———— ФИЗИЧЕСКАЯ ХИМИЯ ——

УДК 544.31

ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ГАФНАТА ЕВРОПИЯ ПРИ 0–1300 К И АНОМАЛИЯ ШОТТКИ

© 2022 г. А. В. Гуськов¹, П. Г. Гагарин¹, В. Н. Гуськов^{1,*}, А. В. Тюрин¹, К. С. Гавричев¹

Представлено академиком РАН И.Л. Еременко 14.12.2021 г. Поступило 14.12.2021 г. После доработки 20.01.2022 г. Принято к публикации 24.01.2022 г.

Впервые определена молярная теплоемкость гафната европия в области низких температур (4–345 K), проведена оценка вида вклада в теплоемкость аномалии Шоттки и рассчитаны термодинамические функции в интервале 0–1300 K.

Ключевые слова: европия гафнат, пирохлоры, теплоемкость, термодинамические функции **DOI:** 10.31857/S2686953522010058

Гафнат европия Eu₂Hf₂O₇ – двойной тугоплавкий оксил. кристаллизуется в структуре пирохлора *Fd3m* и не имеет структурных превращений во всем температурном интервале существования вплоть до максимальной температуры перехода (~2500-2700 К) в структуру разупорядоченного флюорита *Fm3m* [1, 2]. Материалы с такими свойствами востребованы в энергетической и атомной промышленности. Особого внимания заслуживает возможность использования данного вещества в составе термобарьерных и защитных покрытий *(thermal/environmental coatings*, TBC/EBC) газовых турбин и двигателей самолетов [3, 4]. Актуальность поиска и изучения новых материалов для этого обусловлена необходимостью повышения рабочей температуры с целью увеличения КПД и улучшения экологичности энергетического оборудования с одной стороны, а также перспективой перехода на новые типы энергоносителей – низкоуглеродные, – с другой. В экстремальных условиях эксплуатации возникает проблема химической стойкости и межфазного взаимодействия. Экспериментальная проверка протекания этих процессов трудоемка и затратна, однако термодинамическое моделирование фазовых и химических равновесий способно существенно сократить число и время исследований химической стойкости компонентов защитных пленок или покрытий [5]. Для выполнения таких расчетов необходимо определить термодинамические

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, 119991, Москва, Россия функции веществ и энтальпии образования участвующих в процессе веществ.

Целью настоящей работы являются измерение теплоемкости гафната европия в интервале температур 4–345 К и расчет термодинамических функций в области 0–1300 К с использованием данных по высокотемпературной теплоемкости $Eu_2Hf_2O_7$, полученных методом дифференциальной сканирующей калориметрии (298–1300 К) в работе [6]:

$$C_p (Дж моль^{-1} K^{-1}) =$$

= 284.08 + 0.02836150T - 4756428/T², (1)

где T – температура, К.

Для проведения исследований использовали тот же образец гафната европия, что и в работе [6], где описаны синтез $Eu_2Hf_2O_7$ методом обратного осаждения гидроксидов и его идентификация химическим, рентгенофазовым и электронно-микроскопическим методами. Параметр кубической решетки структурного типа пирохлора (*Fd3m*) $Eu_2Hf_2O_7 a = 10.541$ Å.

Молярная теплоемкость гафната европия измерена методами релаксационной (RC, 4.07–26.6 K, 31 точка) и адиабатической калориметрии (AC, 19.6–345.9 K, 156 точек) (рис. 1а, табл. 1).

Несмотря на различия в неопределенностях измерений теплоемкости методами релаксационной (5%), адиабатической (2% ниже 15 K, 0.8% при 15–50 K, 0.2% при 50–350 K) и дифференциальной сканирующей калориметрии (2.5%), полученные значения в переходных температурных интервалах удовлетворительно согласуются между собой (рис. 16,в). Температурная зависимость молярной теплоемкости гафната европия имеет

^{*}E-mail: guskov@igic.ras.ru

ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ГАФНАТА ЕВРОПИЯ

Т, К	C_p , Дж моль ⁻¹ К ⁻¹	<i>Т</i> , К	C_p , Дж моль ⁻¹ К ⁻¹	Т, К	C_p , Дж моль ⁻¹ К ⁻¹	
		Релаксационна	я калориметрия,			
	масса Eu ₂ Hf ₂ O ₇ = 0.01264 г, $M = 772.9038$ г моль ⁻¹ , $P = 101.3$ кПа					
4.07	0.0495	7.65	0.2653	14.7	2.6537	
4.31	0.0558	8.12	0.3189	15.6	3.3242	
4.56	0.0652	8.61	0.3863	16.6	4.0842	
4.83	0.0768	9.14	0.4726	17.6	4.9768	
5.09	0.0852	9.73	0.5863	18.6	6.0389	
5.38	0.0979	10.3	0.7295	19.9	7.0811	
5.71	0.1147	10.9	0.8989	21.0	8.8484	
6.05	0.1337	11.6	1.1042	22.3	10.424	
6.42	0.1579	12.3	1.3789	23.6	12.800	
6.80	0.1874	13.1	1.7432			
7.21	0.2211	13.9	2.1421			
	1	Адиабатическая	я калориметрия,	1	1	
	масса Eu ₂ Hf ₂	$O_7 = 2.8662$ г, $M =$	772.9038 г моль ⁻¹ , л	<i>P</i> = 101.3 кПа		
19.68	6.996	81.91	88.62	191.69	187.9	
20.51	8.540	83.65	90.86	195.24	190.1	
22.50	11.36	84.17	91.53	198.79	192.3	
24.13	12.31	85.82	93.62	202.81	194.8	
25.82	14.09	86.42	94.37	207.25	197.4	
27.48	16.10	87.99	96.33	211.71	200.0	
29.17	18.14	90.16	99.01	216.16	202.5	
30.84	20.27	92.36	101.7	220.71	204.9	
32.51	22.42	94.58	104.3	225.09	207.1	
34.20	24.37	96.80	106.9	229.47	209.2	
35.87	26.81	99.04	109.4	233.84	211.4	
37.58	28.35	101.88	112.6	238.26	213.6	
39.26	31.17	105.37	116.4	242.65	215.8	
40.98	32.91	108.84	120.1	246.95	217.9	
42.71	35.14	112.31	123.7	251.24	220.5	
44.40	37.11	115.78	127.2	255.48	221.3	
46.11	39.12	119.23	130.6	259.70	222.7	
47.80	41.27	122.78	134.0	263.89	225.4	
49.54	44.21	126.26	136.9	268.05	226.3	
52.04	47.56	129.74	140.4	272.18	227.3	
53.98	50.20	133.25	143.6	276.29	229.7	
55.71	52.39	136.75	146.7	280.35	231.0	
57.42	55.05	140.26	149.8	284.39	233.5	
59.13	58.03	143.77	153.5	288.27	234.9	
60.83	60.63	147.31	156.3	292.22	236.2	
62.54	61.73	150.88	160.0	296.14	237.6	
64.25	64.49	154.45	162.6	300.02	238.9	
65.95	67.55	159.34	165.9	304.34	240.3	
67.67	69.43	163.30	168.3	310.63	242.1	
69.40	72.07	166.81	170.7	317.82	244.4	
71.13	74.86	170.37	173.3	325.04	247.0	
73.06	78.12	173.93	175.9	332.05	249.6	
75.23	80.05	177.52	178.4	338.99	252.8	
77.41	82.67	181.05	180.8	345.85	254.9	
79.60	85.60	184.59	183.2			
81.50	88.09	188.12	185.6			

Таблица 1. Экспериментальная теплоемкость Eu₂Hf₂O₇

1	2
b	2

Таблица 2. Коэффициенты экстраполирующего уравнения (1) и аппроксимирующих уравнений (2) и (3)

$C_p = AT^3, T = 0-6$ K (yp. 1)			
A = 0.000621			
$C_p = \sum A_i T^i$, $T = 5 - 20$ K (yp. 2)			
i	A_i		
1	0.0319158		
2	-0.0103994		
3	0.00135147		
4	0.0000057948		
5	-0.000002053		
	$R^2 = 0.9986$		
	CnFit $T = 15 - 1350$ K (vn 3)		

			1)	(9 1 /		
i	α	Δα	$s^{a}(\alpha)$	θ	$\Delta(\theta)$	$s^{a}(\theta)$
1	1.433877471	0.2948	0.1496	92.38587	6.329	3.213
2	2.143631051	0.1744	0.08851	5765.953	225.0	114.2
3	4.424868493	0.2668	0.1354	899.8631	21.69	11.01
4	2.375238117	1.410	0.7158	219.1362	56.22	28.54
5	4.219088768	1.421	0.7214	378.1078	52.98	26.90

^{*a*} *s* – Стандартное отклонение.

обычный *S*-образный вид, признаки структурных превращений отсутствуют.

У большинства соединений лантаноидов в области самых низких температур (0–2 K) наблюда-

Рис. 1. Молярная теплоемкость $Eu_2Hf_2O_7$: (a) 0–1300 K, (б) область 290–350 К: *1* – определена методами релаксационной и адиабатической калориметрии, *2* – определена методом дифференциальной сканирующей калориметрии [6]; (в) область 4–40 К: *1* – определена методом релаксационной калориметрии, *2* – определена методом адиабатической калориметрии, *3* – рассчитана по уравнениям (1)–(3).

ются магнитные превращения с максимумом в области 1-2 К [7], которые вносят существенный вклад в энтропию этих веществ, однако у соединений европия, а также лантана и лютеция, магнитные превращения в этой области температур не обнаружены [8–10]. По этим причинам экстраполяцию к 0 К выполнили с помощью уравнения Дебая (1).

Рис. 2. Разность экспериментальной и рассчитанной по ур. (4) решеточных теплоемкостей $\text{Eu}_2\text{Hf}_2\text{O}_7, \Delta C_p = C_p(\text{Eu}_2\text{Hf}_2\text{O}_7) - C_p(\text{lat., Eu}_2\text{Hf}_2\text{O}_7).$

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ХИМИЯ, НАУКИ О МАТЕРИАЛАХ том 502 2022

	· ·			
<i>Т</i> , К	<i>С</i> (<i>T</i>), Дж моль ⁻¹ К ⁻¹	$S(T)$, Дж моль $^{-1}$ К $^{-1}$	<i>H</i> (<i>T</i>)- <i>H</i> (0), Дж моль ⁻¹ К ⁻¹	$\Phi(T),$ Дж моль $^{-1}$ K $^{-1}$
1	0.0006210	0.0002070	0.0001553	0.00005175
2	0.004968	0.02115	0.03119	0.005549
3	0.01677	0.03964	0.07740	0.01384
4	0.03974	0.05971	0.1479	0.02273
5	0.07763	0.0854	0.2641	0.03256
6	0.1341	0.1207	0.4594	0.04415
7	0.1879	0.1435	0.6080	0.05662
8	0.2987	0.1753	0.8478	0.06936
9	0.4560	0.2191	1.221	0.08344
10	0.6681	0.2776	1.778	0.09980
12	1.290	0.4500	3.689	0.1427
14	2.229	0.7149	7.149	0.2043
16	3.645	1.307	16.16	0.2969
18	5.490	2.372	34.31	0.4655
20	7.680	3.749	60.54	0.7224
22	10.03	4.597	78.36	1.035
24	12.32	5.568	100.7	1.372
26	14.63	6.645	127.7	1.735
28	16.97	7.815	159.3	2.127
30	19.32	9.065	195.5	2.548
35	25.33	12.49	307.1	3.719
40	31.58	16.28	449.2	5.049
50	44.83	24.73	830.5	8.122
60	58.76	34.13	1348	11.66
70	72.76	44.24	2006	15.59
80	86.26	54.85	2802	19.83
90	98.92	65.75	3728	24.32
100	110.7	76.79	4777	29.02
120	131.5	98.9	7204	38.82
140	149.6	120.5	10020	48.95
160	165.7	141.6	13180	59.22
180	180.1	161.9	16640	69.51
200	193.0	181.6	20370	79.74
220	204.5	200.5	24350	89.9
240	214.8	218.8	28540	99.8
260	224.0	236.3	32930	109.7
280	232.1	253.2	37500	119.3
298.15	238.7 ± 1.2	268.0 ± 2.9	41768 ± 240	127.9 ± 1.3
300	239.3	269.5	42210	128.8
320	245.7	285.2	47060	138.1

Таблица 3. Теплоемкость и термодинамические функции^{*a*} Eu₂Hf₂O₇: энтропия S(T), приращение энтальпии H(T)-H(0) и приведенная энергия Гиббса $\Phi(T)$, P = 101.325 кПа

<i>Т</i> , К	<i>С</i> (<i>T</i>), Дж моль ⁻¹ К ⁻¹	$S(T)$, Дж моль $^{-1}$ К $^{-1}$	<i>H(T)</i> - <i>H</i> (0), Дж моль ⁻¹ К ⁻¹	$\Phi(T),$ Дж моль $^{-1}$ K $^{-1}$
340	251.3	300.2	52030	147.2
350	253.9	307.5	54560	151.7
400	264.7	342.2	67 540	173.3
500	279.3	403.0	94800	213.4
600	288.3	454.7	123200	249.4
700	294.5	499.7	152400	282.0
800	299.4	539.3	182100	311.7
900	303.6	574.8	212200	339.0
1000	307.6	607.0	242800	364.2
1100	311.3	636.5	273700	387.7
1200	314.8	663.8	305000	409.6
1300	318.2	689.1	336700	430.1
1350	319.8	701.1	352600	439.9

Таблица 3. Окончание

^{*а*} Курсивом отмечены расчетные значения (ур. (1)).

$$C_p = AT^3, \quad T = 0-6 \text{ K},$$
 (1)

где A — коэффициент пропорциональности, Дж моль⁻¹ K⁻⁴.

Сглаживание теплоемкости в области температур 5—20 К выполнено с помощью суммы полиномов:

$$C_p = \sum A_i T^i, \quad T = 5-20 \text{ K.}$$
 (2)

Сглаживание экспериментальных результатов в области 15–1350 К выполнено с помощью программы CpFit [11, 12]:

$$C_p = \sum_{i=1}^{k} \alpha_i C_{En} \left(\frac{\theta_i}{T} \right), \quad (15 - 1350 \text{ K}), \quad (3)$$

где $C_{En}(T) = 3Rx^2 \frac{\exp(x)}{\left[\exp(x) - 1\right]^2}; x = \frac{\theta}{T}, k - число$

членов разложения, R — газовая постоянная, α и θ — оптимизированные параметры модели.

Коэффициенты уравнений (1)–(3) приведены в табл. 2.

Температурная зависимость сглаженной молярной теплоемкости вместе с рассчитанными значениями термодинамических функций приведены в табл. 3.

Оценка решеточной теплоемкости гафната европия выполнена с помощью приведенных в [8] соотношений:

$$C_p(\operatorname{lat.}, \operatorname{Eu}_2\operatorname{Hf}_2\operatorname{O}_7) =$$

= (1 - f)C_p(\operatorname{La}_2\operatorname{Hf}_2\operatorname{O}_7) + fC_p(\operatorname{lat.}, \operatorname{Gd}_2\operatorname{Hf}_2\operatorname{O}_7), (4)

где $f = [V(Eu_2Hf_2O_7) - V(La_2Hf_2O_7)]/[V(Gd_2Hf_2O_7) - V(La_2Hf_2O_7)].$

Молярная $C_p(La_2Hf_2O_7)$ и решеточная $C_p(lat., Gd_2Hf_2O_7)$ теплоемкости, а также значения параметров *а* для расчета объемов *V* кубических ячеек гафнатов лантана и гадолиния приведены в работах [9] и [10] соответственно.

Разность экспериментальной и решеточной теплоемкостей

$$\Delta C_p = C_p(\mathrm{Eu}_2\mathrm{Hf}_2\mathrm{O}_7) - C_p(\mathrm{lat.}, \mathrm{Eu}_2\mathrm{Hf}_2\mathrm{O}_7) \qquad (5)$$

представляет общий вид вклада взаимодействия 4f-электронов трехвалентных ионов европия и кристаллической решетки (аномалии Шоттки) в теплоемкость Eu₂Hf₂O₇ (рис. 2).

Как видно из рис. 2, величина разности увеличивается с ростом температуры и имеет сложную форму.

Представленные данные по теплоемкости гафната европия могут быть использованы для разработки высокотемпературных материалов на его основе и термодинамической оценки химической стойкости в контакте с другими материалами и агрессивными средами.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследование выполнено за счет гранта Российского научного фонда № 18-13-00025, https://rscf.ru/project/18-13-00025.

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ХИМИЯ, НАУКИ О МАТЕРИАЛАХ том 502 2022

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ХИМИЯ, НАУКИ О МАТЕРИАЛАХ

2022

том 502

65

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Попов В.В., Менушенков А.П., Зубавичус Я.В., Ярославцев А.А., Великжанин А.А., Колышкин А.А., Кулик Е.С. // ЖНХ. 2015. Т. 60. С. 672. https://doi.org/10.7868/S0044457X15050165
- 2. *Andrievskaya E.R.* // J. Europ. Ceram. Soc. 2008. V. 28. P. 2363.
 - https://doi.org/10.1016/jeurceramsoc.2008.01.009
- Cao X.Q., Vassen R., Stoever D. // J. Eur. Ceram. Soc. 2004. V. 24. P. 1. https://doi.org/1016/S0955-2219(03)00129-8
- 4. *Padture N.P., Gell M., Jordan E.H.* // Science. 2002. V. 296. P. 280.
 - https://doi.org/10.1126/science.1068609
- Costa G., Harder B.J., Wiesner V.L., Zhu D., Bansal N., Lee K.N., Jacobson N.S., Kapush D., Ushakov S.V., Navrotsky A. // J. Am. Ceram. Soc. 2018. V. 102. P. 2948. https://doi.org/10.1111/jace.16113

- 6. Гуськов А.В., Гагарин П.Г., Гуськов В.Н., Хорошилов А.В., Гавричев К.С. // ЖНХ. 2021. Т. 66. С. 1593. https://doi.org/10.31857/S0044457X21110088
- Besara T., Lundberg M.S., Sun J., Ramires D., Dong L., Whalen J.B., Vasquez R., Herrera F., Allen J., Davidson M., Siegrist T. // Progr. Solid State Chem. 2014. V. 42. P. 23. https://doi.org/10.1016/j.progsolidstchem.2014.05.001
- Chirico R.D., Westrum E.F., Jr. // J. Chem. Thermodyn. 1980. V. 12. P. 71. https://doi.org/10.1016/0021-9614(80)90118-4
- Гуськов В.Н., Гагарин П.Г., Гуськов А.В., Тюрин А.В., Гавричев К.С. // ЖНХ. 2019. Т. 64. С. 1210. https://doi.org/10.1134/S0044457X19110060
- Guskov V.N., Tyurin A.V., Guskov A.V., Gagarin P.G., Khoroshilov A.V., Gavrichev K.S. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052

11. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50.

- https://doi.org/10.1016/j.calphad.2018.02.001
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m

THERMODYNAMIC FUNCTIONS OF EUROPIUM HAFNATE AT 0–1300 K AND SCHOTTKY ANOMALY

A. V. Guskov^a, P. G. Gagarin^a, V. N. Guskov^{a,#}, A. V. Tyurin^a, and K. S. Gavrichev^a

^aKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation [#]E-mail: guskov@igic.ras.ru

Presented by Academiciam of the RAS L.I. Eremenko 14.12.2021

The molar heat capacity of europium hafnate at low temperatures (4-345 K) has been determined, the Schottky anomaly contribution to the heat capacity has been evaluated and the thermodynamic functions in the range of 0-1300 K have been calculated.

Keywords: europium hafnate, pyrochlores, heat capacity, thermodynamic functions