УДК 546.185:544.526.5

ТВЕРДЫЙ РАСТВОР (Mg,Ni)Ga₂O₄ СО СТРУКТУРОЙ ШПИНЕЛИ[§]

© 2021 г. М. Н. Смирнова^{1,*}, М. А. Копьева¹, Г. Е. Никифорова¹, Г. Д. Нипан¹, А. Д. Япрынцев¹, К. В. Петрова¹, Н. А. Короткова¹

Представлено академиком РАН М.П. Егоровым 14.09.2021 г. Поступило 17.07.2021 г. После доработки 08.09.2021 г. Принято к публикации 14.09.2021 г.

Впервые экспериментально определены границы твердого раствора $Mg_{1-x}Ni_xGa_2O_4$ ($0 \le x \le 0.5$) со структурой шпинели, синтезированного методом сжигания геля, отожженного при 1000°С и охлажденного в инерционно-термическом режиме. Образцы состава $Mg_{1-x}Ni_xGa_2O_4$ ($0 \le x \le 1$, шаг x = 0.1) со структурой обращенной шпинели исследованы методом рентгенофазового анализа и инфракрасной спектроскопии. Обнаружено, что область твердого раствора (Mg,Ni)Ga₂O₄ может отклоняться от линии, связывающей стехиометрические составы $MgGa_2O_4$ и $NiGa_2O_4$. Анализ спектров диффузного отражения шпинелей $Mg_{0.9}Ni_{0.1}Ga_2O_4$ и $Mg_{0.5}Ni_{0.5}Ga_2O_4$ показал наличие интенсивной полосы поглощения, соответствующей Ni^{2+} , в ближнем ИК-диапазоне, что представляет большой интерес для использования этого свойства в лазерной и оптоэлектронной технологиях с минимальным негативным влиянием на окружающую среду.

Ключевые слова: твердый раствор, материалы для оптических устройств **DOI:** 10.31857/S2686953521050186

Обращенная шпинель $Mg_{1-x}Ni_xGa_2O_4$ – перспективный материал для широкозонных оптических усилителей и настраиваемых лазерных устройств в ближней ИК-области, наиболее безопасной для человеческого глаза [1]. Исходная шпинель MgGa₂O₄, содержащая ионы с заполненными электронными оболочками, не взаимодействует с излучением в видимой области спектра, но катион Ni^{2+} с $3d^8$ -конфигурацией, подвергаясь электростатическому воздействию ионов инертной матрицы, приобретает в октаэдрических позициях шпинели новые энергетические уровни для d^8 -конфигурации, и, благодаря переходам между ними, возникает примесная люминесценция [2]. Оптические свойства шпинели $Mg_{0.9}Ni_{0.1}Ga_2O_4$ зависят от степени обращенности, при которой Ni²⁺ перемещается из тетраэдрических структурных позиций в октаэдрические. В том случае если обращенность для NiGa₂O₄ находится на

уровне 92% Ni^{2+} , то для $Mg_{0.8}Ni_{0.2}Ga_2O_4$ происходит увеличение обращенности до 99% Ni^{2+} [3].

В свою очередь, воспроизводимость оптических характеристик шпинелей M_{1-x}Ni_xGa₂O₄ связана, прежде всего, с сохранением заданного химического состава, поэтому методы синтеза, температура отжига и скорость охлаждения получаемых образцов приобретают важное значение. При твердофазном синтезе поликристаллического порошка Mg_{0.9}Ni_{0.1}Ga₂O₄ (1300°C), для последующего выращиванияи монокристаллов методом зонной плавки (1200°С), неконтролируемая потеря галлия компенсировалась избытком 5 мол. % Ga₂O₃ в исходной смеси с MgCO₃ и NiO [1]. Увеличение температуры до 1400°С, стехиометрическое соотношение прекурсоров MgCO₃, Ga_2O_3 и Ni(OH), а также охлаждение в печи образцов Mg_{1-x}Ni_xGa₂O₄ после твердофазного синтеза, не позволяли заместить более 0.1% Мд без образования примеси Ga₂O₃ [2]. Снижение температуры твердофазного синтеза до 1000°С (MgO, NiO и Ga_2O_3) и закаливание образцов в жидком азоте приводили к образованию непрерывного твердого раствора $Mg_{1-x}Ni_xGa_2O_4$ ($0 \le x \le 1$) [3].

Граничные шпинели $MgGa_2O_4$ и NiGa_2O_4 обладают собственной катионной нестехиометрией, и ретроградная растворимость Ga_2O_3 в (Mg,Ni) Ga_2O_4 выше 1500°C составляет более 10 мол. % [4]. Однако при температурах ниже 1000°C изотермиче-

[§] Работа представлена в виртуальный выпуск "Молодые ученые РАН".

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, 119991 Москва, Ленинский пр-т, 31, Россия

^{*}E-mail: smirnova macha1989@mail.ru

ские ноды, связывающие стехиометрические составы $MgGa_2O_4$ и $NiGa_2O_4$, могут выходить за пределы области гомогенности твердого раствора $Mg_{1-x}Ni_xGa_2O_4$. В результате закаленная при высоких температурах шпинель (Mg,Ni)Ga₂O₄ при незначительном нагреве теряет однофазность и утрачивает оптическую активность.

В настоящее работе определена область гомогенности твердого раствора $Mg_{1-x}Ni_xGa_2O_4$ со структурой шпинели, синтезированного методом сжигания геля, отожженного при 1000°С и охлажденного в печи в инерционно-термическом режиме. Для однофазных составов шпинели $Mg_{1-x}Ni_xGa_2O_4$ исследованы оптические свойства в ИК- и УФ-видимом диапазонах.

Образцы состава $Mg_{1-x}Ni_xGa_2O_4$ ($0 \le x \le 1$, шаг x = 0.1) синтезировали методом сжигания геля, который ранее был апробирован авторами данной работы [5, 6], а также использовался в работах [7, 8] для получения сложных оксидов металлов. В качестве исходных реагентов использовали металлический Мg, металлический Ga, оксид ни-Ni₂O₃ и восстановитель келя — ГЛИЦИН NH₂CH₂COOH. Металлы и оксид никеля, взятые в стехиометрических количествах (уравнение 1), растворяли в разбавленной азотной кислоте HNO_3 : $H_2O = 1$: 1 (об.), полученный раствор концентрировали. переносили в керамическую чашку и добавляли 20%-й водный раствор глицина. При дальнейшем упаривании этой реакционной смеси образовывался гель, постепенно, без возгорания, превращающийся в серо-черный крупнозернистый порошок, который перетирали, переносили в керамический тигель, отжигали при 1000°С в течение трех часов и охлаждали в печи в инерционно-термическом режиме.

Уравнение реакции, описывающее проведенные синтезы, можно представить следующим образом:

$$(1 - x)Mg(NO_3)_2 + xNi(NO_3)_2 + 2Ga(NO_3)_3 + + 4.44NH_2CH_2COOH \rightarrow Mg_{1-x}Ni_xGa_2O_4 + (1) + 8.88CO_2 + 6.22N_2 + 11.1H_2O.$$

Рентгенофазовый анализ (РФА) порошков выполняли на дифрактометре Bruker Advance D8 (излучение Cu K_{α}) (Германия) в интервале углов $2\theta = 10^{\circ} - 70^{\circ}$ с шагом сканирования 0.0133°. Обработка результатов проводилась с помощью программного пакета DIFFRAC. EVA.

Химический анализ кристаллических порошков проводили методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИСП-АЭС) на спектрометре ICAP PRO XP (Thermo Electron Corp., США). Образцы в твердом состоянии подвергались пробоподготовке с целью переведения в раствор для последующего анализа методом ИСП-АЭС. К навеске кристаллического порошка $Mg_{1-x}Ni_xGa_2O_4$ массой 0.1 г приливали 25 мл смеси кислот HNO_3 и HCl(1:3). Использованы соляная кислота марки "ос. ч." по ГОСТ 14261, азотная кислота марки "ос. ч." по ГОСТ 11125, деионированная вода с удельным сопротивлением 18.2 МОм см⁻¹. Полученную смесь выдерживали при 250°С в течение 8 ч. После охлаждения полученный раствор доводили до объема 100 мл деионированной водой. Раствор анализировали методом ИСП-АЭС. Для проведения количественного анализа для получения градуировочных зависимостей использовали одноэлементные стандартные растворы производства Inorganic Ventures (США). Рабочие градуировочные растворы готовили из стандартных растворов последовательным разбавлением деионированной водой. Измерения проводили в режиме радиального обзора плазмы при следующих настройках спектрометра: мощность 1150 Вт, распылительный поток 0.60 л мин⁻¹, вспомогательный поток 0.35 л мин⁻¹, охлаждающий поток 10 л мин⁻¹, скорость перистальтического насоса 60 об. мин⁻¹.

Элементный СНN-анализ проводили с помощью анализатора серии EA 3000 EuroVector (Италия).

ИК-спектры регистрировали с использованием спектрометра Perkin Elmer Spectrum 65 FT-IR (США) в области 4000–400 см⁻¹ с разрешением 2 см^{-1} .

Спектры диффузного отражения в диапазоне 200–1000 нм регистрировали с помощью модульной оптической системы Ocean Optics (дейтериево-галогеновый источник DH-2000-BAL, интегрирующая сфера ISP-80-8-R диаметром 80 мм, детектор QE650000) (США). В качестве образца сравнения использовали стандарт WS-1 (Ocean Optics, США) из политетрафторэтилена.

Дифрактограммы образцов Мg_{1-x}Ni_xGa₂O₄ $(0 \le x \le 1, \text{ шаг } x = 0.1)$ представлены на рис. 1. В интервале составов $MgGa_2O_4-Mg_{0.5}Ni_{0.5}Ga_2O_4$ (рис. 1, спектры 1-6) сохраняется однофазность твердого раствора со структурой обращенной шпинели, имеющей тетрагональное искажение [9]. При увеличении содержания никеля в интервале Mg_{0.4}Ni_{0.6}Ga₂O₄-NiGa₂O₄ зарегистрированы пики при $2\theta = 37.3^{\circ}, 43.5^{\circ},$ соответствующие примеси твердого раствора со структурой галита *Fm3m* (рис. 1, спектры 7–11). В табл. 1 представлены параметры решетки шпинели в рамках кубической структуры $Fd\overline{3}m$ и примесного галита Fm3m. Полученные параметры согласуются с результатами работы [3], где образцы, синтезированные при 1000°С, закаливались в жидком азоте. Однако изменение параметра *a* для образцов $Mg_{1-x}Ni_xGa_2O_4$ показывает, что при медленном охлаждении сохраняется элементарная ячейка шпинели большего объема (табл. 1). Параметр решетки галита

Рис. 1. Рентгенограммы образцов $Mg_{1-x}Ni_xGa_2O_4$: x = 0 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5), 0.5 (6), 0.6 (7), 0.7 (8), 0.8 (9), 0.9 (10) и 1 (11).

a = 4.189 Å, появляющегося в образце состава $Mg_{0.4}Ni_{0.6}Ga_2O_4$, близок к величине *а* при эквимолярном соотношении Mg и Ni в Mg_{1-x}Ni_xO [10].

Спектры отдельных образцов в информативной ИК-области пропускания 400–1600 см⁻¹ приведены на рис. 2. Для гомогенных образцов $Mg_{1-x}Ni_xGa_2O_4$ (0 $\le x \le 0.5$) со структурой шпинели на спектре присутствует один интенсивный пик около 600 см⁻¹, отвечающий октаэдрической колебательной моде [11, 12].

На рис. 3 приведена модель фазовой диаграммы квазитройной системы MgO-NiO-Ga₂O₃ с

Таблица 1. Параметры решеток шпинели и примесного галита для образцов $Mg_{1-x}Ni_xGa_2O_4$. Сравнение с данными работы [3]

1	2	3	4
Исходный состав	a, Å (<i>Fd</i> 3m) Mg _{1 – x} Ni _x Ga ₂ O ₄	a, Å (Fm3m) (MgNi)O	a, Å (<i>Fd</i> 3 <i>m</i>) Mg _{1 – x} Ni _x Ga ₂ O ₄ [3]
MgGa ₂ O ₄	8.292	-	8.286
$Mg_{0.9}Ni_{0.1}Ga_2O_4$	8.286	_	
$Mg_{0.8}Ni_{0.2}Ga_2O_4$	8.281	_	8.280
$Mg_{0.7}Ni_{0.3}Ga_2O_4$	8.280	_	
$Mg_{0.6}Ni_{0.4}Ga_2O_4$	8.281	—	8.277
$Mg_{0.5}Ni_{0.5}Ga_2O_4$	8.273	_	
$Mg_{0.4}Ni_{0.6}Ga_2O_4$	8.275	_	8.273
$Mg_{0.3}Ni_{0.7}Ga_2O_4$	8.273	4.189	
$Mg_{0.2}Ni_{0.8}Ga_2O_4$	8.268	4.184	8.267
$Mg_{0.1}Ni_{0.9}Ga_2O_4$	8.267	4.183	
NiGa ₂ O ₄	8.264	4.182	8.261

Рис. 2. ИК-спектры образцов Mg_{1-x}Ni_xGa₂O₄: x = 0 (MgGa₂O₄), 0.1 (1), 0.2 (2), 0.3 (3), 0.4 (4) и 0.5 (5).

Рис. 3. Модель фазовой диаграммы квазитройной системы MgO–NiO–Ga₂O₃ с участием галита C, шпинели S, β -Ga₂O₃ и расплава L (T – температуры плавления MgO, NiO и Ga₂O₃, E – эвтектические расплавы). Цифры 1-11 на диаграмме соответствуют составам образцов, приведенным на рис. 1.

участием галита C, шпинели S, β -Ga₂O₃ и расплава L, построенная на основе термодинамических аппроксимаций [4]. Фазовый объем галита представлен полиэдром MgO–NiO–T₂–C–T₁–C₁–C₂. Поверхность T₁–C–T₂–C₂–C₁ обращена к поверхности расплава T₁–L–T₂–E₃–E₁, на которой происходит первичная кристаллизация галита. Двухфазному равновесию галит–шпинель соответствуют поверхности MgO-NiO-C₂-C₁ и MgGa₂O₄-NiGa₂O₄-S₃-S₁. Полиэдр шпинели MgGa₂O₄-NiGa₂O₄-S₃-S₄-S₂-S₁ на рис. 3 окрашен в серый цвет. Первичной кристаллизации шпинели отвечает поверхность $E_1-E_2-E_4-E_3$. Кристаллизация β-Ga₂O₃ происходит на поверхности $T_3-E_2-E_4$. Как видно из рисунка, линия со стехиометрическими составами, окрашенными в

Рис. 4. Спектры поглощения образцов $Mg_{0.9}Ni_{0.1}Ga_2O_4$ (1) и $Mg_{0.5}Ni_{0.5}Ga_2O_4$ (2) в УФ-видимом диапазоне.

соответствии с дифрактограммами (рис. 1), при температурах ниже 1000°С выходит за пределы объема гомогенности твердого раствора со структурой шпинели S.

Результаты исследования оптических свойств образцов Mg_{0.9}Ni_{0.1}Ga₂O₄ и Mg_{0.5}Ni_{0.5}Ga₂O₄ в УФвидимом диапазоне излучений представлены в виде спектров поглощения (рис. 4), полученных из спектров диффузного отражения с помощью преобразования Кубелки-Мунка [13]. На спектрах присутствуют полосы поглощения, соответствующие Ni²⁺ в октаэдрических позициях, и отсутствуют полосы поглощения, соответствующие Ni²⁺ в тетраэдрических позициях. Две узких полосы (с максимумами при 380 и 630 нм) в видимой части спектра и плечо широкой полосы (с краем при 950 нм) в ближней ИК-области соответствуют *d-d* спин-разрешенным переходам ${}^{3}A_{2g}({}^{3}F) \rightarrow {}^{3}T_{1g}({}^{3}P), {}^{3}A_{2g}({}^{3}F) \rightarrow {}^{3}T_{1g}({}^{3}F)$ и ${}^{3}A_{2g}({}^{3}F) \rightarrow {}^{3}T_{2g}({}^{3}F)$ для Ni²⁺ в октаэдрических позициях соответственно. Слабые полосы поглошения с максимумами при 440 и 770 нм соответствуют спин-запрещенным переходам ${}^{3}A_{2g}({}^{3}F) \rightarrow {}^{1}T_{2g}({}^{1}D)$ и ${}^{3}A_{2g}({}^{3}F) \rightarrow {}^{1}E_{g}(1D)$ соответственно. Представленные спектры идентичны спектрам, полученным ранее для монокристаллов $Mg_{1-x}Ni_xGa_2O_4$ (x = = 0.143 и 1.43%), выращенных методом зонной плавки [1].

Химический состав образцов контролировали методом ИСП-АЭС: соотношение Mg : Ni : Ga (мас. %) в $Mg_{0.5}Ni_{0.5}Ga_2O_4$ составило 7 : 16 : 77, в $Mg_{0.4}Ni_{0.6}Ga_2O_4 - 6 : 20 : 74$. Элементный СНИ-анализ этих образцов показал, что содержание C, H и N в них ниже 0.1%.

ЗАКЛЮЧЕНИЕ

Методом рентгенофазового анализа и инфракрасной спектроскопии определены границы твердого раствора $Mg_{1-x}Ni_xGa_2O_4$ ($0 \le x \le 0.5$) со структурой обращенной шпинели, синтезированного методом сжигания геля, отожженного при 1000°C и охлажденного в инерционно-термическом режиме. При исследовании оптических свойств Mg_{1- х}Ni_xGa₂O₄ в УФ-видимом и ближнем ИК-диапазонах излучений, обнаружены интенсивные полосы поглощения, связанные с переходом Ni²⁺ в октаэдрические позиции шпинели. Полученные данные могут быть востребованы при проведении фундаментальных и прикладных работ в области создания новых материалов, перспективных для широкозонных оптических усилителей и лазерных устройств, безопасных для человека.

БЛАГОДАРНОСТЬ

Исследования проводились с использованием оборудования ЦКП ФМИ ИОНХ РАН. ТВЕРДЫЙ РАСТВОР (Mg,Ni)Ga2O4 СО СТРУКТУРОЙ ШПИНЕЛИ

СПИСОК ЛИТЕРАТУРЫ

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Минобрнауки России в рамках государственного зада-

Работа выполнена при финансовой поддержке

- 1. Suzuki T., Hughes M., Ohishi Y. // J. Lumin. 2010. V. 130. № 1. P. 121–126. https://doi.org/10.1016/j.jlumin.2009.07.029
- 2. Costa G.K.B., Sosman L.P., Lopez A., Cella N., Bar-
- them R.B. // J. Alloys Compd. 2012. V. 534. № 5. P. 110-114.
- https://doi.org/10.1016/j.jallcom.2012.04.039
- 3. Otero Areán C., Trobajo-Fernandez M.C. // Phys. Status Solid A. 1985. V. 92. № 2. P. 443–447. https://doi.org/10.1002/pssa.2210920213
- 4. Zinkevich M., Geupel S., Aldinger F. // J. Alloys. Compd. 2005. V. 293. P. 154-166.
- https://doi.org/10.1016/j.jallcom.2004.09.069 5. Смирнова М.Н., Копьева М.А., Береснев Э.Н., Гоева Л.В., Симоненко Н.П., Никифорова Г.Е., Кецко В.А. // Журнал неорганической химии. 2018. T. 68. № 4. C. 411–415. https://doi.org/10.7868/S0044457X18040037

- 6. Смирнова М.Н., Нипан Г.Д., Никифорова Г.Е. // ЛАН. 2018. Т. 478. С. 172-174. https://doi.org/10.7868/S0869565218020111
- 7. Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. // Chem. Rev. 2016. V. 116. P. 14493-14586. https://doi.org/10.1021/acs.chemrev.6b00279
- 8. Carlos E., Martins R., Fortunato E., Branquinho R. // Chem. Eur. J. 2020. V. 26. P. 9099–9125. https://doi.org/10.1002/chem.202000678
- 9. Pilania G., Kocevski V., Valdez J.A., Kreller C.R., Uberuaga B.P. // Commun. Mater. 2020. V. 1. № 1. P. 84. https://doi.org/10.1038/s43246-020-00082-2
- 10. Mukhopadhyay S., Jakob K.T. // J. Phase Equlib. 1995. V. 16. № 3. P. 243–253. https://doi.org/10.1007/BF02667309
- 11. *Duan X.L., Yuan D.R., Cheng X.F., Wang L.H., Yu F.P.* // J. All. Compds. 2007. V. 439. № 1–2. P. 355–357. https://doi.org/10.1016/j.jallcom.2006.08.235
- 12. Wu S., Xue J., Wang R., Li J. // J. Alloys Compd. 2014. V. 585. P. 542-548. https://doi.org/10.1016/j.jallcom.2013.09.176
- 13. Makula P., Pacia M., Macyk W. // J. Phys. Chem. Lett. 2018. V. 9. № 23. P. 6814-6817. https://pubs.acs.org/doi/10.1021/acs.jpclett.8b02892

(Mg,Ni)Ga₂O₄ SOLID SOLUTION WITH SPINEL STRUCTURE

M. N. Smirnova^{a,#}, M. A. Kop'eva^a, G. E. Nikiforova^a, G. D. Nipan^a, A. D. Yapryntsev^a, K. V. Petrova^{*a*}, and N. A. Korotkova^{*a*}

^a Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences. 119991 Moscow, Russian Federation [#]E-mail: smirnova macha1989@mail.ru

Presented by Academician of the RAS M.P. Egorov 10.09.2021

For the first time, the boundaries of a $Mg_{1-x}Ni_xGa_2O_4$ ($0 \le x \le 0.5$) solid solution with a spinel structure, synthesized by burning a gel, annealed at 1000°C and cooled in an inertial-thermal mode, have been experimentally determined. Inverted spinels of the $Mg_{1-x}Ni_xGa_2O_4$ ($0 \le x \le 1$, step x = 0.1) composition were studied by X-ray phase analysis and infrared spectroscopy. It was found that the region of the (Mg, Ni) Ga₂O₄ solid solution can deviate from the line connecting the stoichiometric compositions of MgGa₂O₄ and NiGa₂O₄. Diffuse reflectance spectroscopy of $Mg_{0.9}Ni_{0.1}Ga_2O_4$ and $Mg_{0.5}Ni_{0.5}Ga_2O_4$ spinels has shown the presence of an intense Ni²⁺ absorbance band in the near IR-range. This is of great interest for the development of laser and optoelectronic technologies with minimal negative impact on the environment.

Keywords: solid solutions, optical materials