——— ФИЗИЧЕСКАЯ ХИМИЯ —

УДК 544.31.031

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ТВЕРДОГО РАСТВОРА $Lu_2O_3 \cdot 2HfO_2^{\$}$

© 2021 г. А. В. Гуськов^{1,*}, П. Г. Гагарин¹, В. Н. Гуськов¹, А. В. Тюрин¹, К. С. Гавричев¹

Представлено академиком РАН М.П. Егоровым 09.09.2021 г. Поступило 05.07.2021 г. После доработки 07.09.2021 г. Принято к публикации 09.09.2021 г.

Впервые определена молярная теплоемкость при низких температурах (4.5–347 K) и рассчитаны термодинамические функции твердого раствора Lu₂O₃ · 2HfO₂ в области 0–1300 K.

Ключевые слова: теплоемкость, термодинамические функции **DOI:** 10.31857/S2686953521050083

В системе Lu₂O₃-HfO₂ образуется непрерывный ряд твердых растворов на основе кубического диоксида ширкония замешением Hf⁴⁺ ионом Lu³⁺ с сохранением координационного окружения кислорода [1]. Уменьшение положительного заряда компенсируется кислородными вакансиями и, как результат, твердые растворы кристаллизуются в структурном типе дефектного флюорита $Fm\overline{3}m$. Концентрационная протяженность твердых растворов составляет при 1900 К от 5 до 55, а при 2900 К от 0 до ~60 мол. % Lu₂O₃. Максимальная температура плавления 3170 ± 30 К достигается при соотношении Lu_2O_3 : HfO₂ = 1 : 2, что свидетельствует о структурном упорядочении и увеличении термодинамической устойчивости области стехиометрического состава $Lu_2O_3 \cdot 2HfO_2$, который соответствует образованию соединений $Ln_2Hf_2O_7$ структурного типа пирохлора в случае легких лантаноидов (Ln = La-Tb) [2]. Твердые растворы $(Lu_2O_3)_x \cdot (2HfO_2)_{1-x}$ характеризуются отсутствием структурных превращений во всей области существования и могут быть использованы как высокотемпературные материалы.

В работе [3] представлены результаты измерений методами дифференциальной сканирующей калориметрии (ДСК) молярной теплоемкости твердых растворов $Ln_2O_3 \cdot 2HfO_2$ (Ln = Dy, Ho, Er, Тт, Yb, Lu) в области температур 300-1300 К. Установлено, что $Lu_2O_3 \cdot 2HfO_2$ имеет наименьшую теплоемкость в исследованном ряду твердых растворов. Это объясняется уменьшением объема кубической решетки в результате лантаноидного сжатия.

Особенностью поведения теплоемкости соединений лантаноидов с частично заполненной 4f электронной оболочкой являются вклады в ее величину вследствие взаимодействия 4f-электронов с кристаллическим полем (т.н. аномалия Шоттки), наблюдаемые во всем температурном интервале существования соединений, а также упорядочения спинов электронов 4f-оболочки (магнитное превращение), которое обычно наблюдается в области ниже 5-10 К [4-6]. В общем виде теплоемкость кристаллических соединений лантаноидов при отсутствии структурных превращений можно записать как

$$C_{\rm p} = C_{\rm lat} + C_{\rm exc} = C_{\rm lat} + C_{\rm mag} + C_{\rm Sch}, \qquad (1)$$

где C_{lat} – решеточная теплоемкость, $C_{\text{exc}} = C_{\text{mag}} + C_{\text{Sch}}$ – избыточная теплоемкость, C_{mag} – магнитная составляющая и C_{Sch} – вклад аномалии Шоттки.

В том случае, если электроны на 4f-уровне отсутствуют (лантан), или оболочка заполнена полностью (лютеций), магнитные превращения и аномалия Шоттки отсутствуют и теплоемкость определяется решеточной составляющей C_{lat} , что позволяет оценить общий вид и величину температурной зависимости избыточной теплоемкости для изоструктурных соединений с частично заполненной 4f-оболочкой:

$$C_{\rm exc} = C_{\rm mag} + C_{\rm Sch} \approx C_{\rm p} - C_{\rm lat}$$
 (La или Lu). (2)

По этим причинам измерение теплоемкости соединений лантана и лютеция носит приоритет-

[§] Работа представлена в виртуальный выпуск "Молодые ученые РАН"

¹ Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, 119991 Москва, Россия

^{*}E-mail: a.gus@igic.ras.ru

Рис. 1. Температурная зависимость молярной теплоемкости твердого раствора $Lu_2O_3 \cdot 2HfO_2$: *1* – результаты адиабатической калориметрии, *2* – данные ДСК. На врезке – стыковка данных *1* и *2* в области температур 315–360 К.

ный характер для понимания поведения температурной зависимости теплоемкости соединений всего ряда изоструктурных соединений лантаноидов.

Целью настоящей работы являются экспериментальное определение молярной теплоемкости твердого раствора $Lu_2O_3 \cdot 2HfO_2$ при 4.5–347 К и расчет его термодинамических функций в области температур 0–1300 К. Это позволит в дальнейшем применить полученные данные о температурной зависимости теплоемкости $Lu_2O_3 \cdot 2HfO_2$ при оценке величины и вида вкладов магнитных превращений и аномалии Шоттки в теплоемкость изоструктурных твердых растворов $Ln_2O_3 \cdot 2HfO_2$ (Ln = Dy, Ho, Er, Tm, Yb).

Измерения молярной теплоемкости Lu₂O₃ · 2HfO₂ проводили методом адиабатической калориметрии в интервале температур 4.5-346.6 К в 160 температурных точках на образце, синтез и идентификация которого описаны в [3]: химический анализ и дифракционные исследования подтвердили его состав Lu₂O₃ : 2.00HfO₂, структурный тип дефектного флюорита $Fm\overline{3}m$ с параметром кубической ячейки a = 5.146(2) Å и хорошую закристаллизованность. Экспериментальная температурная зависимость молярной теплоемкости, полученная адиабатическими измерениями, приведена на рис. 1 в сочетании с экспериментальными данными ДСК из работы [3]. На врезке показана стыковка данных адиабатической калориметрии и ДСК в области 315-360 К, которая демонстрирует

взаимное соответствие экспериментальных результатов двух методов. Молярная теплоемкость твердого раствора $Lu_2O_3 \cdot 2HfO_2$ в области температур 320–1300 К в работе [3] сглажена и описана уравнением Майера–Келли:

$$C_p$$
 (Дж моль⁻¹ K⁻¹) = 264.05 +
+ 0.01926334 × T - 4691947.1/ T^2 ,
 R^2 = 0.9997.

Температурная зависимость теплоемкости имеет обычный S-образный вид и не содержит признаков фазовых превращений во всем интервале температур и, в частности, при 298–1300 К, что подтверждено ДСК-исследованиями [3].

В настоящей работе экспериментальные результаты измерения теплоемкости во всем температурном интервале 0—1300 К сглажены, а термодинамические функции рассчитаны с помощью программы [7, 8] и приведены в табл. 1. В табл. 2 приведены параметры сглаживающих функций для интервалов 0—400 К и 200—1300 К.

Представленные данные по теплоемкости и термодинамическим функциям твердого раствора $Lu_2O_3 \cdot 2HfO_2$ могут быть использованы для оценки величины и вида вкладов магнитных превращений и аномалии Шоттки в теплоемкость твердых растворов $Ln_2O_3 \cdot 2HfO_2$ (Ln = Dy, Ho, Er, Tm,Yb), термодинамического моделирования и оптимизации технологических процессов синтеза монокристаллических, теплозащитных и кон-

ГУСЬКОВ и др.

Таблица 1. Теплоемкость и термодинамические функции $Lu_2O_3 \cdot 2HfO_2$, p = 101.3 кПа

<i>Т</i> , К	$C_{\rm p}$, Дж моль $^{-1}$ К $^{-1}$	$S(T)$, Дж моль $^{-1}$ К $^{-1}$	H(T) - H(0 K), Дж моль ⁻¹	$\Phi(T)$, Дж моль ⁻¹ К ⁻¹	
3	0.000032	0.000002	0.000006	0.000000	
4	0.00126	0.000107	0.000397	0.000008	
5	0.0103	0.00111	0.00506	0.000099	
6	0.0390	0.00514	0.0276	0.000542	
7	0.0964	0.0151	0.0927	0.00182	
8	0.184	0.0334	0.231	0.00452	
9	0.299	0.0614	0.470	0.00919	
10	0.437	0.100	0.836	0.016	
15	1.603	0.464	5.515	0.096	
20	4.222	1.242	19.35	0.274	
25	8.429	2.611	50.42	0.594	
30	13.67	4.600	105.4	1.088	
35	19.48	7.139	188.1	1.765	
40	25.57	10.14	300.6	2.620	
45	31.76	13.51	444.0	3.639	
50	37.92	17.17	618.2	4.807	
60	49.92	25.15	1058	7.522	
70	61.33	33.71	1614	10.65	
80	72.17	42.62	2283	14.08	
90	82.52	51.72	3056	17.76	
100	92.43	60.93	3931	21.62	
110	102.0	70.19	4904	25.61	
120	111.1	79.46	5969	29.71	
130	120.0	88.70	7125	33.89	
140	128.4	97.90	8367	38.14	
150	136.6	107.0	9692	42.43	
160	144.3	116.1	11 100	46.75	
170	151.7	125.1	12580	51.09	
180	158.8	134.0	14130	55.45	
190	165.5	142.7	15750	59.81	
200	171.8	151.4	17440	64.18	
210	177.7	159.9	19190	68.53	
220	183.2	168.3	20990	72.88	
230	188.7	176.6	22850	77.20	
240	193.9	184.7	24760	81.51	
250	198.7	192.7	26730	85.80	
260	203.2	200.6	28750	90.07	
270	207.4	208.4	30810	94.31	
280	211.2	216.0	32910	98.52	
290	214.8	223.5	35040	102.7	
298.15	217.5 ± 1.2	229.6 ± 2.8	36810 ± 220	106.1 ± 1.3	
300	218.1	230.9	37220	106.9	
310	221.2	238.1	39420	111.0	
320	224.1	245.2	41650	115.1	
330	226.8	252.2	43900	119.1	

<i>Т</i> , К	$C_{\rm p}$, Дж моль $^{-1}~{ m K}^{-1}$	$S(T)$, Дж моль $^{-1}$ К $^{-1}$	H(T) - H(0 K), Дж моль ⁻¹	$\Phi(T)$, Дж моль ⁻¹ К ⁻¹
340	229.3	259.0	46 190	123.1
350	231.6	265.6	48490	127.1
360	233.8	272.2	50820	131.0
370	235.9	278.6	53 170	134.9
380	237.8	284.9	55530	138.8
390	239.1	291.1	57920	142.6
400	240.7	297.2	60310	146.4
410	242.2	303.2	62730	150.2
420	243.6	309.0	65160	153.9
430	245.0	314.8	67600	157.6
440	246.2	320.4	70060	161.2
450	247.4	326.0	72530	164.8
500	252.7	352.3	85030	182.2
550	256.9	376.6	97780	198.8
600	260.5	399.1	110700	214.6
650	263.6	420.1	123800	229.6
690	265.9	435.9	134400	241.1
750	268.8	458.2	150 500	257.6
800	271.0	475.6	163400	270.7
850	272.9	492.1	177600	283.2
900	274.7	507.8	191 200	295.3
950	276.3	522.7	205000	306.8
1000	277.8	536.9	218890	318.0
1050	279.1	550.5	232800	328.7
1100	280.4	563.5	246800	339.1
1150	281.5	576.0	260800	349.1
1200	282.5	588.0	274900	358.8
1250	283.4	599.5	289100	368.2
1300	284.3	610.6	303300	377.4

Таблица 1. Окончание

Таблица	2.	Коэффициенты	полинома	C_{p}	=
$=\sum_{i=1}^{k}\alpha_{i}\alpha_{i}$	$C_{\rm En}\left(\frac{\Theta}{2}\right)$	$\left(\frac{\partial_i}{T}\right)$, где $C_{\rm En}(T) = 3R$	$x^2 \frac{\exp(x)}{[\exp(x) - 1]}$	$\overline{ }^2, x =$	$\frac{\theta}{T}$,

k – число членов разложения

 $C_{\rm p} = \sum \alpha_i C_{\rm En} (\theta_i / T)$ 0-400 K

i	α	Θ_i		
1	0.104851 ± 0.077619	50.89112 ± 14.5393		
2	3.731934 ± 0.669163	879.0035 ± 39.0697		
3	3.212588 ± 0.284065	512.6035 ± 71.2773		
4	1.764834 ± 0.423376	131.8287 ± 14.0668		
5	2.593544 ± 0.317518	259.6596 ± 40.8015		
200–1300 K				
1	10.8974 ± 0.0338	490.1265 ± 2.7884		
2	1.034601 ± 0.0520	3264.84 ± 201.66		

струкционных материалов на основе твердого раствора $Lu_2O_3 \cdot 2HfO_2$, а также оценки его высокотемпературной коррозионной стойкости в контакте с другими веществами и агрессивными средами.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Исследование выполнено за счет гранта Российского научного фонда № 18-13-00025, https://rscf.ru/ project/18-13-00025/.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ХИМИЯ, НАУКИ О МАТЕРИАЛАХ том 500 2021

СПИСОК ЛИТЕРАТУРЫ

- 1. *Andrievskaya E.R.* // J. Europ. Ceram. Soc. 2008. V. 28. P. 2363–2388.
- https://doi.org/10.1016/jeurceramsoc.2008.01.009
- 2. Шевченко А.В., Лопато Л.М., Кирякова И.Е. // Изв. АН СССР. Неорг. материалы. 1984. V. 20. Р. 1991.
- 3. Guskov A.V., Gagarin P.G., Guskov V.N., Khoroshilov A.V., Gavrichev K.S. // Ceram. Int. 2021.V. 47. P. 28004– 28007.

https://doi.org/10.1016/j.ceramint.2021.06.125

- 4. Chirico R.D., Westrum E.F. // J. Chem. Thermodyn. 1976. V. 12. P. 71–85. https://doi.org/10.1016/0021-9614(80)90118-4
- Guskov V.N., Gagarin P.G., Guskov A.V., Tyurin A.V., Khoroshilov A.V., Gavrichev K.S. // Ceram. Int. 2019. V. 45. P. 20733–20737. https://doi.org/10.1016/j.ceramint.2019.07.057
- Westrum E.F. // J. Thermal Anal. 1985. V. 30. P. 1209– 1215. https://doi.org/10.1007/bf01914288
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50–61. https://doi.org/10.1016/j.calphad.2018.02.001
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083–94. https://doi.org/10.1021/ie400316m

HEAT CAPACITY AND THEMODYNAMIC FUNCTIONS OF THE SOLID SOLUTION Lu₂O₃ · 2HfO₂

A. V. Guskov^{*a*,#}, P. G. Gagarin^{*a*}, V. N. Guskov^{*a*}, A. V. Tyurin^{*a*}, and K. S. Gavrichev^{*a*}

^a Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation [#]E-mail: a.gus.@igic.ras.ru</sup>

Presented by Academician of the RAS M.P. Egorov 09.09.2021

The molar heat capacity of the solid solution $Lu_2O_3 \cdot 2HfO_2$ was determined at 4.5–347 K and the thermodynamic functions were calculated in the range 0–1300 K.

Keywords: heat capacity, thermodynamic functions