ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ХИМИЯ, НАУКИ О МАТЕРИАЛАХ, 2021, том 500, с. 50-55

УЛК 544.65

ИССЛЕДОВАНИЕ ЭЛЕКТРОФИЗИЧЕСКИХ СВОЙСТВ КОМПАКТОВ УГЛЕРОДНЫЕ НАНОВОЛОКНА/ТЕРМОРАСШИРЕННЫЙ ГРАФИТ[§]

© 2021 г. Н. И. Лапекин¹, А. А. Шестаков¹, А. Е. Брестер¹, М. В. Попов^{1,2}, А. Г. Баннов^{1,*}

Представлено академиком РАН М.П. Егоровым 30.09.2021 г. Поступило 10.07.2021 г. После доработки 23.09.2021 г. Принято к публикации 05.10.2021 г.

В данной работе исследована электрическая проводимость компактированных систем углеродные нановолокона/терморасширенный графит с различным массовым соотношением. Поскольку исходные углеродные нановолока не подвергались прессованию, в качестве связующего использовали терморасширенный графит. Прессование проводили при давлении 11 МПа в течение 30 мин. Удельная проводимость измерялась в диапазоне частот переменного поля от 25 Гц до 1 МГц при нагреве от 30 до 100°С. Установлено, что уменьшение количества связующего приводит к сужению диапа-

зона изменения электрической проводимости системы в зависимости от температуры.

Ключевые слова: наноматериалы, углеродные нановолокна, терморасширенный графит, электропроводность

DOI: 10.31857/S2686953521050113

ВВЕДЕНИЕ

Наноструктурные материалы представляют новый класс материалов, значимый с научной и практической точек зрения. Свойства таких материалов могут значительно отличаться от свойств так называемых объемных материалов. К их числу можно отнести углеродные наноматериалы, которые находят широкое распространение, например, в катализе [1], сенсорике [2], технологии наполненных пластиков [3] и т.д. Углеродные нановолокна (УНВ) [4], углеродные нанотрубки [5-7], графено- и графитоподобные материалы [8-10] являются важными представителями класса, транспортные свойства которых необходимо оценивать [11, 12].

Обычно электрофизические характеристики таких материалов трудно измерить с высокой точностью, поскольку они в основном находятся в порошкообразном состоянии, и их свойства зависят от давления, приложенного к слою [11]. Корректные данные можно получить, если иссле-

² Институт органической химии им. Н.Д. Зелинского Российской академии наук, 119991 Москва, Россия *E-mail: Bannov.alexander@gmail.com

довать компактированные порошкообразные углеродные материалы. Поэтому предварительно порошкообразные материалы сначала компактируют, прессуют в таблетки.

Существует несколько способов измерения проводимости порошкообразных углеродных материалов без их предварительного прессования. Такие методы были предложены в [11, 13]. Материал помещали в камеру из изоляционного материала с пуансонами, к которым подсоединяли контакты для измерения электрической проводимости. Однако эта схема сложна в реализации, так как для камеры необходимо использовать изолятор с высокой прочностью на сжатие.

Также электрофизические характеристики углеродных наноматериалов могут быть измерены путем получения тонких пленок углеродных наноматериалов. В работах [14, 15] описано получение пленки из образцов многостенных углеродных нанотрубок (МУНТ) путем диспергирования в растворах поверхностно-активных веществ. Однако приготовление пленок является более трудоемким методом. Это связано с необходимостью лиспергирования раствора материала ультразвуком, а также последующей фильтрацией и сушкой. Следует также отметить, что измерение электропроводности в этом случае затруднено, так как невозможно получить данные о геометрических параметрах пленок. Другой проблемой является воспроизводимость получения пленок, когда по одной и той же лабораторной методике

[§] Работа представлена в виртуальный выпуск "Молодые ученые Российской академии наук"

¹ Новосибирский государственный технический университет, 630073 Новосибирск, Россия

Образец	Давление прессования, МПа	Время прессования, мин	Плотность компактов (кажущаяся), кг м ⁻³
$\mathbf{YHB}:\mathbf{TP\Gamma}=80:20$	11	30	922
$\mathbf{YHB}:\mathbf{TP\Gamma}=70:30$	11	30	948
$\mathbf{YHB}:\mathbf{TP\Gamma}=60:40$	11	30	1008
ТРГ	11	30	854

Таблица 1. Параметры компактирования и полученных компактов

из одного и того же материала (например, метод центрифугирования подложки с нанесенным на ее поверхность раствором, или *spin coating*; метод капельного осаждения, или *drop coating*) получают пленки, обладающие различными свойствами.

В данной работе использовали компактированный нановолокнистый углеродный материал, полученный на высокопроцентном никелевом катализаторе [16-18]. Отличительная особенность материала заключалась в том, что переплетенные углеродные нановолокна образовывали плотные гранулы [19]. Исследование закономерностей изменения электрофизических свойств компактов, полученных из такого материала, имеет большую ценность при их применении в качестве резистивного материала и в качестве активного материала газовых сенсоров [20-22]. Данная область применения крайне важна, и использование не пленочных, а компактированных материалов представляет значительный интерес с научной точки зрения [23-25].

Данная работа посвящена исследованию зависимости удельной электрической проводимости компактов углеродные нановолокна/терморасширенный графит от состава и температуры.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Для прессования использовали углеродные нановолокна, полученные каталитическим разложением метана в пилотном реакторе с виброожиженным слоем. Таблетирование исходных УНМ проводили на ручном прессе в пресс-форме круглого сечения. Давление прессования образцов составило 11 МПа, продолжительность прессования — 30 мин. Получены таблетки диаметром 10.0 ± 0.2 мм.

Установлено, что получение компактов из образца УНВ невозможно без добавления связующего: полученные таблетки разрушались сразу же после извлечения из пресс-формы. Это обусловлено упругими свойствами УНВ: после прекращения действия механического воздействия частицы УНВ стремятся принять исходную форму. В работе [12] при исследовании упругих свойств УНВ авторы отметили, что при увеличении давления до 7 МПа проводимость увеличивалась на 15–20%, но после снятия нагрузки проводимость

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ХИМИЯ, НАУКИ О МАТЕРИАЛАХ

понижалась до исходного значения. Таким образом, поскольку проводимость понижалась после снятия нагрузки, можно говорить об ухудшении транспортных свойств материала, что, в свою очередь, объясняется его упругими свойствами. Поэтому для компактирования УНВ был использован терморасширенный графит (ТРГ), который выполнял роль связующего [26].

ТРГ был получен нагреванием окисленного терморасширяющегося графита в муфельной печи в воздушной среде до температуры 400° C со скоростью нагрева 20° C мин⁻¹ и выдержкой на пиковой температуре в течение 30 мин.

Для оценки влияния ТРГ на значения удельной проводимости УНВ были приготовлены компакты с различным массовым соотношением ТРГ и УНВ. Были получены образцы чистого ТРГ, образцы с массовым соотношением ТРГ к УНВ 80:20, 70:30,60:40. Значения параметров компактирования и плотности таблеток приведены в табл. 1.

Удельную электрическую проводимость измеряли в диапазоне частот электрического поля от 25 Гц до 1 МГц при нагреве в интервале температур 30-100°С (измеритель иммитанса Е7-25 МНИПИ, Беларусь). Исследование структуры материалов проводили на просвечивающем электронном микроскопе (ПЭМ) JEM-2010 (JEOL. Япония). Растровую электронную микроскопию (РЭМ) проводили на микроскопе Tescan MIRA (Чехия). Степень дефектности углеродных материалов оценивалась по отношению интенсивностей пиков I(D)/I(G) по данным спектроскопии комбинационного рассеяния света (Horiba Jobin Yvon T64000, Япония; 514 нм). I(D) – интенсивность пика D (~1350 см⁻¹), соответствующая разупорядоченной структуре углеродного материала; I(G) – интенсивность пика G (~1590–1610 см⁻¹), соответствующая упорядоченной структуре углерода в *sp*²-гибридизованном состоянии. Измерение удельной поверхности углеродных материалов проводили методом низкотемпературной адсорбции азота при 77 К (QuantoChrome Nova 1000е, США). Зольность образцов оценивали по данным термогравиметрии (полное сжигание; прибор STA 449C, Netzsch, Германия).

том 500

2021

Рис. 1. ПЭМ-микрофотографии образцов УНВ (а-в), РЭМ-микрофотографии ТРГ (г).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На ПЭМ-микрофотографиях образца УНВ видно, что углеродные волокна обладают структурой "вложенных конусов" (рис. 1).

Диаметр волокон варьировался в диапазоне 80-100 нм. На концах нахолятся частицы никеля. Содержание никеля сравнительно небольшое по сравнению с родственными материалами (например, углеродными нанотрубками). При получении УНВ не использовали специальных методов удаления катализатора, чтобы не изменять дефектность нановолокон. Согласно элементному анализу, при синтезе нановолокнистого углерода (100 г/г кат.) в среднем содержание наночастиц катализатора составляет ~1 мас. %. По данным термогравиметрии зольность УНВ составила 3.3%, что указывает на невысокое содержание катализатора. Терморасширенный графит, который использовали в качестве связующего, обладал высокой степенью графитизации и по данным термогравиметрии его зольность составила 99.9%. Исходя из ПЭМ-микрофотографий можно сделать вывод, что материал состоял из изогнутых пористых графитовых пакетов, ориентированных разупорядочено.

На графиках зависимости удельной электрической проводимости от частоты переменного тока наблюдается снижение проводимости с ростом температуры для всех образцов УНВ : ТРГ, а также образца чистого ТРГ (рис. 2). Таким образом, поскольку как УНВ, так и ТРГ являются про-

водниками, то их компакт ведет себя аналогично и имеет положительный температурный коэффициент сопротивления. Проводимость компактированного образиа ТРГ снижалась с 43 ло 6 См м⁻¹ с ростом температуры от 30 до 100°С. Для компактированных систем УНВ : ТРГ с массовым соотношением 60: 40, 70: 30, 80: 20 в том же интервале температур наблюдается снижение проводимости с 25 до 5 См м⁻¹, с 23 до 6.5 См м⁻¹, с 13.5 до 3 См м⁻¹ соответственно. Уменьшение количества ТРГ в системе УНВ : ТРГ приводит к сужению диапазона изменения удельной проводимости. То есть при стремлении содержания УНВ к максимальному все менее выраженной становится зависимость электрического сопротивления компакта от температуры: в системе УНВ : ТРГ именно ТРГ более подвержен изменению проводимости от температуры.

На графиках видно, что системы с бо́льшим содержанием ТРГ более восприимчивы к изменению частоты переменного поля при комнатной температуре. Об этом говорит незначительный рост проводимости в области более 100 кГц. Проводимость компактированных систем УНВ : ТРГ с массовым соотношением 80 : 20, 70 : 30, 60 : 40 при комнатной температуре увеличивалась с 13 до 14 См м⁻¹, с 23.1 до 26.0 См м⁻¹, с 24.5 до 28.0 См м⁻¹ соответственно при изменении частоты переменного поля с 100 до 1000 кГц. Для компактированного образца ТРГ проводимость при комнатной

Рис. 2. Графики зависимости удельной проводимости систем УНВ : ТРГ с массовым соотношением 80 : 20 (a), 70 : 30 (б), 60 : 40 (в), образца ТРГ (г) от частоты переменного тока при нагреве от 30 до 100°С.

Рис. 3. КР-спектры УНВ (а) и ТРГ (б).

температуре увеличивалась с 39 до 45 См м $^{-1}$ в том же диапазоне частот переменного поля.

Можно предположить, что столь высокая проводимость УНВ обусловлена добавлением связующего — терморасширенного графита, который, по данным рентгенофазового анализа, имеет чрезвычайно высокую степень графитизации (99%) и, в свою очередь, проводимость. Это подтверждается данными спектроскопии комбинационного рассеяния (КР-спектроскопия), на основании которых была определена степень разупорядоченности структуры образцов (рис. 3, табл. 1). Если сравнивать отношение интенсивностей I(D)/I(G) УНВ и ТРГ, полученные по данным КР-спектроскопии, то оно составит 0.99 и 0.1 соответственно, что указывает на существенное различие электропроводящих свойств материалов, среди которых ТРГ обладает крайне низкой дефектностью.

Полученные значения удельных поверхностей образцов УНВ и ТРГ составили 118.8 и 593 м² г⁻¹ соответственно. Поскольку проводимость образцов на переменном токе практически не зависит от частоты, проводимость на низкой частоте можно рассматривать как проводимость по постоянному току. Так, проводимость по постоянному току систем УНВ : ТРГ с массовым соотношением 80 : 20, 70 : 30, 60 : 40 при комнатной температуре составила 13.5, 23, 25 См м⁻¹ соответственно. Полученные значения проводимости несколько ниже по сравнению со значениями, измеренными для компактов МУНТ и графена при давлении 5 МПа в работе [11].

выводы

Установлено, что для компактирования углеродных нановолокон необходимо использование связующего, например, терморасширенного графита. Однако в этом случае надо учитывать вклад связующего в проводимость системы. Уменьшение количества связующего приводит к сужению диапазона изменения удельной проводимости системы. Также стоит отметить, что системы с бо́льшим содержанием ТРГ более восприимчивы к изменению частоты переменного поля при комнатной температуре. Об этом говорит рост проводимости в области более 100 кГц. Отмечено, что проводимость образцов по переменному току при комнатной температуре практически не зависит от частоты, проводимость на низкой частоте можно рассматривать как проводимость на постоянном токе.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена в рамках государственного задания Минобрнауки (код FSUN-2020-0008).

СПИСОК ЛИТЕРАТУРЫ

- Nguyen T.K., Bannov A.G., Popov M.V., Yun J.-W., Nguyen A.D., Kim Y.S. // Int. J. Hydrogen Energy. 2018. V. 43. № 13. P. 6526–6531. https://doi.org/10.1016/j.ijhydene.2018.02.081
- Bannov A.G., Jašek O., Manakhov A., Márik M., Nečas D., Zajíčková L. // IEEE Sens. J. 2017. V. 17. № 7. P. 1964– 1970.

https://doi.org/10.1109/JSEN.2017.2656122

3. Berdyugina I.S., Steksova Yu.P., Shibaev A.A., Maksimovskii E.A., Bannov A.G. // Russ. J. Appl. Chem. 2016. V. 89. № 9. P. 1447–1453. https://doi.org/10.1134/S107042721609010X

- 4. *De Jong K.P., Geus J.W.* // Cat. Rev. Sci. Eng. 2000. V. 42. № 4. P. 481–510. https://doi.org/10.1081/CR-100101954
- 5. Sharma S., Sengupta K., Islam S.S. // Nanomater. Nanotechnol. 2012. V. 2. № 1. P. 1–6. https://doi.org/10.5772/50962
- 6. *Tortorich R., Choi J.-W.* // Nanomaterials. 2013. V. 3. № 3. P. 453–468. https://doi.org/10.3390/nano3030453
- Pekarek J., Prasek J., Jasek O., Majzlikova P., Pekarkova J., Zajickova L. // IEEE Sens. J. 2015. V. 15. № 3. P. 1430–1436. https://doi.org/10.1109/JSEN.2014.2363213
- Sofer Z., Jankovský O., Šimek P., Sedmidubský D., Šturala J., Kosina J., Mikšová R., Macková A., Mikulics M., Pumera M. // ASC Nano. 2015. V. 9. № 5. P. 5478–5485. https://doi.org/10.1021/acsnano.5b01463
- 9. *Park S., Ruoff R.S.* // Nat. Nanotechnol. 2009. V. 4. № 4. P. 217–224.
- Jankovský O., Sedmidubský1 D., Lojka1 M., Sofer Z. // AIP Conf. Proc. 2017. V. 1866. № 1. 03004. https://doi.org/10.1063/1.4994480
- Marinho B., Ghislandi M., Tkalya E., Koning C.E., de With G. // Powder Technol. 2012. V. 221. P. 351– 358. https://doi.org/10.1016/j.powtec.2012.01.024

1111ps.//doi.org/10.1010/j.powtec.2012.01.024

- Zolotukhin I.V., Golev I.M., Markova A.E., Blinov S.N., Grishin D.A., Rakov É.G. // Tech. Phys. Lett. 2005. V. 31. № 2. P. 159–160. https://doi.org/10.1134/1.1877634
- Janerka K., Jezierski J., Stawarz M., Szajnar J. // Materials. 2019. V. 12. № 4. 648. https://doi.org/10.3390/ma12040648
- 14. Yu J., Lu K., Sourty E., Grossiord N., Koning C.E. // Carbon. 2007. V. 45. № 15. P. 2897–2903. https://doi.org/10.1016/j.carbon.2007.10.005
- Tkalya E., Ghislandi M., Alekseev A., Koning C., Loos J. // J. Mater. Chem. 2010. V. 20. № 15. P. 3035–3039. https://doi.org/10.1039/B922604D
- Bannov A.G., Uvarov N.F., Ukhina A.V., Chukanov I.S., Dyukova K.D., Kuvshinov G.G. // Carbon. 2012. V. 50. № 3. P. 1090–1098. https://doi.org/10.1016/j.carbon.2011.10.018
- Kuvshinov D.G., Kurmashov P.B., Bannov A.G., Popov M.V., Kuvshinov G.G. // Int. J. Hydrogen Energy. 2019. V. 44. № 31. P. 16271–16286. https://doi.org/10.1016/j.ijhydene.2019.04.179
- Zavarukhin S.G., Kuvshinov G.G. // Chem. Eng. J. 2008. V. 137. № 3. P. 681–685. https://doi.org/10.1016/j.cej.2007.06.036
- Kuvshinov G.G., Mogilnykh Yu.I., Kuvshinov D.G., Yermakov D.Yu., Yermakova M.A., Salanov A.N., Rudina N.A. // Carbon. 1999. V. 37. № 8. P. 1239–1246. https://doi.org/10.1016/S0008-6223(98)00320-0
- Pakdee U., Thaibunnak A. // J. Nanotechnol. 2019. V. 2019. https://doi.org/10.1155/2019/3424915

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ХИМИЯ, НАУКИ О МАТЕРИАЛАХ

- Kim S., Lee K.-H., Lee J.-Y., Kim K.-K., Choa Y.-H., Lim J.-H. // Electron. Mater. Lett. 2019. V. 15. № 6. P. 712–719. https://doi.org/10.1007/s13391-019-00177-0
- Rigoni F., Freddi S., Pagliara S., Drera G., Sangaletti L., Suisse J.-M., Bouvet M., Malovichko A.M., Emelianov A.V., Bobrinetskiy I.I. // Nanotechnology. 2017. V. 28. № 25. https://doi.org/10.1088/1361-6528/aa6da7
- 23. Bannov A.G., Popov M.V., Brester A.E., Kurmashov P.B. // Micromachines. 2021. V. 12. № 2. 186. https://doi.org/10.3390/mi12020186
- Meshalkin V.P., Belyakov A.V. // Processes. 2020. V. 8. № 8. P. 1–37. https://doi.org/10.3390/pr8081004
- 25. Weizman O., Mead J., Dodiuk H., Kenig S. // Molecules. 2020. V. 25. № 20. 4824. https://doi.org/10.3390/molecules25204824
- 26. Steksova Y.P., Berdyugina I.S., Shibaev A.A., Ukhina A.V., Maksimovskii E.A., Popov M.V., Bannov A.G. // Russ. J. Appl. Chem. 2016. V. 89. № 10. P. 1588–1595. https://doi.org/10.1134/S1070427216100049

том 500

2021

ELECTRICAL PROPERTIES OF COMPACTED CARBON NANOFIBERS/THERMALLY EXPANDED GRAPHITE SYSTEMS

N. I. Lapekin^a, A. A. Shestakov^a, A. E. Brester^a, M. V. Popov^{a,b}, and A. G. Bannov^{a,#}

^a Novosibirsk State Technical University, 630073 Novosibirsk, Russian Federation ^b N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 119991, Moscow, Russian Federation [#]E-mail: Bannov.alexander@gmail.com Presented by Academician of the RAS M.P. Egorov 30.09.2021

In this paper, the electrical conductivity of compacted carbon nanofiber/thermally expanded graphite systems with various mass ratios was investigated. Since the initial carbon nanofibers were not pressed, thermally expanded graphite was used as a binder. The pressing at a pressure of 11 MPa for 30 min was carried out. The electrical properties were measured in a frequency range from 50 Hz to 1 MHz, heated from 30°C to 100°C.

Keywords: nanomaterials, carbon nanofibers, expanded graphite, electrical conductivity