——— ФИЗИЧЕСКАЯ ХИМИЯ —

УДК 544.51,544.576

ХЕМИЛЮМИНЕСЦЕНЦИЯ ИОНОВ ЛАНТАНИДОВ Ln^{(n - 1)+} ПРИ ВОССТАНОВЛЕНИИ Lnⁿ⁺ СОЛЬВАТИРОВАННЫМ ЭЛЕКТРОНОМ

© 2020 г. Б. М. Гареев¹, К. С. Василюк¹, Д. И. Галимов¹, Г. Л. Шарипов^{1,*}, член-корреспондент РАН У. М. Джемилев¹

Поступило 10.06.2020 г. После доработки 01.09.2020 г. Принято к публикации 02.09.2020 г.

На примере Eu³⁺ и Ce⁴⁺ впервые показана способность ионов лантанидов к люминесценции вследствие химической генерации электронно-возбужденных состояний *Ln^{(n - 1)+} при восстановлении Lnⁿ⁺ сольватированным электроном в облучаемых ультразвуком растворах. Сольватированный электрон образуется в изученных случаях при инжекции электронов из неравновесной плазмы, периодически генерируемой ультразвуком в движущемся пузырьке. Ключевой стадией найденной однопузырьковой сонохемилюминесценции (СХЛ) является восстановление Eu³⁺ и Ce⁴⁺ соответственно до двух- и трехвалентного состояния сольватированным в воде и этиленгликоле электроном. Установлено, что эмиттерами СХЛ являются возбужденные ионы *Eu²⁺ и *Ce³⁺, которые, наряду со способностью к люминесценции, обладают высокими восстанавливающими свойствами ($E_{\rm ok} \leq -2.9$ B). Последний фактор предопределяет возможность использования ультразвуковой генерации *Ce³⁺ и *Eu²⁺ в многочисленных реакциях органического синтеза и металлокомплексного катализа.

Ключевые слова: ионы лантанидов, сольватированный электрон, хемилюминесценция, однопузырьковая сонолюминесценция, сонохемилюминесценция

DOI: 10.31857/S2686953520050064

Согласно [1], сольватированный электрон е, является эффективным восстановителем. Так, в водной среде ($e_{\rm s} = e_{\rm aq}$) сольватированный электрон имеет потенциал E_{ok} равный -2.9 В, поэтому восстановление с помощью e_s органических и неорганических молекул, ионов и радикалов с положительными и незначительными отрицательными потенциалами E_{вос} проходит экзотермично (отрицательное значение изменения свободной энергии $\Delta G \sim E_{\rm ok} - E_{\rm Boc}$). Данное свойство сольватированного электрона может приводить к образованию восстановленных форм реагентов в электронно-возбужденном состоянии, поэтому эти реакции потенциально хемилюминесцентны. С учетом вышеизложенного можно предположить, что хемилюминесценция (ХЛ) должна иметь место в реакциях ионов лантанидов с сольватированным электроном: $Ln^{n+} + e_s \rightarrow Ln^{(n-1)+}$. Теоретическая оценка ΔG по известным [2] потенциалам E_{BOC} для пар Ln^{4+}/Ln^{3+} (Се, Pr, Tb) или Ln^{3+}/Ln^{2+} (Sm, Eu, Yb) указанных ионов, существующих в соответствующих степенях окисления, позволяет постулировать возникновение XJI для всех указанных выше реакций восстановления соединений лантанидов с помощью e_s . Действительно, в подтверждение вышесказанному рентгенохемилюминесценция в водных растворах TbCl₃ была описана реакциями (1)–(3) с ключевой стадией возбуждения (3) [3].

$$H_2O -))) \rightarrow H_2O^+ + e \xrightarrow{H_2O} H_3O^+ + OH + e_{aq} (1)$$

$$H_2O^+ + Tb^{3+} \to H_2O + Tb^{4+}$$
 (2)

$$\Gamma b^{4+} + e_{aq} \to * T b^{3+} \to T b^{3+} + hv$$
 (3)

Примеры подобной ХЛ для других ионов лантанидов в литературе не описаны несмотря на широкое изучение окислительно-восстанови-

¹ Институт нефтехимии и катализа Уфимского федерального исследовательского центра Российской академии наук, Уфа, Россия

^{*}E-mail: glus@anrb.ru

73

тельных преврашений солей и соединений Ln^{*n*+} при радиолизе [2, 3] и аналогичном по механизмам реакций сонолизе [4] растворов Lnⁿ⁺ с возможной генерацией сольватированного электрона. Однако, в отличие от радиолиза, сонолитическая генерация es у исследователей долго вызывала сомнения, потому что было доказано отсутствие сольватированного электрона e_{aq} при многопузырьковом сонолизе водных растворов [5]. Между тем недавно установили, что при однопузырьковом сонолизе в режиме движущегося пузырька выход *e*_{aq} сопоставим с выходом образования других первичных продуктов сонолиза воды (Н, ОН) [6]. Таким образом, сонолиз, так же как и радиолиз в условиях гетеролитической диссоциации воды по уравнению (1), можно применять для генерации сольватированного электрона. Мы предположили, что подобные уравнению (3) реакции превращения лантанидов можно осуществлять не только в водных растворах, но и в других полярных растворителях, где возможна генерация e_s. С целью проверки высказанных выше гипотез и поиска новых примеров ХЛ ионов лантанидов в условиях взаимодействия с сольватированным электроном, генерируемым при сонолизе движущимся одиночным пузырьком, мы в рамках данного сообщения Ce^{4+} исследовали восстановление ионов $[(NH_4)_2Ce(NO_3)_6]$ и Eu^{3+} (EuCl₃ · 6H₂O) с помощью *e*_s в воде и этиленгликоле.

Сонолиз проводили в сферическом стеклянном резонаторе ($V = 0.1 \, \pi$), в котором на частоте ~26 кГц в H_2O и $C_2H_4(OH)_2$ возникала стоячая волна с пучностью в его центре, в котором зависал левитирующий в жидкости и пульсирующий с частотой ультразвука пузырек. В зависимости от акустического давления он был либо неподвижен, либо двигался возле центра стабилизации. Пузырек производил сонолиз жидкости и светился. Для регистрации спектров свечения однопузырьковая сонолюминесценция (ОПСЛ) неподвижного пузырька и ОПСЛ в режиме движения (ОПСЛ-РД) передавались через кварцевый световод на входную щель спектрометра. Амплитуда акустического давления p_a , действующая на пузырек, контролировалась сравнением с сигналом гидрофона 8103 Brüel&Kjær (Дания).

На рис. 1 показаны спектры люминесценции при разных p_a в дегазированных воде и растворе (NH₄)₂Ce(NO₃)₆. Пузырек был неподвижен при 1.2 бар (рис. 1а) и двигался при 1.32 бар (рис. 1б). В этих режимах пузырек испускал в воде практически одинаковые полосы континуумов ОПСЛ и ОПСЛ-РД (рис. 1, кривая *1*). Такие континуумы имеют место во многих растворителях. В растворе (NH₄)₂Ce(NO₃)₆ континуум ОПСЛ почти не менялся (рис. 1, кривая *2*), не считая сдвига его коротковолновой части, обусловленного поглощением света не люминесцирующим ионом Ce⁴⁺ (рис. 1, кривая 5). В спектре ОПСЛ-РД этого раствора на фоне континуума появилась дополнительная полоса с максимумом 365 нм (рис. 1, кривая 3), представляющая собой люминесценцию Ce³⁺. Она совпала (с учетом поглощения коротковолновой части) с полосой фотолюминесценции (ФЛ) в растворе CeCl₃ (рис. 1, кривая 4). Присутствие в растворе 0.1 М H₂SO₄ подавляло люминесценцию церия, хотя дополнительно установлено, что при такой концентрации кислота не влияет на квантовый выход ФЛ Ce³⁺.

Отсутствие влияния добавки Се4+ на спектр ОПСЛ неудивительно, так как при столь малой концентрации вероятность его попадания в пузырек ничтожно мала и не оказывает действия на процессы в пузырьке, равно как и на условия его колебаний в связи с изменением плотности и вязкости раствора. Оказалось, в этом отношении даже 0.1 М H₂SO₄ заметно не влияла на спектры ОПСЛ и ОПСЛ-РД воды. В то же время действие Се⁴⁺ и H₂SO₄ на спектр ОПСЛ-РД раствора церия требует особого объяснения, связанного, очевилно, с процессами вне пузырька. Они заключаются в следующем. Движущийся пузырек деформируется. На его поверхности возникают волны и микроструи, стимулирующие массоперенос через границу газ-жидкость [7, 8]. В результате происходит инжекция продуктов сонолиза молекул воды, испарившихся в пузырек, в том числе электронов, в объем раствора с последующей их сольватацией (реакция (1)) [6]. Возникший *e*_{aq} восстанавливает Ce^{4+} до Ce^{3+} (константа скорости реакции 6.6 × $\times 10^{10}$ M⁻¹ c⁻¹ [2]), в том числе и до *Ce³⁺, обеспечивая сонохемилюминесценцию (СХЛ) в растворе:

$$\operatorname{Ce}^{4+} + e_{\operatorname{aq}} \to \operatorname{*Ce}^{3+} \to \operatorname{Ce}^{3+} + hv$$
 (4)

При наличии H_2SO_4 (ионов H^+ – акцептора e_{aq} [1]) идет конкурентная реакция (5). При этом H также восстанавливает Ce⁴⁺ (реакция (6), константа скорости 6.5 × 10⁷ M⁻¹ c⁻¹ [2]):

$$\mathrm{H}^{+} + e_{\mathrm{aq}} \to \mathrm{H} \tag{5}$$

$$Ce^{4+} + H \rightarrow Ce^{3+} + H^+$$
 (6)

Однако, если для реакции (4) $\Delta G = -4.3 \Rightarrow B$ (потенциал E_{BOC} для пары Ce⁴⁺/Ce³⁺ не менее +1.4 B [2]), то для реакции (6) ΔG на 0.6 $\Rightarrow B$ меньше (по абсолютной величине). Энергия возбужденного $5d^1$ -состояния иона Ce³⁺ (4.1 $\Rightarrow B$ по спектру ФЛ) меньше, чем | ΔG | реакции (4), поэтому в акте восстановления возможна генерация *Ce³⁺. Реакция (6) в этом отношении энергодефицитна, поэтому при замене e_{aq} на H наблюдается тушение СХЛ.

Рис. 1. Спектры воды и водных растворов: $1 - OПСЛ и OПСЛ-РД H_2O$; $2 - OПСЛ (NH_4)_2Ce(NO_3)_6 в H_2O и OПСЛ-РД (NH_4)_2Ce(NO_3)_6 в 0.1 M H_2SO_4$; $3 - OПСЛ-РД (NH_4)_2Ce(NO_3)_6 в H_2O$; $4 - \PhiЛ CeCl_3 в H_2O$, а также в 0.1 M H_2SO_4 ($\lambda_{B036} = 253$ нм); 5 - поглощение (NH_4)_2Ce(NO_3)_6 в H_2O (I = 0.5 см). На вставках приведены фотографии неподвижного (а) и движущегося (б) пузырьков (снимки сделаны фотокамерой Nikon 3000D (Япония), S = 0.1 с). Пунктирной линией 3' показана часть полосы люминесценции Ce³⁺ и континуума воды в спектре 3 (получена корректировкой спектра 3 по данным спектра поглощения 5). Спектрометры Aminco Bowman (США) (спектры 1-3), Fluorolog-3 Horiba (Япония) (спектр 4) и Shimadzu UV-1800 (Япония) (спектры 5; $p_a = 1.2$ бар (ОПСЛ) – (а) и 1.32 бар (ОПСЛ-РД) – (б). Концентрация [Ce] = 1×10^{-5} M (спектры 5) и 5×10^{-5} M (спектры 2-4).

Следующим этапом работы стал поиск СХЛ при восстановлении e_s иона Eu³⁺ до Eu²⁺. В отличие от Ce³⁺, Eu²⁺ в воде не люминесцирует из-за дезактивации *Eu²⁺ по механизму переноса элек-

трона на растворитель [9]. Поэтому, несмотря на возможность реакции ($Eu^{3+} + e_{aq}$) при ОПСЛ-РД, в воде искомая СХЛ не обнаружима. Однако люминесценция Eu^{2+} найдена в неводных раствори-

74

Рис. 2. Спектры ОПСЛ-РД этиленгликоля (*1*) и раствора EuCl₃·6H₂O в этиленгликоле (*2*) при p_a = 1.36 бар, *3* – спектр ФЛ EuCl₃·6H₂O в этиленгликоле (λ_{B036} = 393 нм), *4* – спектр ХЛ в системе EuCl₂–ⁱBu₂AlH–C₄H₈O–O₂. Спектрометры Aminco Bowman (спектры *1*, *2*) и Fluorolog-3 Horiba (спектры *3*, *4*). Концентрация [Eu] = 1 × 10⁻⁴ M (спектры *2*, *3*) и 1 × 10⁻² M (спектр *4*).

телях [10]. Среди них наше внимание привлек этиленгликоль, поскольку при его радиолизе эффективность генерации e_s высока, как и в воде [1]. По аналогии с радиолизом нами предположена генерация e_s и при сонолизе этиленгликоля в режиме ОПСЛ-РД. Эксперимент, в котором сенсором-акцептором e_s послужил уже испытанный в случае e_{aq} ион Се⁴⁺, подтвердил это предположение. На фоне континуума ОПСЛ-РД этиленгликоля, подобного континууму в воде, была зарегистрирована полоса *Се³⁺ (спектр не приведен). Она тушилась присутствием 0.1 М H₂SO₄. Это позволило постулировать последовательные реакции СХЛ (7) и (8):

$$C_2H_4(OH)_2 -))) \rightarrow e_s \tag{7}$$

$$\operatorname{Ce}^{4+} + e_{\mathrm{s}} \to \operatorname{*Ce}^{3+} \to \operatorname{Ce}^{3+} + hv$$
 (8)

На основе полученных данных была рассмотрена ОПСЛ и ОПСЛ-РД EuCl₃ в этиленгликоле (рис. 2). В отличие от Ce⁴⁺, ион Eu³⁺ является люминофором, однако его собственная сонолюминесценция с характерными максимумами 591, 614 и 693 нм (рис. 2, кривая *3*) не регистрируется. Вместо них в спектре ОПСЛ-РД присутствует широкая полоса с максимумом в области 465 нм (рис. 2, кривая *2*), положение которого совпало с максимумом в спектре ХЛ (рис. 2, кривая *4*) в реакции окисления алюминийорганических соедине-

ний кислородом в присутствии EuCl₂ (вторичный эмиттер XЛ) [10]. Данная полоса тушится добавкой H_2SO_4 , что указывает на эффект акцептирования e_s . Следовательно, при ОПСЛ-РД Eu³⁺ в этиленгликоле также происходит хемилюминесцентное восстановление:

$$\mathrm{Eu}^{3+} + e_{\mathrm{s}} \to \mathrm{*Eu}^{2+} \to \mathrm{Eu}^{2+} + hv \tag{9}$$

Таким образом, спрогнозировано и на примере ОПСЛ-РД для ионов Се⁴⁺ и Еи³⁺ в воде и этиленгликоле обнаружено, по-видимому, достаточно общее для ионов лантанидов явление ХЛ ионов Ln^{(n - 1)+} при восстановлении Lnⁿ⁺ сольватированным электроном. Возбужденные Се³⁺ и Eu²⁺ – сильные восстановители ($E_{ok} = -2.9$ В для *Се³⁺ и -3.5 В для *Eu²⁺) и уже зарекомендовали себя как эффективные фотокатализаторы в реакциях дегидрирования, дегалоидирования и гидрогенолиза [11]. Поэтому обнаруженная СХЛ предопределяет возможность использования ультразвуковой генерации *Се³⁺ и *Eu²⁺ в органическом синтезе и металлокомплексном катализе.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследование проведено в соответствии с бюджетными темами ИНК УФИЦ РАН при финансовой поддержке Минобрнауки России (грант ФЦП № 2019-05-595-000-058) с использованием оборудования ЦКП "Агидель" УФИЦ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Пикаев А.К.* Современная радиационная химия. Радиолиз газов и жидкостей. М.: Наука, 1986. 440 с.
- 2. Пикаев А.К., Шилов В.П., Спицын В.И. Радиолиз водных растворов лантанидов и актинидов. М.: Наука, 1983. 240 с.
- Kulmala S., Hakanen A., Laine E., Haapakka K.J. // J. Alloys Compd. 1995. V. 225. P. 279–283.
- 4. *Маргулис М.А.* Основы звукохимии. М.: Высшая школа. 1984. 272 с.
- Mišík V., Riesz P. // J. Phys. Chem. A. 1997. V. 101. P. 1441–1444.
- Sharipov G.L., Yakshembetova L.R., Abdrakhmanov A.M., Gareev B.M. // Ultrason. Sonochem. 2019. V. 58. P. 104674.
- Xu H., Eddingsaas N.C., Suslick K.S. // J. Am. Chem. Soc. 2009. V. 131. P. 6060–6061.
- 8. Sharipov G.L., Abdrakhmanov A.M., Gareev B.M. // Tech. Phys. Lett. 2019. V. 45. P. 1175–1177.
- Булгаков Р.Г., Казаков В.П., Коробейникова В.Н. // ХВЭ. 1973. Т. 7. № 4. С. 374–375.
- Galimov D.I., Yakupova S.M., Vasilyuk K.S., Bulgakov R.G. // J. Photochem. Photobiol., A. 2020. V. 397. P. 112587.
- Qiao Y., Schelter E.J. // Acc. Chem. Res. 2018. V. 51. P. 2926–2936.

CHEMILUMINESCENCE OF LANTANIDE IONS $Ln^{(n-1)+}$ AT REDUCTION OF Ln^{n+} BY A SOLVATED ELECTRON

B. M. Gareev^{*a*}, K. S. Vasilyuk^{*a*}, D. I. Galimov^{*a*},

G. L. Sharipov^{a,#}, and Corresponding Member of the RAS U. M. Dzhemilev^a

^a Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, Ufa, Russian Federation [#]E-mail: glus@anrb.ru

Using europium and cerium as an example, the ability of lanthanide ions to luminescence due to the chemical generation of electronically excited states of $Ln^{(n-1)+}$ during the Ln^{n+} reduction by a solvated electron was shown. The solvated electron was formed *via* electrons injection from a nonequilibrium plasma periodically generated in the moving bubble at ultrasonic vibrations. A key reaction of the detected single-bubble sonochemiluminescence (SCL) is the Eu³⁺ and Ce⁴⁺ reduction to a divalent and trivalent state, respectively, by a solvated (in water and ethylene glycol) electron. It was established that the SCL emitters are excited ions *Eu²⁺ μ *Ce³⁺, which, along with luminescence, have high reducing properties (redox potential from -2.9 V). The latter factor determines the possibility of using ultrasonic generation of *Eu²⁺ μ *Ce³⁺ in numerous reactions of organic synthesis and metal complex catalysis.

Keywords: lanthanide ions, solvated electron, chemiluminescence, single-bubble sonoluminescence, sonochemiluminescence