная нанофибриллярная целлюлоза (ОНФЦ) и материалы на ее основе могут использоваться в медицинских целях, в частности, в качестве гемостатических препаратов, при лечении экстремальных и хронических кожных ран, в качестве наполнителей и носителей лекарственных препаратов в фармацевтической индустрии [4].

Бактериальная целлюлоза (БЦ) — продукт биосинтеза некоторых видов бактерий, среди которых наиболее часто используются штаммы-продуценты *Acetobacter xylinum* или *Gluconacetobacter xylinum* [5]. В отличие от растительной целлюлозы БЦ характеризуется более высокой степенью чистоты, кристалличностью и гидрофильными свойствами, что обуславливает ее востребованность в регенеративной медицине [6]. Длительное воздействие окислительной системы TEMPO/NaClO/NaBr на БЦ

¹ Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук, Москва, Россия

² Московский государственный университет имени М.В. Ломоносова, физический факультет, Москва, Россия

³ ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет), Москва, Россия

^{*}E-mail: margorubina@yandex.ru

приводит к полной дезинтеграции пленки и получению дисперсии ОНФЦ [7], которую можно использовать для пленко- и гелеобразования, создания композитных материалов [8]. Таким образом, создание новой легкодиспергируемой наноформы целлюлозы расширит возможности применения БЦ для создания композиционных материалов.

В настоящей работе предлагается синтез новой наноформы целлюлозы (ОНФЦ) с использованием в качестве исходного материала для окисления БЦ, синтезируемой продуцентом *Gluconacetobacter hansenii*.

Окисление проводили в сильнощелочной среде, используя в качестве окислительной смеси систему TEMPO/NaClO/NaBr. В качестве источника целлюлозы использовали пленки БЦ в гелевой форме (никогда не подвергались сушке). Ранее было продемонстрировано, что выбранные в работе условия культивирования для синтеза БЦ позволяют получать наноструктурированный слоистый материал [9].

При добавлении окислителя — водного раствора NaClO — к реакционной смеси, содержащей БЦ, NaBr и TEMPO, раствор окрашивался в желтый цвет и практически сразу начинался процесс окисления и отделения волокон. По прошествии суток наблюдалась практически полная дезинтеграция пленки БЦ и помутнение раствора, что указывало на образование дисперсии нанофибриллярной целлюлозы. В результате такого процесса образующиеся в ходе окисления карбоксильные группы целлюлозы находятся в депротонированном состоянии и образуют ионные взаимодействия с катионами натрия, которые находятся в реакционной смеси.

На рис. 16 показано АСМ изображение нанофибрилл ОНФЦ, адсорбированных на поверхность свежесколотой слюды методом полива из водной дисперсии ОНФЦ. Для полива использовали дисперсию "как есть" – без стадии промывок и фильтрования. Из изображений были определены морфологические параметры нанофибрилл. Визуализированные отдельные нанофибриллы имеют вытянутую "палочкообразную" форму. Ширина фибрилл (рис. 1в), определенная как разность высот между поверхностью слюды и поверхностью фибриллы находится в диапазоне от 2 до 14 нм, со средним значением около 6 нм. Длина окисленных фибрилл (рис. 1г) варьировалась в большей степени от 300 нм до нескольких микрон (максимальная длина, определенная из АСМ изображения — 2.5 мкм).

Согласно рис. 1а исходная пленка БЦ, использованная для окисления, характеризуется шириной микрофибрилл 30—100 нм и длиной большей, чем несколько микрон. Значительное укорочение волокон указывает на процесс деполимеризации, который сопровождает окисление [1].

Для исследования функционального состава и химии поверхности ОНФЦ была сформирована отдельная пленка поливом предварительно очищенной дисперсии на стерильную чашку Петри из полистирола. Пленку высушивали на воздухе при комнатной температуре и относительной влажности около 50%. Толщина сформированной пленки, измеренная с помощью микрометра, составила 15 мкм. Процедуру очистки проводили сочетанием стадий центрифугирования продукта (9000 об./мин, 15 мин) и его промывки деионизованной водой.

На рис. 2 показан ИК спектр пленки ОНФЦ. В спектре регистрируются наиболее интенсивные полосы поглощения при следующих значениях волновых чисел (см⁻¹): ок. 3363 (вал., О–Н) и 2968–2878 (вал., С–Н), 1430 (ножничные, СН₂ у Сб), 1372 (деф., С–Н), 1360, 1338 (деф., О–Н в плоскости), 1316 (маятниковые, СН₂), 1280 (деф. С–Н), 1248 (деф. С–Н),1233 (деф. О–Н в плоскости у Сб), 1205 (вал., С–О в пиранозном кольце), 1165 (деф., С–О–С в пиранозном кольце), 1111 (вал. ассим., пиранозное кольцо), 1059 (деф., С–О–С). Положения этих полос для пленки ОНФЦ практически совпадают с полосами, зарегистрированными для исходной пленки БЦ, и указывают на структуру целлюлозы I типа [10].

В результате окисления в спектре ОНФЦ по сравнению с БЦ (рис. 2, вставка) регистрируется интенсивная полоса поглощения при 1607 см⁻¹. Эта полоса отвечает валентным колебаниям C=O в СОО⁻ группе [11] и говорит об успешности проведения процедуры окисления.

Изменения затрагивают также область 4000– 2800 см⁻¹: уширяется полоса ок. 3363 см⁻¹ и уменьшается отношение интенсивностей полос валентных колебаний метильных групп и валентных колебаний гидроксильных групп. Это может указывать на увеличение содержания воды в пленке ОНФЦ и, соответственно, на лучшие гидрофильные свойства пленок по сравнению с БЦ.

Для получения информации о химическом состоянии элементов и их концентрации на поверхности пленки были охарактеризованы методом РФЭ спектроскопии. Зарегистрированные фотоэлектронные спектры С 1*s* для пленок разлагали на компоненты, приписывая каждой компоненте определенное состояние углерода (рис. 3). Процедура разложения и интерпретации спектров аналогична той, которая была описана ранее в работе [12]. Результаты разложения представлены в табл. 1. С 1*s* спектры пленок БЦ и ОНФЦ описаны четырьмя состояниями атомов углерода: С1 (углерод, связанный с углеродом или водородом, <u>С</u>-С/<u>С</u>-Н), С2 (углерод, связанный с гидроксильной группой, <u>С</u>-О, и углерод в эфирной свя-

Рис. 1. Типичное СЭМ изображение нанофибрилл в исходной БЦ пленке (а); типичное АСМ изображение нанофибрилл ОНФЦ, адсорбированных на поверхность свежесколотой слюды методом полива из водной дисперсии ОНФЦ (б); гистограммы распределения высоты (ширины) нанофибрилл ОНФЦ (в); гистограмма распределения длины отдельных нанофибрилл ОНФЦ (г).

зи в пиранозном кольце <u>С</u>-О-С), СЗ (углерод, связанный с кислородом в карбонильной группе и/или ацетальный углерод, С=О/О-С-О) и С4 (углерод, связанный с двумя кислородами в карбоксильной группе, О=<u>С</u>-О). Состояние С1 не характерно для структуры целлюлозы, однако встречается регулярно во всех типах целлюлозы и представляет собой низкомолекулярные фрагменты примесного углерода [13]. Стоит отметить, что для структуры целлюлозы в теории характерны только два состояния углерода: С2 и С3, атомное отношение концентраций которых должно составлять 5. Согласно результатам разложения спектров отношение С2/С3 составляет 3.04 и 3.33 для БЦ и ОНФЦ соответственно. Уменьшение отношения С2/С3 по сравнением с теоретическим может указывать на присутствие дополнительного состояния углерода.

В результате окисления на поверхности ОНФЦ регистрируется увеличение содержания углерода карбоксильной группы (C4, O= \underline{C} -O), при этом отношение (C2+C3)/C4 стремительно уменьшается, а отношение C2/C3 практически не меняет-

ся. Это может указывать на то, что окислительный процесс затрагивает атомы углерода, связанные как с гидроксильными группами (C2, <u>C</u>-O), так и с ацетальными группами (C3, O-<u>C</u>-O) [14].

Состав поверхности (ат. %), определенный с помощью коэффициентов элементной чувствительности из обзорных спектров, для исходной пленки – $C_{56,5}O_{43,5}$ и для окисленной – $C_{54,3}O_{38,8}Na_{6,9}$. Предполагалось, что отношение атомных концентраций О/С после окисления должно увеличиться. Однако, наблюдается тенденция по уменьшению этого отношения с 0.77 (БЦ) и до 0.71 (ОНФЦ). Увеличение содержания углерода в пленке ОНФЦ по сравнению с БЦ, вероятно, связано с увеличением доли примесного углерода (С1 в спектрах). В литературе отмечается [15], что даже тщательно очищенные поверхности биоматериалов на воздухе очень быстро становятся "загрязненными" вследствие адсорбции низкомолекулярных органических соединений из окружающей среды. Разделить вклады примесных атомов углерода, привнесенных в результате процедуры синтеза материала или в результате

Рис. 2. ИК спектр тонкой пленки ОНФЦ, зарегистрированный в режиме поглощения. На вставке отдельно показана увеличенная область 1750–1180 см⁻¹ для пленки исходной БЦ (спектр а) и пленки ОНФЦ (спектр б).

пробоподготовки, не представляется возможным.

Таким образом, в результате использования адаптированной методики окисления смесью TEMPO/NaClO/NaBr пленки бактериальной целлюлозы, синтезированной продуцентом *Gluconacetobacter hansenii*, была получена водная дисперсия окисленной нанофибриллярной целлюлозы. Фибриллы окисленной целлюлозы отличаются более высоким аспектным соотношением по сравнению с фибриллами исходной бактериальной целлюлозы и содержат карбоксильные группы на своей поверхности, что было подтверждено спектральными методами (ИК и РФЭС).

Рис. 3. Фотоэлектронные спектры С 1*s*: пленка БЦ (а), пленка ОНФЦ (б).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получение пленки бактериальной целлюлозы. Для получения бактериальной целлюлозы был использован штамм *Gluconacetobacter hansenii* GH-1/2008. Получение пленки БЦ проводили культивированием продуцента в стационарном режиме при температуре $26 \pm 2^{\circ}$ С на среде со следующим составом (г/л): глюкоза – 20.0, пептон – 5.0, дрожжевой экстракт – 5.0, гидрофосфат натрия – 2.7, дигидрофосфат калия – 2.0, лимонной кислоты моногидрат – 1.15. Подробные методики культивирования продуцента, выращивания самой пленки БЦ и ее очистка описаны в работах [6, 9].

Окисление целлюлозы. В 30 г воды при интенсивном перемешивании растворяли 4.6 мг 2,2,6,6тетраметилпиперидин-1-оксила (ТЕМРО) и 51.5 мг NaBr. Далее в раствор помещали пленку БЦ в гелеобразной форме размером 5 × 9 см² (в высушенном

Тип пленки	Тип углерода	Энергия связи, эВ	Ширина пика, эВ	Относительная интенсивность, %
ОНФЦ	C1	284.9	1.11	16
	C2	286.6	0.98	60
	C3	288.1	1.09	18
	C4	289.7	1.61	5
БЦ	C1	285.0	1.15	6
	C2	286.6	0.98	70
	C3	288.0	1.22	23
	C4	289.6	0.97	1

Таблица 1. Результаты разложения спектров С 1*s* для исходной пленки БЦ и ее окисленной формы (ОНФЦ) на компоненты

виде соответствует около 100 мг целлюлозы). Реакция окисления начиналась при добавлении по каплям из шприца 1.78 г 13% водного раствора NaClO. После окончания добавления NaClO pH раствора был доведен до значения 10-11 с помощью 0.5 М раствора гидроксида натрия. Реакцию проводили при температуре $22 \pm 2^{\circ}$ С. По прошествии 24 ч в реакционную смесь добавляли 2 мл этанола. Очищение ОНФЦ проводили последовательными процедурами центрифугирования при 9000 об./мин в течение 15 мин и промывки осадка деионизованной водой. Процедуру повторяли несколько раз, чтобы рН надосадочной жидкости составлял 7. Далее осадок очищенной ОНФЦ редиспергировали в новой поршии деионизованной воды и проводили обработку полученной дисперсии в УЗ-бане с целью гомогенизации.

Методы исследования. Эксперименты по РФЭС выполняли на спектрометре AxisUltra DLD (Kratos, Великобритания) с использованием монохроматизированного излучения Al K_a (1486.6 эВ) при рабочей мощности рентгеновской трубки 150 Вт. Обзорные спектры и спектры высокого разрешения соответствующих энергетических уровней были записаны при энергиях прохождения 160 и 40 эВ и с размерами шагов 1 и 0.1 эВ соответственно. Энергетическая шкала спектрометра была откалибрована для получения следующих значений для эталонных образцов (то есть металлических поверхностей, недавно очищенных ионной бомбардировкой): Au 4f_{7/2}—83.96 эВ, Ag 3d_{5/2}—368.21 эВ. Эффекты электростатического заряжения образцов были компенсированы с помощью электронного нейтрализатора.

ИК спектры образцов регистрировали на спектрометре Nexus (ThermoNicolet, США) в режиме пропускания с использованием окошек из NaCl в диапазоне $4000-700 \text{ см}^{-1}$, разрешение 2 см^{-1} , число сканов – 64.

Для получения СЭМ изображений использовали электронный микроскоп с полевой эмиссией (FE-SEM) Hitachi SU8000 (Япония). Перед съемкой образцы помещали на поверхность алюминиевого столика диаметром 25 мм, фиксировали при помощи проводящего скотча (образец черни) или проводящего пластилина (образец пленки) и напыляли на них проводящий слой углерода толщиной 10 нм.

АСМ исследование проводили в режиме прерывистого контакта с использованием атомносилового микроскопа Multimode с контроллером NanoScope-IIIa (Digital Instruments, США) и кремниевыми кантилеверами NCH (Nanoworld Instruments, Швейцария). Анализ изображений АСМ проводили с помощью программного обеспечения Nanoscope (Digital Instruments) и программного обеспечения Femtoscan Online (Центр перспективных технологий, Россия). Для визуализации отдельных нанофибрилл ОНФЦ с помощью ACM ее водный раствор с концентрацией 0.3 г/л наносили на поверхность свежесколотой слюды.

БЛАГОДАРНОСТИ

Авторы благодарят Отдел структурных исследований ИОХ РАН за исследование образцов методом электронной микроскопии на микроскопе Hitachi.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Исследование выполнено за счет гранта Российского Фонда Фундаментальных Исследований (проект № 18–29–06049 мк) и Министерства науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- Isogai A., Saito T., Fukuzumi H. // Nanoscale. 2011. V. 3. P. 71–85.
- Pierre G., Punta C., Delattre C., Melone L., Dubessay P., Fiorati A., Pastori N., Galante Y.M., Michaud P. // Carbohydr. Polym. 2017. V. 165. P. 71–85.
- 3. Isogai A., Kato Y. // Cellulose. 1998. V. 5. P. 153-164.
- Weishaupt R., Siqueira G., Schubert M., Tingaut P., Maniura-Weber K., Zimmermann T., Thöny-Meyer L., Faccio G., Ihssen J. // Biomacromolecules. 2015. V. 16. № 11. P. 3640–3650.
- 5. Громовых Т.И., Садыкова В.С., Луценко С.В., Дмитренок А.С., Фельдман Н.Б., Данильчук Т.Н., Каширин В.В. // Прикладная биохимия и микробиология. 2017. Т. 53. № 1. С. 69–75.
- Pigaleva M.A., Bulat M. V., Gromovykh T.I., Gavryushina I.A., Lutsenko S. V., Gallyamov M.O., Novikov I.V., Buyanovskaya A.G., Kiselyova O.I. // J. Supercrit. Fluids. 2019. V. 147. P. 59–69.
- 7. Wu C., Fuh S., Lin S., Lin Y., Chen H., Liu J., Cheng K. // Biomacromolecules. 2018. V. 19. № 2. P. 544–554.
- Wu C.N., Cheng K.C. // Cellulose. 2017. V. 24. P. 269– 283.
- Gromovykh T.I., Pigaleva M.A., Gallyamov M.O., Ivanenko I.P., Ozerova K.E., Kharitonova E.P., Bahman M., Feldman N.B., Lutsenko S. V., Kiselyova O.I. // Carbohydr. Polym. 2020. V. 237. P. 116140.
- 10. Carrilo F., Colom X., Suñol J.J., Saurina J. // Eur. Polym. J. 2004. V. 40. № 9. P. 2229–2234.
- 11. Da Silva Perez D., Montanari S., Vignon M.R. // Biomacromolecules. 2003. V. 4. № 5. P. 1417–1425.
- Рубина М.С., Пигалёва М.А., Бутенко И.Е., Будников А.В., Наумкин А.В., Громовых Т.И., Луценко С.В., Васильков А.Ю. // ДАН. 2019. Т. 488. № 4. С. 391–396.
- Ly B., Belgacem M.N., Bras J., Brochier Salon M.C. // Mater. Sci. Eng. C. 2010. V. 30. № 3. P. 343–347.
- Lai C., Sheng L., Liao S., Xi T., Zhang Z. // Surf. Interface Anal. 2013. V. 45. № 11–12. P. 1673–1679.
- Rouxhet P.G., Genet M.J. // Surf. Interface Anal. 2011. V. 43. № 12. P. 1453–1470.

BACTERIAL CELLULOSE PELLICLES, PRODUCED BY *Gluconacetobacter hansenii*, AS A STARTED MATERIAL FOR OXIDIZED NANOFIBRILLATED CELLULOSE

M. S. Rubina^{*a*,#}, M. A. Pigaleva^{*b*}, A. V. Naumkin^{*a*}, and T. I. Gromovykh^{*c*}

^a Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation ^b Lomonosov Moscow State University, Physics Faculty, Moscow, Russian Federation

^c I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation [#]E-mail: margorubina@vandex.ru

Presented by Academician of the RAS Khokhlov A.R. May 7, 2020

In the present work, according to the protocol of the TEMPO-assisted oxidation process, nanofibrillated cellulose was obtained. As a source for oxidation pellicles of bacterial cellulose produced by *Gluconacetobacter hansenii* was used. As a result, a stable aqueous dispersion of a novel form of nano-cellulose was obtained, which was used to form a film. It was found that the film of oxidized bacterial cellulose is formed by fibrils with an average width of about 6 nm and a length of 300 nm to several microns. The presence of carboxyl groups on the film surface is confirmed with IR and X-ray photoelectron spectroscopy.

Keywords: nanofibrillated cellulose, bacterial cellulose, oxidation