УДК 544.344.01+ 546.273+ 661.635

ФАЗООБРАЗОВАНИЕ В РЯДУ Мд3_ "Ni, ВРО7

© 2023 г. М. Н. Смирнова^{1,*}, М. А. Копьева¹, Г. Д. Нипан¹, Г. Е. Никифорова¹, А. Д. Япрынцев¹, А. А. Архипенко¹

Представлено академиком РАН И.Л. Еременко 18.08.2022 г. Поступило 20.08.2022 г. После доработки 07.02.2023 г. Принято к публикации 10.02.2023 г.

Образцы $Mg_{3-n}Ni_nBPO_7$ (n = 0-3), синтезированные методом сжигания геля с последующим отжигом при 980°С и охлажденные в инерционно-термическом режиме, исследованы методом рентгенофазового анализа, инфракрасной спектроскопии и рентгенофлуоресцентной спектрометрии. Впервые экспериментально получена кристаллическая фаза Ni₃BPO₇ со структурой β-Zn₃BPO₇. При варыровании состава образцов от Mg₃BPO₇ к Ni₃BPO₇ в борофосфате обнаружена область совместного существования α -Mg₃BPO₇ и β-Ni₃BPO₇. Анализ спектров диффузного отражения Mg_{1.5}Ni_{1.5}BPO₇ показал наличие катионов Ni²⁺ в окружении, отличном от симметричного октаэдрического или тетраэдрического окружения.

Ключевые слова: многокомпонентные оксидные системы, фазовые состояния **DOI:** 10.31857/S268695352260057X, **EDN:** HPDYLH

Применение борофосфатов в качестве матриц для введения люминесцентных катионов привлекательно благодаря низким температурам синтеза и физико-химической стабильности [1], определяющим, в конечном итоге, функциональность оптических усилителей и настраиваемых лазерных устройств. Для медицинского использования, например, в лазерной терапии и лазерной диагностике, благодаря прозрачности биотканей при длине волны электромагнитного излучения 750-1000 нм, оптически активным материалом может служить шпинель MgGa₂O₄, допированная никелем [2, 3]. Однако непрерывный твердый раствор MgGa_{2-x}Ni_xO₄ характеризуется невысокой интенсивностью излучения даже при значительном содержании Ni [2]. Эффективное использование примесной люминесценции Ni²⁺ в ближнем ИК- и видимом диапазонах может быть реализовано в рамках другой кристаллической структуры. Поэтому был выбран недорогой и нетоксичный орторомбический борофосфат магния [4], однако задача осложнилась проблемой получения однофазного Mg₃BPO₇ [5]. При твердофазном способе синтеза при температуре 1200°С и использовании в качестве прекурсоров

¹Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, 119991 Москва, Россия $MgHPO_4$ · H_2O , $MgCO_3$ и H_3BO_3 в мольном соотношении 1 : 2 : 1 наряду с Mg_3BPO_7 образуются ортоборат $Mg_3B_2O_6$ и ортофосфат магния $Mg_3P_2O_8$. К такому же результату приводит использование $Mg_3B_2O_6$, $MgCO_3$, $(NH_4)_2HPO_4$ (1:3:2, 1100°C) и MgO, B_2O_3 , P_2O_5 (6:1:1, 1100°C) [5].

Настоящая работа направлена на оценку возможности получения непрерывного твердого раствора (Mg,Ni)BPO₇ методом сжигания геля. Составы $Mg_{3-n}Ni_nBPO_7$ (n = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0), представленные на рис. 1 окрашенными

Рис. 1. Исследованные составы в концентрационном тетраэдре $MgO-NiO-B_2O_3-P_2O_5$.

^{*}E-mail: smirnova_macha1989@mail.ru

Рис. 2. Результаты РФС образца Mg_{1.5}Ni_{1.5}BPO₇: спектры Ni (a), Mg (б), P (в) и итоговая таблица экспериментального и теоретического содержания элементов (г).

точками в концентрационном тетраэдре квазичетверной системы $MgO-NiO-B_2O_3-P_2O_5$, исследованы методом рентгеновской дифракции. Для состава $Mg_{1.5}Ni_{1.5}BPO_7$ проанализированы оптические свойства в УФ/видимом и ИК-диапазонах.

Образцы для разреза Mg₃BPO₇—Ni₃BPO₇ синтезировали методом сжигания геля, в качестве исходных реагентов применяли магний металличе-

Таблица 1. Параметры кристаллической ячейки β-Ni₃BPO₇ (пр. гр. *P*-6)

Параметр	β-Ni ₃ BPO ₇
<i>a</i> , Å	8.4108(9)
$c, \mathrm{\AA}$	12.413(1)
V, Å ³	760.5(2)
R_p	5.5
R_{wp}	7.2

ский (стружка), никель металлический (порошок), H_3BO_3 ("х. ч.") и восстановитель ("органическое топливо") – глицин NH_2CH_2COOH . Реагенты, взятые в соответствующих стехиометрических количествах, растворяли в разбавленной ($HNO_3: H_2O =$ = 1:1 (об.)) азотной кислоте, раствор упаривали, переносили в керамическую чашку и добавляли раствор глицина. При дальнейшем упаривании образовывался гель, после кратковременного возгорания превращающийся в серо-черный порошок, который перетирали, переносили в керамический тигель, отжигали при 980°C в течение трех часов и охлаждали в инерционно-термическом режиме, не вынимая из печи.

Содержание Mg, Ni, P в синтезированных образцах контролировали методом рентгенофлуоресцентной спектрометрии (РФС) на спектрометре СПЕКТРОСКАН МАКС-GVM (Россия). На рис. 2 представлены полученные данные, которые свидетельствуют о соответствии содержания Mg, Ni, P в конечном продукте исходно заданному соотношению Mg/Ni/P.

Характеристика колебания	Волновое число, ν (см ⁻¹)
B-O (ас. в.) ^{<i>a</i>}	1360
В-О (ас. в.)	1320
В-О (ас. в.)	1270
В-О (ас. в.)	1230
В-О (ас. в.)	1200
Р-О (ас. в.)	1090
Р−О (ас. в.) В−О (с. в.) ⁶	1050
Р-О (с. в.)	1020
Р-О (с. в.)	990
В-О (с. в.)	900
ВО ₃ (деф.) ^в	750
ВО3 (деф.)	730
BO ₃ (деф.)	680
ВО3 (деф.)	650
РО ₄ (деф.)	630
BO ₃ (деф.)	610
РО ₄ (деф.)	570
РО ₄ (деф.)	530
ВО3 (деф.)	500
ВО3 (деф.)	460
BO ₃ (деф.) PO ₄ (деф.)	420

Таблица 2. Характеристика частот ИК-спектров образцов, представленных на рис. 4

^{*a*}Асимметричные валентные, ^{*б*}симметричные валентные, ^{*в*}деформационные.

Рентгенофазовый анализ (РФА) выполняли на дифрактометре Bruker Advance D8 (излучение CuK_{α}) в интервале углов $2\theta = 10^{\circ}-70^{\circ}$ с шагом сканирования 0.0133°. Результаты обрабатывали с помощью программного пакета DIFFRAC.EVA. Количественный фазовый анализ проводили методом полнопрофильного анализа по методу Ритвельда с использованием программного обеспечения TOPAS 4.2.

На рис. 3 приведены дифрактограммы образцов номинальных составов $Mg_{3-n}Ni_nBPO_7$ (n = 0-3).

Образец Mg₃BPO₇ (рис. 3, линия 1) на 60% состоит из основной фазы α-Mg₃BPO₇ и содержит примеси ортобората Mg₃(BO₃)₂ и ортофосфата магния Мg₃(PO₄)₂. Замещение части атомов магния на никель способствует стабилизации фазы α -Mg₃BPO₇ и увеличению ее количества до 90%. В то же время никель не полностью встраивается в кристаллическую решетку борофосфата, а остается в виде примеси оксида никеля NiO, наряду с Mg₃(PO₄)₂ (рис. 3, линии 2 и 3). Дальнейшее увеличение содержания никеля приводит к образованию примеси двойного магний-никелевого фосфата $(Mg_{1-x}Ni_x)_3(PO_4)_2$, изоструктурного фосфату никеля и устойчивого в концентрационном интервале $0.4 \le x \le 0.6$ [6], а также небольшого количества бората никеля (рис. 3, линии 4 и 5). Вплоть до состава Mg_{0.5}Ni_{2.5}BPO₇ основной фазой в образцах остается моноклинный борофосфат магния α-Mg₃BPO₇. Однако, начиная с состава MgNi₂BPO₇, происходит образование гексагональной фазы β -Ni₃BPO₇, изоструктурной β -Zn₃BPO₇ [7. 8] (рис. 3. линии 5. 6 и 7). В результате полной замены магния на никель содержание фазы β-Ni₃BPO₇ в образце достигает 45% (рис. 3, линия 7). На основании данных рентгеновской дифракции методом полнопрофильного анализа была рассчитана кристаллическая структура β -Ni₃BPO₇, в качестве прототипа использовали данные о строении β-Zn₃BPO₇ [9]. Результаты представле-

ИК-спектры регистрировали спектрометром Perkin Elmer Spectrum 65 FT-IR в области 4000— 400 см^{-1} с разрешением 2 см⁻¹.

ны в табл. 1.

На рис. 4 представлены ИК-спектры для $Mg_{3-n}Ni_nBPO_7$ (*n* = 0-3). ИК-спектр Mg_3BPO_7 аналогичен спектру, представленному в работе [5]. Экстремумы полос колебаний приведены в табл. 2. Зарегистрированы валентные асимметричные/симметричные колебания связи В-О при 1230 см⁻¹/1050 см⁻¹ и Р-О при 1050 см⁻¹/990 см⁻¹, а также деформационные колебания треугольников BO_3 при 750 и 650 см⁻¹ совместно с тетраэдрами РО₄ при 570 и 420 см⁻¹. Подобный спектр получен для Ni₃BPO₇. С ростом концентрации никеля в образцах увеличивается содержание примесных фаз, среди которых присутствуют бораты и фосфаты никеля и магния. Для боратов металлов полосы поглощения при 1360, 1320, 1270 и 1200 см⁻¹ соответствуют асимметричным, а при 900 см⁻¹ – симметричным валентным колебаниям В-О в треугольниках ВО3. Деформационным колебаниям ВО3 отвечают пики 730, 680, 650, 610, 500, 460 и 420 см⁻¹ [10]. Для фосфатов – асимметричные и симметричные валентные колебания P-О наблюдаются при 1090, 1060/1020, 990 см⁻¹,

Рис. 3. Дифрактограммы Mg_{3 - n}Ni_nBPO₇: *n* = 0 (*1*), 0.5 (*2*), 1.0 (*3*), 1.5 (*4*), 2.0 (*5*), 2.5 (*6*), 3.0 (*7*).

Рис. 4. ИК-спектры Mg_{3 – n}Ni_nBPO₇: *n* = 0.0 (*1*), 0.5 (*2*), 1.0 (*3*), 1.5 (*4*), 2.0 (*5*), 2.5 (*6*), 3.0 (*7*).

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ХИМИЯ, НАУКИ О МАТЕРИАЛАХ том 512 2023

Рис. 5. Спектры поглощения для образцов $Mg_{3-n}Ni_nBPO_7$: n = 3 (спектр 1) и 1.5 (спектр 2) в УФ/видимом и ближнем ИК-диапазоне.

а деформационные колебания в тетраэдре PO_4 — при 630, 570 и 530 см⁻¹ [11, 12].

Спектры диффузного отражения в диапазоне 200—1000 нм регистрировали с помощью модульной оптической системы Ocean Optics (дейтериево-галогеновый источник DH-2000-BAL, интегрирующая сфера ISP-80-8-R диаметром 80 мм, детектор QE650000). В качестве образца сравнения использовали стандарт WS-1 (Ocean Optics) из политетрафторэтилена.

Результаты исследования оптических свойств образцов $Mg_{3-n}Ni_nBPO_7$ (n = 3, 1.5) в УФ/видимом диапазоне спектра (рис. 5) обработаны с помощью функции Кубелки–Мунка [13], которую можно считать прямо пропорциональной поглощению, пренебрегая наличием сильного рассеяния или пропускания света образцами.

Спектры поглощения содержат ряд интенсивных полос, связанных с электронными переходами с участием Ni²⁺. Полосу с максимумом при 300 нм можно отнести к полосе переноса заряда Ni(II)-O [14]. Широкие полосы 360-500 и 600-980 нм относятся к полосам собственного поглощения Ni²⁺ и имеют множество компонент, что говорит о низкой симметрии окружения Ni²⁺ и наличии разных кристаллографических позиций Ni²⁺ [14]. Полосы в диапазонах 360-500 и 600-980 нм нельзя с уверенностью отнести ни к симметричному октаэдрическому, ни к тетраэдрическому окружению [15]. Полученные результаты хорошо согласуются с наличием в структурах α-Mg₃BPO₇ и β-Ni₃BPO₇ кислородных полиэдров никеля с KY = 4 и 5, отличных от симметричных октаэдрических и тетраэдрических полиэдров.

ЗАКЛЮЧЕНИЕ

Методом сжигания геля впервые экспериментально получена кристаллическая фаза Ni₃BPO₇ со структурой β-Zn₃BPO₇ и определены ее кристаллографические параметры. В то же время сушествование стабильной β-модификации Mg₃BPO₇ подтверждено. Исследование образцов не $Mg_{3-n}Ni_nBPO_7$ (n=0-3) методами рентгенофазового анализа, инфракрасной спектроскопии и рентгенофлуоресцентной спектрометрии выявило отсутствие твердого раствора (Mg, Ni) BPO₇. В данной системе при изменении состава от Mg₃BPO₇ к Ni₃BPO₇ была зарегистрирована область сосуществования фаз α-Mg₃BPO₇ и β-Ni₃BPO₇. Анализ спектров диффузного отражения Mg₁₅Ni₁₅BPO₇ указывает на наличие кислородных полиэдров никеля с KY = 4 и 5, характерных для фаз α -Mg₃BPO₇ и β -Ni₃BPO₇.

БЛАГОДАРНОСТИ

Исследование проводилось с использованием оборудования ЦКП ФМИ ИОНХ РАН.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при финансовой поддержке Минобрнауки России в рамках государственного задания ИОНХ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Zhang J., Han B., Li P., Bian Y., Li J., Shi H.* // J. Mater. Sci.—Mater. Electron. 2014. V. 25. № 8. P. 3498–3503. https://doi.org/10.1007/s10854-014-2045-5
- Suzuki T., Hughes M., Ohishi Y. // J. Lumin. 2010. V. 130. № 1. P. 121–126. https://doi.org/10.1016/j.jlumin.2009.07.029
- Смирнова М.Е., Копьева М.А., Никифорова Г.Е., Нипан Г.Д., Япрынцев А.Д., Петрова К.В., Короткова Н.А. // Докл. РАН. Химия, науки о материалах. 2021. Т. 500. С. 44–49. https://doi.org/10.31857/S2686953521050186
- 4. *Aziz S.M., Umar R., Yusoff N.B.M., Rosid S.J.M., Mohd S.N.S., Amin M.* // Malaysian J. Fundam. Appl. Sci. 2020. V. 16. № 4. P. 524–529.
- 5. *Gözel G., Baykal A., Kizilyalli M., Kniep R.* // J. Eur. Ceram Soc. 1998. V. 18. № 14. P. 2241–2246. https://doi.org/10.1016/S0955-2219(98)00152-6
- Nord A.G., Stefanidis T. // Phys. Chem. Minerals. 1983.
 V. 10. P. 10–15. https://doi.org/10.1007/BF01204320
- 7. *Liebertz J., Stähr S.* // Z. Kristallogr. 1982. V. 160. P. 135–137.

https://doi.org/10.1524/zkri.1982.160.14.135

8. Wang G., Wu Y., Fu P., Liang X., Xu Z., Chen C. // Chem. Mater. 2002. V. 14. № 5. P. 2044–2047. https://doi.org/10.1021/cm010617vCCC

- 9. *Zhang E., Zhao S., Zhang J., Fu P., Yao J.* // Acta Cryst. Section E: Struct. Rep. Online. 2011. V. 67. № 1. P. i3. https://doi.org/10.1107/S1600536810051871
- Morkan A., Gul E., Morkan I., Kahveci G. // Int J. Appl. Ceram. Technol. 2018. V. 15. № 6. P. 1584–1593. https://doi.org/10.1111/ijac.13024
- Manajan R., Prakash R. // Mater. Chem. Phys. 2020.
 V. 246. P. 122826 (1–10). https://doi.org/10.1016/j.matchemphys.2020.122826
- Carrodeguas R.G., De Aza S. // Acta Biomater. 2011.
 V. 7. P. 3536–3546. https://doi.org/10.1016/j.actbio.2011.06.019
- Kubelka P., Munk F. // Z. Technol. Phys. 1931. V. 12. P. 593–599.
- Tena M.A., Mendoza R., García J.R., García-Granda S. // Results in Physics. 2017. V. 7. P. 1095–1105. https://doi.org/10.1016/j.rinp.2017.02.021
- Sakurai T., Ishigame M., Arashi H. // J. Chem. Phys. 1969. V. 70. P. 3241–3245. https://doi.org/10.1063/1.1671546

PHASE FORMATION IN THE Mg₃₋, Ni, BPO₇ SYSTEM

M. N. Smirnova^{*a*,#}, M. A. Kop'eva^{*a*}, G. D. Nipan^{*a*}, G. E. Nikiforova^{*a*}, A. D. Yapryntsev^{*a*}, and A. A. Arkhipenko^{*a*}

 ^aKurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russian Federation
 [#]E-mail: smirnova_macha1989@mail.ru
 Presented by Academician of the RAS I.L. Eremenko 18.08.2022

Samples of $Mg_{3-n}Ni_nBPO_7$ (n = 0-3), synthesized by gel combustion followed by annealing at 980°C and cooled in the inertial-thermal mode, were studied by X-ray powder diffraction, infrared spectroscopy, and X-ray fluorescence spectrometry. For the first time, the crystalline phase of Ni₃BPO₇ with the β -Zn₃BPO₇ structure has been experimentally obtained. When the composition of the samples changed from Mg₃BPO₇ to Ni₃BPO₇, a region of coexistence of α -Mg₃BPO₇ and β -Ni₃BPO₇ phases was found. An analysis of the diffuse reflectance spectra of the Mg_{1.5}Ni_{1.5}BPO₇ sample showed the presence of Ni²⁺ cations in an arrangement not symmetric octahedral or tetrahedral.

Keywords: multicomponent oxide systems, phase states

100