ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ХИМИЯ, НАУКИ О МАТЕРИАЛАХ, 2021, том 497, с. 3–8

УДК 541.64

ВОДОРАСТВОРИМЫЕ ЛЮМИНЕСЦИРУЮЩИЕ КОМПЛЕКСЫ ЛАНТАНОИДОВ НА ОСНОВЕ СОПОЛИМЕРОВ 2-МЕТАКРИЛОИЛОКСИЭТИЛЕНИМИНОДИУКСУСНОЙ КИСЛОТЫ

© 2021 г. Т. Н. Некрасова¹, М. В. Соловский¹, М. С. Борисенко^{1,*}, А. И. Фишер^{1, 2}, член-корреспондент РАН Е. Ф. Панарин¹

Поступило 27.10.2020 г. После доработки 29.12.2020 г. Принято к публикации 25.01.2021 г.

Синтезирована 2-метакрилоилоксиэтилениминодиуксусная кислота и ее новые водорастворимые сополимеры с N-винилпирролидоном. Исследовано взаимодействие сополимеров в разбавленных водных растворах с ионами лантаноидов; установлено усиление люминесценции Eu³⁺ в 25 раз в полимерном комплексе по сравнению с низкомолекулярным аналогом при формировании гетеролигандных комплексов как с теноилтрифторацетоном, так и в гетерометаллических (биметаллических) комплексах Eu³⁺ и Gd³⁺.

Ключевые слова: лантаноиды, люминесценция, сополимеры, 2-метакрилоилоксиэтилениминодиуксусная кислота, *N*-винилпирролидон, комплексообразование **DOI:** 10.31857/S2686953521020084

В связи с широким применением люминесцентных методов исследования в различных областях биохимии, медицинской диагностики, большое внимание уделяется люминесцирующим координационным комплексам ионов лантаноидов (Ln³⁺). Лантаноиды оказались в центре внимания исследователей благодаря своим уникальным оптическим свойствам [1, 4]: квазимонохроматичность излучения (полуширина полос люминесценции 5-10 нм, в то время как для органических хромофоров более 100 нм), стабильность свечения во времени, независимость положения полос люминесценции от природы лиганда и растворителя, большой стоксовский сдвиг в спектрах, высокие значения времени жизни возбужденного состояния (≈1000 мкс). Кроме того, имеет место независимость формы спектра от природы лиганда, за исключением штарковского расщепления f-уровней, вызываемого изменением кристаллического поля лигандов [1-3].

В полимерных комплексах лантаноидов сохраняются уникальные оптические свойства ионов

¹ Институт высокомолекулярных соединений Российской академии наук, Санкт-Петербург, 199004 Россия

² Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург, 190013 Россия

*E-mail: aarghm@hq.macro.ru

[5]. Использование полимерных комплексов Ln³⁺ в биомедицине позволяет пролонгировать действие зонда по сравнению с низкомолекулярными аналогами, что важно при проведении длительных исследований. Полимерные комплексы с короткоживушими радионуклидами Ln³⁺ могут быть использованы для получения механически прочных и стабильных материалов в виде пленок, гелей, покрытий при лечении онкологических заболеваний. Применение комплексов в биологии и биомедицинских исследованиях предъявляет к лиганду особые требования, такие как растворимость в воде, биосовместимость, отсутствие токсичности и т.д. Получение новых полимерных комплексонов, удовлетворяющих этим условиям, требует разработки методов синтеза мономеров, содержащих хелатные группы, способных вступать в реакции сополимеризации с гидрофильными виниловыми мономерами различной природы, и поэтому является актуальным.

В данной работе синтезирован новый мономер – 2-метакрилоилоксиэтилениминодиуксусная кислота (2-МОЭИДУК) 1. Методом радикальной сополимеризации получены его водорастворимые сополимеры 2 с *N*-винилпирролидоном (ВП). Люминесцентными методами исследовано их взаимодействие с ионами лантаноидов Eu³⁺ и Gd³⁺ в разбавленных водных растворах.

Мономер 1 был получен алкилированием гидрохлорида 2-аминоэтилметакрилата, синтезированного по методу [6], монохлоруксусной кислотой. В спектрах ¹Н ЯМР 2-МОЭИДУК в D₂О присутствует характерный для протонов группы (CH₂) остатков монохлоруксусной кислоты сигнал 3.55 м. д., сигналы протонов карбоксильных групп: 7.85 м. д. ¹³С ЯМР, D₂O, δ , м. д.: 17.64 (CH₃), 41.58 (CH₂–N), 59.32 (N–CH₂), 69.44 (CH₂–O), 121.09 (CH₂), 138.97 (=C/); 171.95 (C=O); 176.26 (COOH).

Сополимеризацию 2-МОЭИДУК с *N*-винилпирролидоном (при молярном соотношении 20:80) проводили в этаноле с инициатором – динитрилом азоизомасляной кислоты (4.5 мас. %) в запаянных ампулах в атмосфере аргона при 60°С в течение 48 ч. Содержание 2-иминодиуксусной кислоты (ИДУК) в полученном сополимере с ВП (ВП–ИДУК), определенное потенциометрическим титрованием, составило 20.2 мол. %, выход 50.0%. Сополимер хорошо растворим в воде. Молекулярная масса полученного сополимера, определенная методами седиментации и диффузии, составила 58 кДа.

Для приготовления комплексов **2** с ионами лантаноидов использовали водные растворы солей EuCl₃ · 6H₂O, GdCl₃ · 6H₂O ("Aldrich"), $c = 1 \times 10^{-4}$ моль π^{-1} . Навеску сополимера растворяли в дистиллированной воде и 0.1 н раствором NaOH доводили pH раствора сополимера до 7.5–8.0. Затем растворы разбавляли до $c_{\text{пол}} = 0.02 \text{ мг мл}^{-1}$ (что соответствует концентрации 5.75×10^{-5} моль π^{-1} групп СОО⁻) и добавляли рассчитанное количество раствора соли лантаноида, задаваемое соотношением [Ln³⁺] : [СОО⁻]. Гетеролигандные и гетерометаллические комплексы получали добавлением варьируемого количества теноилтрифторацетона (TTA) **3** (раствор в этаноле, $c_0 = 5.3 \times 10^{-3}$ моль π^{-1}) или GdCl₃ соответственно.

Спектры поглощения регистрировали на спектрофотометре СФ-256 УВИ (ЛОМО ФОТОНИКА, Россия). Спектры возбуждения и фотолюминесценции записывали на спектрофлуориметре LS-100 (РТІ, Канада), измерения проводились с использованием кварцевой кюветы с длиной оптического пути 1 см в термостатируемой ячейке при 25°С. Сополимеры, содержащие фрагменты иминодиуксусной кислоты, полученные реакцией модификации цепей [7], образуют стабильные комплексы с ионами поливалентных металлов, логарифм константы образования которых находится в интервале 7–8.

Карбоксильные группы алифатических кислот только координируют Ln³⁺, но не обеспечивают эффективный перенос энергии из-за очень слабого поглощения в ультрафиолетовой области, поэтому для усиления люминесценции комплексов использовали соединение **3**, образующее комплексы с ионами лантаноидов и обеспечивающее перенос энергии электронного возбуждения с триплетного уровня соединения **3** на резонансный уровень иона Eu³⁺ [4].

УФ-спектры поглощения растворов приведены на рис. 1.

Наличие в спектрах поглощения полосы с $\lambda_{\text{макс}}$ 340 нм, отсутствующей у исходных компонентов, указывает на образование комплекса [Eu³⁺] : : [ВП–ИДУК : TTA].

Спектры возбуждения и фотолюминесценции растворов [ВП–ИДУК + Eu³⁺ + TTA] при изменении концентрации ТТА приведены на рис. 2. Спектры возбуждения регистрировали при наблюдении в полосе люминесценции европия $\lambda_{\text{набл}} = 614$ нм.

Появление в спектрах возбуждения растворов [ВП–ИДУК + Eu³⁺ + TTA] новой полосы, по сравнению со спектрами свободного Eu³⁺, указывает на то, что происходит процесс передачи энергии, поглощенной TTA, с его триплетного уровня ($E = 20500 \text{ см}^{-1}$) на резонансный уровень иона Eu³⁺ ($E({}^{5}D_{0}) = 17200 \text{ см}^{-1}$). Величина энергетического зазора между триплетным уровнем лиганда и резонансным уровнем Eu³⁺ составляет 3200 см⁻¹, и лежит в области значений 2500–3500 см⁻¹, необходимых для эффективной пере-

Рис. 1. УФ-спектры поглощения водно-этанольных растворов ВП–ИДУК (кривая *1*), ТТА (кривая *2*), смеси ВП–ИДУК с ТТА (кривая *3*), смеси ВП–ИДУК, ТТА и Еu(NO₃)₃ (кривая *4*), смеси Eu(NO₃)₃ с ТТА (кривая *5*). Концентрации [ВП–ИДУК] = 0.95 г л^{-1} , [TTA] = $1.13 \times 10^{-4} \text{ моль л}^{-1}$, [Eu³⁺] = $4.5 \times 10^{-5} \text{ моль л}^{-1}$; [Eu³⁺] : [TTA] = 0.40; во всех растворах содержание этанола 5.0 об. %.

Рис. 2. Спектры возбуждения ($\lambda_{\text{набл}} = 614$ нм) (а) и фотолюминесценции ($\lambda_{\text{возб}} = 375$ нм) (б) растворов [ВП–ИДУК + + Eu³⁺ + TTA] при изменении концентрации TTA. [TTA] : [Eu³⁺] = 3.2 (кривая *1*), 6.4 (кривая *2*), 9.6 (кривая *3*) при постоянном соотношении [Eu³⁺] : [COO⁻] = 0.3. На врезке (а) кривые *1* и 2 даны при увеличении.

дачи энергии [8]. В спектрах люминесценции присутствуют полосы в области 580, 595, 614, 655 и 702 нм, характерные для иона Eu^{3+} и относимые к переходам из состояния ${}^{5}D_{0}$ на уровни ${}^{7}F_{i(0-5)}$. Изменение формы спектров возбуждения в растворе является признаком изменения состава координационной сферы комплекса по мере включения в нее TTA с ростом его концентрации [9].

Зависимость интенсивности полосы люминесценции $\lambda = 614$ нм (I_{614}) растворов EuCl₃ и $[EuCl_3 + B\Pi - ИДУК]$ при добавлении TTA от соотношения [TTA] : $[Eu^{3+}]$ приведена на рис. 3.

Из рисунка видно, что интенсивность люминесценции растворов комплекса [ВП–ИДУК : : Eu³⁺ : TTA], по сравнению с таковой растворов [2-МОЭИДУК + Eu³⁺ + TTA] при одинаковых соотношениях компонентов, в 25 раз выше. Наблюдаемый рост интенсивности люминесценции вызван "полимерным эффектом", который возникает в результате гидрофобизации макромолекулярного клубка при замене молекул воды в сольватной

Рис. 3. Зависимость I_{614} растворов EuCl₃ (кривая *I*) и [EuCl₃ + ВП–ИДУК] (кривая *2*); [Eu³⁺] : [COO⁻] = 0.3; $c_{пол} = 0.02$ мг мл⁻¹ от концентрации TTA. Для сравнения значений I_{614} на кривых *I* и *2* при одном и том же усилении ФЭУ значения I_{614} для кривой *2* нужно разделить на 6.5.

Рис. 4. Предполагаемое строение гетеролигандных комплексов Eu^{3+} с полимерным лигандом ВП–ИДУК и ТТА: звено полимерного лиганда ВП–ИДУК занимает три координационных места во внутренней сфере Eu^{3+} (а); третичный атом азота протонирован и взаимодействует с енолятным анионом ТТА, звено лиганда ВП–ИДУК занимает два координационных места во внутренней сфере металла (б).

оболочке СОО⁻ групп на ионы Eu³⁺. Известно, что молекулы воды являются эффективными тушителями люминесценции Ln³⁺ [1] за счет безызлучательной потери энергии на колебаниях связи O–H.

Из рис. З видно, что изменение I_{614} с ростом соотношения [TTA] : [Eu³⁺] происходит немонотонно. По-видимому, сначала при соотношении [TTA] : [Eu³⁺] < 3 молекула TTA взаимодействует с атомом третичного азота ИДУК, а затем с Eu³⁺, включенным в комплекс [–RCOO⁻ : Eu³⁺]. То есть формирование комплекса [ВП–ИДУК : Eu³⁺ : TTA] происходит в условиях конкурентного взаимодействия молекул TTA с атомом третичного азота в боковом радикале ИДУК и ионами Eu³⁺, так как константа образования комплекса [Eu³⁺ : TTA] в воде невелика (lg $K_{ycr} = -3.4$) [10]. При взаимодействии с полимерными лигандами образование связи комплексон-металл происходит как между близко расположенными, так и удаленными вдоль цепи карбоксилатными группами. Это вызывает усиление стерических препятствий в макромолекулярном клубке и приводит к формированию "координационно ненасыщенных" ком**Таблица 1.** Изменение относительной интенсивности люминесценции (I/I_0) ионов Eu³⁺ при добавлении GdCl₃ к раствору [ВП–ИДУК : Eu³⁺ : TTA] при различных значениях [TTA] : [Eu³⁺], [Eu³⁺] : [COO⁻] = const = 0.3

	1/10				
$[Gd^{3+}]$: $[Eu^{3+}]$	[TTA] : [Eu ³⁺]				
	4.7	7.6	9.5	18.9	28
0	1	1	1	1	1
0.96	1.2	1.57	1.55	1.47	1.43
1.9	1	1.57	1.55	1.49	1.42
3.8	1	1.64	1.62	1.74	1.99
5.7	не	1.54	1.69	1.96	1.83
	иссл.				
7.6	не	не	1.49	2.02	1.8
	иссл.	иссл.			

плексов типа $(-\text{RCOO}^{-})_{(3-n)}\text{Eu}^{3+}$, где n = 1 или 2 [5]. Возможные варианты строения гетеролигандных комплексов Eu^{3+} с полимерным лигандом ВП–ИДУК и ТТА представлены на рис. 4.

Еще одним возможным способом усиления люминесценции ионов лантаноидов является формирование биметаллических комплексов с ионами других *f*-элементов (колюминесценция), так как появляется дополнительная ступень для передачи энергии [4, 11]. Нами исследовано влияние ионов Gd³⁺ на интенсивность люминесценции Eu³⁺ в комплексе [ВП–ИДУК : Eu³⁺ : TTA] при различном соотношении [TTA] : [Eu³⁺]. При добавлении GdCl₃ (табл. 1) наблюдается усиление люминесценции в 1.5–2 раза, которое зависит как от соотношения [TTA] : [Eu³⁺].

Наблюдаемое изменение люминесценции указывает на эффективность внутрисистемного переноса энергии $Gd^{3+} \rightarrow Eu^{3+}$, способствующего росту интенсивности люминесценции Eu^{3+} .

Таким образом, впервые синтезированные водорастворимые сополимеры 2-метакрилоилоксиэтилениминодиуксусной кислоты с N-винилпирролидоном образуют в воде комплексы с ионами лантаноидов. Формирование на основе синтезированных сополимеров гетеролигандных комплексов с ТТА позволило повысить интенсивность люминесценции Eu³⁺ в 25 раз по сравнению с интенсивностью Eu³⁺ в присутствии ТТА при тех же соотношениях. Добавление ионов Gd³⁺ привело дополнительно к двукратному росту интенсивности люминесценции. Формирование комплексов Eu³⁺ и Gd³⁺ на основе синтезированных сополимеров позволило управлять интенсивностью люминесценции путем варьирования соотношения взаимодействующих компонентов. Полученные результаты могут быть основой для создания водорастворимых бифункциональных люминесцирующих полимерных комплексов, сочетающих одновременно оптические и магнитные свойства ионов лантаноидов.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при финансовой поддержке Минобрнауки России (соглашение № 075-15-2020-794).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Bünzli J.-C.G.* Lanthanide light for biology and medical diagnosis // J. Lumin. 2016. V. 170. № 3. P. 866–878. https://doi.org/10.1016/j.jlumin.2015.07.033
- 2. *Bünzli J.-C.G.*, Review: Lanthanide coordination chemistry: from old concepts to coordination polymers // J. Coord. Chem. 2014. V. 67. № 23–24. P. 3706–3733. https://doi.org/10.1080/00958972.2014.957201
- 3. Bochkarev M.N., Pushkarev A.P. Synthesis and luminescence of some rare earth metal complexes // Org. Photonics Photovolt. 2016. V. 4. P. 60–67. https://doi.org/10.1515/oph-2016-0007
- 4. *Уточникова В.В., Кузьмина Н.П.* Фотолюминесценция ароматических карбоксилатов лантаноидов // Коорд. химия. 2016. Т. 42. № 10. С. 640–656. https://doi.org/10.7868/S0132344X16090073
- 5. *Карасев В.Е., Петроченкова Н.В.* Лантанидсодержащие полимеры / Владивосток: Дальнаука. 2005. 194 с.
- 6. *Коршунов М.А., Михлин В.С.* Синтез гидрохлорида 2-аминоэтилметакрилата // ЖОрХ. 1969. Т. 5. № 2. С. 254–256.
- Тихонова Л.И. Комплексообразование Ca²⁺, Sr²⁺, Y³⁺, и Ce³⁺ с поливинилпирролидонполивинилиминодиуксусными кислотами // Журн. физ. химии. 1974. Т. 48. № 4. С. 823–827.
- Latva M., Takalo H., Mukkala V.-M., Matachescuc C., Rodriguez-Ubisd J.C., Kankarea J. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield // J. Lumin. 1997. V. 75. № 2. P. 149. https://doi.org/10.1016/S0022-2313(97)00113-0
- 9. *Utochnikova V.V.* The use of luminescent spectroscopy to obtain information about the composition and the structure of lanthanide coordination compounds // Coord. Chem Rev. 2019. V. 398. 113006. https://doi.org/10.1016/j.ccr.2019.07.003
- 10. Arnaud N., Georges J. Comprehensive study of the luminescent properties and lifetimes of Eu³⁺ and Tb³⁺ chelated with various ligands in aqueous solutions: influence of the synergic agent, the surfactant and the energy level of the ligand triplet // Spectrochim. Acta, Part A. 2003. V. 59. № 8. P. 1829–1840. https://doi.org/10.1016/S1386-1425(02)00414-6
- 11. *Ермолаев В.Л., Свешникова Е.Б.* Колюминесценция ионов и молекул в наночастицах комплексов металлов // Усп. химии. 2012. Т. 81. № 9. С. 769–789.

WATER-SOLUBLE LUMINESCENT COMPLEXES OF LANTHANIDES BASED ON COPOLYMERS OF 2-METHACRYLOYLOXYETHYLENEIMINODIACETIC ACID

T. N. Nekrasova^{*a*}, M. V. Solovskij^{*a*}, M. S. Borisenko^{*a*,#}, A. I. Fisher^{*a*,*b*}, and Corresponding Member of the RAS E. Ph. Panarin^{*a*}

^a Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russian Federation ^b Saint-Petersburg State Institute of Technology, 190013 St. Petersburg, Russian Federation [#]E-mail: aarghm@hq.macro.ru

2-methacryloyloxyethyleniminodiacetic acid and its new water-soluble copolymers with *N*-vinylpyrrolidone have been synthesized. Interaction of copolymers in dilute aqueous solutions with lanthanide ions was studied. An increase in the luminescence of Eu^{3+} by a factor of 25 in the polymer complex compared to the low-molecular-weight analog was found during the formation of heteroligand complexes with both tenoyltri-fluoro-acetone and heterometallic (bimetallic) complexes of Eu^{3+} and Gd^{3+} .

Keywords: lanthanides, luminescence, copolymers, 2-methacryloyloxyethyleneiminodiacetic acid, *N*-vinyl-pyrrolidone, complexation