—— ХИМИЯ ——

УДК 541.64:536.6

Статья посвящается юбилею академика РАН Ирины Петровны Белецкой

ОДНОРЕАКТОРНЫЙ МЕТОД СИНТЕЗА СОПОЛИМЕРОВ НОРБОРНЕНА И ЦИКЛООКТЕНА

© 2023 г. М. Л. Грингольц¹, А. С. Марченко¹, А. С. Перегудов², Ю. И. Денисова¹, Я. В. Кудрявцев^{1,*}

Поступило 31.12.2022 г. После доработки 19.01.2023 г. Принято к публикации 25.01.2023 г.

Впервые проведен однореакторный синтез статистических мультиблок-сополимеров норборнена и циклооктена. Показано, что Ru-карбеновый комплекс Граббса первого поколения дает возможность получать указанные сополимеры непосредственно из мономеров. В ходе однореакторного синтеза вначале происходит метатезисная полимеризация норборнена, обладающего существенно более высокой напряженностью цикла. Затем полимеризуется циклооктен и одновременно протекает межцепная реакция макромолекулярного кросс-метатезиса, в ходе которой формируется блочная структура сополимера. По сравнению с изученным ранее взаимодействием полинорборнена и полициклооктена однореакторный метод позволяет получать сополимеры с большей молярной массой при меньшем расходе катализатора.

Ключевые слова: метатезисная полимеризация, однореакторный синтез, мультиблок-сополимеры, катализатор Граббса

DOI: 10.31857/S2686953523600046, EDN: YRWFZO

введение

Полинорборнены и другие полимеры, синтезируемые на металлокомплексных катализаторах, являются актуальными объектами исследований [1–6]. Норборнен и циклооктен, как и их метатезисные гомополимеры – полинорборнен (ПНБ) и полиоктенамер (или полициклооктен, ПЦО), хорошо известны в промышленности: ПНБ выпускается под торговой маркой Norsorex® [1], а ПЦО – в виде группы полимеров марки Vestenamer® [2–4].

Пара норборнен (НБ)-циклооктен (ЦО) весьма популярна в исследовании метатезисной полимеризации с раскрытием цикла (*ring-opening metathesis polymerization*, ROMP) и неоднократно использовалась в литературе для оценки эффективности новых катализаторов ROMP [7–10]. Известно, что получение сополимеров НБ и ЦО с высоким содержанием ЦО на стандартных катализаторах олефинового метатезиса, к которым относится рутений-карбеновый комплекс Граббса I поколения (PCy₃)₂Cl₂Ru=CHPh (Γ 1), затруднено из-за существенно разной реакционной способности мономеров. Высоконапряженный мономер НБ (энергия напряжения 100 кДж моль⁻¹, энтальпия ROMP $\Delta G_{0 \text{ ROMP}} = 47 \text{ кДж моль}^{-1}$) практически мгновенно образует гомополимер, в то время как полимеризация менее напряженного цикла ЦО (энергия напряжения 16 кДж моль-1, $\Delta G_{0 \text{ ROMP}} = 13 \text{ кДж моль}^{-1}$) протекает значительно медленнее [7, 8]. По данным ЯМР-спектроскопии, в ходе метатезисной сополимеризации этих мономеров лишь после исчезновения НБ отмечали снижение концентрации ЦО [9]. Чаще всего реакцию останавливали спустя 2-3 ч, чтобы снизить вклад процессов внутри- и межмолекулярного метатезиса, приводящих к уширению молекулярно-массового распределения (ММР) сополимера [10]. С той же целью в качестве растворителя использовали ТГФ и вводили добавки трифенилфосфина, что позволяло получать ПЦО с узким MMP (D = 1.05 - 1.15) и его диблок-сополимер с НБ [10].

¹Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук, 119991 Москва, Россия

²Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук, 119991 Москва, Россия

^{*}E-mail: yar@ips.ac.ru

Подавление побочных реакций, по-видимому, препятствовало синтезу сополимеров со значительным содержанием как ЦО, так и гетеродиад НБ-ЦО, т.е. мультиблок-сополимеров. Такие продукты после последующего гидрирования представляют интерес в качестве аналогов циклических олефиновых сополимеров, которые обладают повышенной влаго- и термостойкостью, а также чрезвычайно низким водопоглощением [11-14]. Для синтеза НБ-ЦО сополимеров, как правило, используют значительный мольный избыток ЦО с целью увеличения степени его вхождения в сополимер. Тем не менее в этих условиях на известных и новых катализаторах метатезиса (RuCl₃/PhOH, WCl₆/Sn(CH₃)₄, (PCy₃)₂Cl₂Ru=CHPh, $[(CH_3)_3CO]_2NMesMo=CH(CH_3)_2Ph$, (арилимидо)ванадий(V)-алкилидены, N-гетероциклические карбен-сульфонатные Ru-комплексы) не удавалось эффективно контролировать состав образующегося сополимера. Продукты реакции представляли собой смеси сополимеров, обогащенных ЦО или НБ, либо сополимер с низким содержанием ЦО [15-18]. Отметим, что в цикле работ Р. Chen [19-21] и М. Buchmeiser [22-24] были разработаны катализаторы синтеза чередующихся сополимеров НБ-ЦО. Структуру сополимеров подтверждали методом ¹³С ЯМР, фиксировавшим сигналы углеродов гетеродиад отсутствие или незначительное количество сигналов гомодиад.

Недавно нам удалось решить проблему получения статистических мультиблок-сополимеров НБ-ЦО с помощью реакции макромолекулярного кросс-метатезиса (МКМ) в растворе смеси гомополимеров ПНБ и ПЦО [25-28]. Реакция межцепного обмена между макромолекулами, содержащими двойные С=С-связи в основной цепи, протекала в присутствии катализаторов ROMP, в частности, катализатора Г1 [25]. Методами in situ ¹Н ЯМР и ex situ ¹³С ЯМР были изучены эволюция Ru-карбеновых активных центров реакции и кинетика формирования гетеродиад, что позволило предложить кинетическую модель МКМ [26]. Установлено, что в ходе реакции катализатор сначала взаимодействует с двойными связями полимерных цепей, преимущественно ПЦО, и разрывает их по механизму олефинового метатезиса с образованием полимерных карбенов [Ru]=ПЦО и [Ru]=ПНБ. Затем в результате обменных реакций с участием этих активных центров формируется сегментная структура мультиблок-сополимера, причем средняя длина его блоков постепенно уменьшается со временем. Удобство предложенного нами метода заключается в возможности использования промышленных гомополимеров ПНБ и ПЦО в различных соотношениях с получением сополимеров любого состава и блочности.

Вместе с тем имеющиеся литературные данные и результаты наших исследований МКМ свидетельствовали о возможности получения мультиблок-сополимеров непосредственно из мономеров. Поскольку полимеризация НБ протекает практически мгновенно, в смеси НБ и ЦО уже на начальной стадии появляются гомополимер ПНБ и полимерный карбен [Ru]=ПНБ, который далее ведет цепь превращений с образованием металлокарбена [Ru]=ПЦО, делая возможным протекание МКМ. Следовательно, в одном реакторе можно провести как синтез гомополимеров, так и их кросс-метатезис, используя стандартный катализатор ROMP.

В настоящем сообщении представлены результаты исследования синтеза сополимеров НБ-ЦО мультиблочного строения из мономеров в присутствии Г1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные реагенты. Мономеры и растворители после очистки и абсолютирования хранили в инертной атмосфере. Норборнен ("Acros Organics"), цис-циклооктен ("Sigma-Aldrich") и толуол марки "х. ч." сушили и хранили над натрием. ТГФ марки "х. ч." перегоняли над щелочью, хлороформ сушили над гидридом кальция. Этиловый спирт квалификации "х. ч.", ингибитор окисления 2,2'-метилен-бис(6-трет-бутил-4-метилфенол), катализатор Граббса I поколения (PCy₃)₂Cl₂Ru=CHPh (Г1, "Sigma-Aldrich") использовали без дополнительной очистки. Норборнен и катализатор Г1 применяли в виде растворов в абсолютированном хлороформе с концентрацией 4.9 и 0.02 М соответственно. Гомополимеры ПНБ и ПЦО получали метатезисной полимеризацией с раскрытием цикла мономеров НБ и ЦО в хлороформе в присутствии катализатора Г1, как описано в [29].

Сополимеризация НБ и ЦО. В заполненную аргоном двугорлую колбу объемом 50 мл, снабженную магнитной мешалкой, загружали необходимое количество НБ, ЦО и абсолютированного хлороформа. Смесь дегазировали, трижды осушествляя цикл замораживание-вакуумированиеразмораживание. К охлажденной до 7-8°С смеси добавляли расчетный объем отдельно приготовленного раствора катализатора Г1 в хлороформе. Реакционная смесь становилась малиновой и мгновенно густела. Через 5 мин охлаждение смеси прекрашали, спустя 30 мин вязкость ее уменьшалась. Реакцию останавливали добавлением винилэтилового эфира и ингибитора окисления (соотношение эфир : катализатор = 500 : 1 мол./мол.). Через 30 мин раствор разбавляли хлороформом, сополимеры выделяли высаживанием в этиловый спирт, сушили в вакууме до постоянной массы, хранили в атмосфере аргона.

Схема 1. Синтез сополимеров НБ-ЦО из мономеров.

Методы измерений. Спектры ЯМР регистрировали для растворов полимеров и сополимеров в CDCl₃ ("Sigma-Aldrich") на ЯМР-спектрометре Avance 600 ("Bruker") с рабочей частотой по протонам 600.22 МГц и по углероду 150.92 МГц. Химические сдвиги определяли с точностью до 0.01 м. д. относительно остаточного сигнала хлороформа, который использовали в качестве внутреннего стандарта.

Среднюю длину блоков в сополимерах рассчитывали по данным ¹³С ЯМР-спектров из соотношений:

$$L_{\rm HF} = [I_{\rm HF-HF} + I_{\rm HF-UO}]/I_{\rm HF-UO}$$
$$L_{\rm UO} = [I_{\rm UO-UO} + I_{\rm UO-HF}]/I_{\rm UO-HF},$$

где $I_{\rm HБ-ЦО}$ и $I_{\rm ЦО-HБ}$ – интегралы пиков атомов углерода в двойных C=C-связях гетеродиад, а $I_{\rm HБ-HБ}$, $I_{\rm ЦО-ЦО}$ – интегралы пиков соответствующих гомодиад.

Молярно-массовые характеристики полимеров оценивали методом ГПХ. Анализ проводили на модульном жидкостном хроматографе высокого давления, оснащенном насосом LabAlliance Series 1500 Constant Flow Pump ("Scientific Systems") и детектором Refractive Index Detector 2142 (LKB, "Bromma") и системой последовательно соединенных колонок WAT054460 ("Waters") и G3000HHR ("TosohBiosep") со сшитым ПС в качестве наполнителя. В качестве элюента использовали ТГФ, скорость потока 1 мл мин⁻¹, температура колонки 25°С, концентрация образца 1 мг мл⁻¹, объем пробы 100 мкл, калибровка по полистирольным стандартам "PolymerLabs".

Калориметрические измерения проводили на дифференциальном сканирующем калориметре Mettler Toledo DSC823e. Нагревание и охлаждение образцов осуществляли со скоростью 10° С мин⁻¹ в атмосфере аргона со скоростью потока 70 мл мин⁻¹ в диапазоне от -100 до 100° С. Результаты измерений обрабатывали с помощью сервисной программы STARe, поставляемой в комплекте с при-

бором. Точность измерения температуры 0.3° С, энтальпии – 1 Дж г⁻¹.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Сополимеризацию НБ и ЦО проводили в хлороформе, добавляя к смеси мономеров раствор катализатора Г1. Реакционная масса быстро густела, превращаясь в почти неподвижный блок, но через 30–40 мин становилась подвижной и перемешивалась магнитной мешалкой. Такое поведение свидетельствует о быстром росте молярной массы полимера в ходе полимеризации НБ и о его последующей пластификации мономером и блоками ЦО (схема 1).

Полученный полимер анализировали методами ЯМР, ГПХ и ДСК.

На рис. 1 представлен фрагмент типичного ¹³С ЯМР-спектра, относящийся к сигналам углеродов двойной С=С-связи. Наличие заметных сигналов гетеродиад свидетельствует о получении мультиблок-сополимеров НБ–ЦО, а не диблоксополимера или смеси гомополимеров ПНБ и ПЦО. Состав сополимера продуктов и средняя длина блоков НБ и ЦО были рассчитаны по значениям интегралов сигнала углерода при двойной связи в гомо- и гетеродиадах [25].

Условия реакции между НБ и ЦО и характеристики полученных сополимеров представлены в табл. 1. Отметим, что сополимеры обладают кристалличностью за счет блока ЦО ($T_{пл} = 38^{\circ}$ С у сополимера ниже, чем 45°С у ПЦО), а их температура стеклования (-36° С) находится в интервале между T_{cr} гомополимеров ПЦО и ПНБ (-79 и 39°С соответственно).

По данным табл. 1 выход сополимеров мало зависит от суммарной концентрации мономеров $[\Sigma_{\text{мон}}]$ и времени их взаимодействия. Этот факт можно объяснить тем, что за 2 ч полимеризация практически завершается, и за счет межцепного обмена устанавливается равновесное ММР, в том

Рис. 1. Фрагмент ¹³С ЯМР-спектра продукта взаимодействия НБ и ЦО (табл. 1, опыт 1), содержащий сигналы углерода при двойной связи. Отнесения сигналов выполнены по данным работы [25].

числе между линейными цепями и циклами, которые не вносят вклад в выход полимерного продукта.

Вместе с тем концентрация мономерных звеньев влияет на скорость медленной реакции МКМ, которая приводит к уменьшению средней длины блоков. В результате увеличение [$\Sigma_{\text{мон}}$] от 0.8 до 1.6 моль л⁻¹ снижает среднюю длину блоков $L_{\text{HБ}}$ и $L_{\text{ЦО}}$ примерно в 1.5 раза (табл. 1, ср. опыты 1

и 2, 3 и 4). Однако при дальнейшем увеличении исходной концентрации мономеров до 2.5 (табл. 1, опыт 5) и 3.5 моль π^{-1} (табл. 1, опыт 7) длина блоков снижается гораздо медленнее, что может быть обусловлено агрегацией блоков ЦО в хлороформе (по данным работы [26], агрегация ПЦО с $M_w =$ = 300 кг моль⁻¹ наблюдается при концентрации мономерных звеньев выше 0.3 моль π^{-1}) и снижением вероятности их взаимодействия с блоками

№ опыта	[Σ _{мон}], моль л ⁻¹	Время, ч	Выход, %	$M_w(M_n),$ кг моль $^{-1}$	Ð	Состав НБ : ЦО, моль : моль	Средняя длина блока		Транс-С=С, %	
							$L_{\rm HB}$	$L_{\rm IIO}$	НБ	ЦО
1	0.8	2	84.5	110 (65)	1.7	1:1.2	10.9	12.7	81	79
2	0.8	24	83.1	156 (96)	1.6	1:1.3	7.5	10.0	80	81
3	1.6	2	85.3	105 (71)	1.5	1:1.1	8.3	9.4	81	80
4	1.6	24	86.0	118 (76)	1.5	1:1.3	5.9	7.2	79	79
5^{δ}	2.5	2	_	160 (95)	1.7	1:1.2	8.0	8.7	80	82
6^{δ}	2.5	4	_	129 (78)	1.6	1:1.1	6.5	6.8	79	81
7^{6}	3.5	2	_	122 (72)	1.7	1:1	7.9	8.5	82	79

Таблица 1. Синтез мультиблок-сополимеров НБ-ЦО из мономеров в присутствии катализатора Г1^а

^{*а*} Условия реакции: *Т*_{комн}, хлороформ, [Г1] : [НБ] : [ЦО] = 1 : 150 : 150 моль/моль. ^{*б*} Опыты с отбором проб без оценки выхода сополимеров.

Метод	№ опыта	[Г1], мол. %	[Σ _{мон}], моль л ⁻¹	Время, ч	$M_{ m w}(M_{ m n}),$ кг моль $^{-1}$	Ð	Средняя длина блока		Транс-С=С, %	
cuntesa							$L_{\rm HB}$	$L_{\rm IIO}$	НБ	ЦО
Из смеси	1	0.33	0.8	24	156 (98)	1.6	7.5	10.0	80	81
мономеров	2	0.33	1.6	24	118 (76)	1.5	5.9	7.2	79	79
	3	0.33	2.5	4	129 (80)	1.6	6.5	6.6	79	81
Из смеси	4^{δ}	0.33	0.8	24	100 (67)	1.5	14	15	82	78
полимеров	5 ^e	1.0	0.5	24	46 (23)	2.0	6.8	7.3	83	77
	6 ²	1.0	1.2	24	40 (21)	1.9	4.9	5.6	80	80

Таблица 2. Получение мультиблок-сополимеров НБ-ЦО из смеси мономеров (НБ/ЦО) и гомополимеров (ПНБ/ПЦО)^{*a*}

^{*а*} Условия реакции: *Т*_{комн}, хлороформ, 24 ч, [НБ] : [ЦО] = 1 : 1 моль/моль; ^{*б*} [29], ^{*в*} [25], ^{*г*} [27].

НБ. В наиболее концентрированной системе (табл. 1, опыт 7) снижается и молярная масса сополимера, по-видимому, из-за диффузионных ограничений в ходе метатезисной полимеризации.

Таблица 2 позволяет сопоставить результаты получения мультиблок-сополимеров НБ–ЦО на основе мономеров (опыты 1–3) и на основе гомополимеров (опыты 4–6). Видно, что в одинаковых условиях ([Г1] = 0.33 мол. %, [$\Sigma_{\text{мон}}$] = 0.8 моль π^{-1}) синтез на основе смеси мономеров НБ и ЦО приводит к сополимерам с большей молярной массой и в 1.5–2 раза меньшей средней длиной блока (опыты 1 и 4). Для получения сополимеров НБ– ЦО с такой же длиной блока из смеси полимеров нобходимо увеличить концентрацию катализатора в 2–3 раза (опыты 5, 6), что неизбежно приводит к дальнейшему снижению молярной массы сополимера.

Таким образом, при однореакторном синтезе катализатор Г1 используется более эффективно. Возможная причина этого состоит в более быстром формировании активных центров межцепной реакции — карбеновых комплексов [Ru]=ПНБ и [Ru]=ПЦО в ходе гомополимеризации (за 0.5–1 ч), по сравнению с реакцией МКМ, где максимальная концентрация полимерных карбенов достигается в течение 2–5 ч и сопровождается заметным снижением молярной массы [26].

Метод однореакторного синтеза позволяет создавать растворы с высокой концентрацией реагентов, за счет чего в этой системе МКМ протекает более интенсивно, и сополимеры с заданной длиной блока (5–6 звеньев) образуются уже за 4 ч (табл. 2, опыт 3), тогда как при реакции между гомополимерами на это требуется 24 ч (табл. 2, опыт 6). Более того, в силу высокой вязкости и плохой термодинамической совместимости ПНБ и ПЦО практически не удается создать их раствор в хлороформе с концентрацией [$\Sigma(\Pi H E + \Pi \Pi O)$] ≥ 1.5 моль π^{-1} . Интересно, что доля связей *транс*-C=C в гомодиадах HБ–HБ и ЦО–ЦО оказывается равной ~80% во всех опытах, представленных в табл. 1 и 2. Это значение характерно для полимеров, полученных в ходе реакции МКМ, в то время как для ПНБ и ПЦО, синтезированных методом ROMP в присутствии Г1, оно составляет 88 и 68% соответственно [26].

ЗАКЛЮЧЕНИЕ

Впервые продемонстрирована возможность получения мультиблок-сополимеров НБ–ЦО из мономеров в присутствии катализатора Граббса I поколения. Преимущество однореакторного синтеза, в сравнении с реакцией между соответствующими гомополимерами, состоит в более эффективном использовании катализатора и меньшем времени процесса. Однореакторный метод позволяет исключить стадию синтеза гомополимеров, если только в их качестве не используются доступные и хорошо охарактеризованные промышленные продукты, такие как ПНБ и ПЦО. Пока не в полной мере понятны способы регулирования состава и средней длины блока сополимера, что требует дополнительных исследований.

БЛАГОДАРНОСТИ

Авторы признательны Г.А. Шандрюку и к.х.н. Я.И. Дерикову (ИНХС РАН) за анализ полимеров методами ДСК и ГПХ. Строение полученных соединений изучено с использованием научного оборудования Центра коллективного пользования ИНХС РАН "Аналитический центр проблем глубокой переработки нефти и нефтехимии" и Центра исследования строения молекул ИНЭОС РАН.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена в рамках Государственного задания Института нефтехимического синтеза им. А.В. Топчиева РАН.

СПИСОК ЛИТЕРАТУРЫ

- Norsorex (интернет). Доступно по: https://www.norsorex.com/. Ссылка активна на 29 декабря 2022 г.
- Vestenamer (интернет). Доступно по: https://www.vestenamer.com/en. Ссылка активна на 29 декабря 2022 г.
- Leimgruber S., Trimmel G. // Monatsh. Chem. 2015. V. 146. P. 1081–1097. https://doi.org/10.1007/s00706-015-1501-0
- Flid V.R., Gringolts M.L., Shamsiev R.S., Finkelshtein E.Sh. // Russ. Chem. Rev. 2018. V. 87. № 12. P. 1169–1205. https://doi.org/10.1070/RCR4834
- Zubkevich S.V., Tuskaev V.A., Gagieva S.Ch., Bulychev B.M. // Russ. Chem. Rev. 2022. V. 91. № 3. RCR5021. https://doi.org/10.1070/RCR5021
- Nazarov I.V., Bermesheva E.V., Potapov K.V., Khesina Z.B., Il'in M.M., Melnikova E.K., Bermeshev M.V. // Mendeleev Commun. 2021. V. 31. № 5. P. 690–692. https://doi.org/10.1016/j.mencom.2021.09.032
- Ivin K.J., Mol. J.C. Olefin metathesis and metathesis polymerization. London: Academic Press, 1997. P. 472.
- Schleyer P.v.R., Williams J.E., Blanchard K.R. // J. Am. Chem. Soc. 1970. V. 92. P. 2377–2386. https://doi.org/10.1021/ja00711a030
- Bornand M., Chen P. // Angew. Chem., Int. Ed. 2005. V. 44. P. 7909–7911. https://doi.org/10.1002/anie.200502606
- 10. *Walker R., Conrad R.M., Grubbs R.H.* // Macromolecules. 2009. V. 42. № 3. P. 599–605. https://doi.org/10.1021/ma801693q
- Kohara T. // Macromol. Symp. 1996. V. 101. P. 571– 579. https://doi.org/10.1002/masy.19961010163
- Dragutan V, Streck R. Catalytic polymerization of cycloolefins: Ionic, Ziegler-Natta and ring-opening metathesis polymerization. Amsterdam: Elsevier, 2000. V. 131. P. 1292.
- Nunes P.S., Ohlsson P.D., Ordeig O., Kutter J.P. // Microfluid. Nanofluid. 2010. V. 9. P. 145–161. https://doi.org/10.1007/s10404-010-0605-4
- Yamazaki M. // J. Mol. Catal. A: Chem. 2004. V. 213. № 1. P. 81–87. https://doi.org/10.1016/j.molcata.2003.10.058

- Naga N., Kikuch G., Toyota A. // Polymer. 2006. V. 47. P. 6081–6090. https://doi.org/10.1016/j.polymer.2006.06.015
- Chaimongkolkunasin S., Hou X., Nomura K. // J. Polym. Sci., Part A: Polym. Chem. 2017. V. 55. P. 3067–3074. https://doi.org/10.1002/pola.28622
- 17. *Kong Y., Xu Sh., Song H., Wang B.* // Organometallics. 2012. V. 31. № 15. P. 5527–5532. https://doi.org/10.1021/om300474n
- Li M., Song H., Wang B. // Eur. J. Inorg. Chem. 2015. P. 4055–4061. https://doi.org/10.1002/ejic.201500499
- Bornand M., Torker S., Chen P. // Organometallics. 2007. V. 26. P. 3585–3596. https://doi.org/10.1021/om700321a
- Torker S., Müller A., Sigrist R., Chen P. // Organometallics. 2010. V. 29. P. 2735–2751. https://doi.org/10.1021/om100185g
- Torker S., Müller A., Chen P. // Angew. Chem. 2010. V. 122. P. 3850–3854. https://doi.org/10.1002/ange.200906846
- 22. Vehlow K., Wang D., Buchmeiser M.R., Blechert S. // Angew. Chem. Int. Ed. 2008. V. 47. P. 2615–2618. https://doi.org/10.1002/anie.200704822
- Lichtenheldt M., Wang D., Vehlow K., Reinhardt I., Kühnel C., Decker U., Blechert S., Buchmeiser M.R. // Chem. Eur. J. 2009. V. 15. P. 9451–9457. https://doi.org/10.1002/chem.200900384
- 24. Buchmeiser M.R., Ahmad I., Gurram V., Kumar P.S. // Macromolecules. 2011. V. 44. № 11. P. 4098–4106. https://doi.org/10.1021/ma200995m
- 25. Gringolts M.L., Denisova Y.I., Shandryuk G.A., Krentsel L.B., Litmanovich A.D., Finkelshtein E.S., Kudryavtsev Y.V. // RSC Adv. 2015. V. 5. № 1. P. 316–319. https://doi.org/10.1039/C4RA12001A
- Denisova Y.I., Gringolts M.L., Peregudov A.S., Krentsel L.B., Litmanovich E.A., Litmanovich A.D., Finkelshtein E.S., Kudryavtsev Y.V. // Beilstein J. Org. Chem. 2015. V. 11. P. 1796–1808. https://doi.org/10.3762/bjoc.11.195
- Shandryuk G.A., Denisova Y.I., Gringolts M.L., Krentsel L.B., Litmanovich A.D., Finkelshtein E.S., Kudryavtsev Y.V. // Eur. Polym. J. 2017. V. 86. P. 143–153. https://doi.org/10.1016/j.eurpolymj.2016.11.025
- Gringolts M.L., Denisova Y.I., Finkelshtein E.Sh., Kudryavtsev Y.V. // Beilstein J. Org. Chem. 2019. V. 15. P. 218–235. https://doi.org/10.3762/bjoc.15.21
- Morontsev A.A., Denisova Y.I., Gringolts M.L., Filatova M.P., Shandryuk G.A., Finkelshtein E.S., Kudryavtsev Y.V. // Polym. Sci., Ser. B. 2018. V. 60. № 5. P. 688–698. https://doi.org/10.1134/S1560090418050111

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ХИМИЯ, НАУКИ О МАТЕРИАЛАХ том 510 2023

ГРИНГОЛЬЦ и др.

ONE-POT SYNTHESIS OF NORBORNENE-CYCLOOCTENE COPOLYMERS

M. L. Gringolts^a, A. S. Marchenko^a, A. S. Peregudov^b, Yu. I. Denisova^a, and Y. V. Kudryavtsev^{a,#}

^aTopchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federaion ^bNesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation [#]E-mail: var@ips.ac.ru

The one-pot synthesis of random multiblock copolymers of norbornene and cyclooctene has been performed for the first time. It is shown that the first generation Grubbs Ru-carbene complex makes it possible to obtain these copolymers directly from monomers. In the course of one-pot synthesis, the metathesis polymerization of norbornene, which has a markedly higher ring strain, occurs first. Then, cyclooctene polymerizes and simultaneously an interchain cross-metathesis reaction takes place, during which the block structure of the copolymer is formed. Compared to the previously studied interaction of polynorbornene and polycyclooctene, the one-pot method makes it possible to obtain copolymers with a higher molar mass at a lower catalyst consumption.

Keywords: metathesis polymerization, one-pot synthesis, multiblock copolymers, Grubbs' catalyst