—— ФИЗИЧЕСКАЯ ХИМИЯ —

УДК 541.123:546.661'711'21

КОНЦЕНТРАЦИОННЫЙ ТЕТРАЭДР СИСТЕМЫ Li-Mn-Eu-O

© 2023 г. Г. А. Бузанов^{1,*}, Г. Д. Нипан¹

Представлено академиком РАН Ю.Г. Горбуновой 13.06.2023 г. Поступило 13.06.2023 г. После доработки 03.08.2023 г. Принято к публикации 10.08.2023 г.

Методом топологического моделирования на основе фрагментарных экспериментальных данных впервые построен изотермический концентрационный тетраэдр системы Li–Mn–Eu–O, описывающий возможные твердофазные превращения в системе, происходящие при постоянной температуре с изменением давления. Выделены тридцать два равновесия с участием четырех кристаллических фаз.

Ключевые слова: фазовые равновесия, оксидные многокомпонентные системы, фазовые диаграммы, шпинель, литиевые аккумуляторы

DOI: 10.31857/S2686953523700267, EDN: BITRQF

введение

Допирование шпинели $LiMn_2O_4$ (*Fd3m*), используемой в качестве электрода литий-ионных аккумуляторов (ЛИА) [1], ионами редкоземельных металлов в ряде случаев стабилизирует структуру и улучшает электрохимические характеристики шпинели. Детальный анализ показал, что изоморфное замещение марганца на лантаноид не превышает 2.5% [2], однако появление примесей позволяет сохранить емкость ЛИА при циклическом процессе заряд-разряд [3]. Состав образующихся композитов систематически исследовался только для системы Li–Mn–Eu–O в рамках изобарического концентрационного треугольника Li-Mn-Eu при парциальном давлении кислорода 21 кПа [4]. Использование данных [4] и фрагментарных сведений о фазовых превращениях в Li – Mn–Eu–O при отжиге в аргоне и смесях аргона с водородом, наряду с фазовыми диаграммами тройных систем Li-Mn-O [5-8], Li-Eu-O [9] и Eu-Mn-O [10-13], позволяет построить субсолидусную изотермическую концентрационную диаграмму системы Li-Mn-Eu-O для широкого диапазона парциальных давлений кислорода.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Построение изотермической концентрационной диаграммы системы Li–Mn–Eu–O проведено без учета полиморфизма и образования ограниченного твердого раствора для $LiMn_2O_4$, включающего составы $Li_4Mn_5O_{12}$ и $Li_4Mn_7O_{16}$ [8], а также литиевой и/или кислородной нестехиометрии MnO_2 , $Li_{0.33}MnO_2$, Mn_3O_4 , MnO [8] и Eu_2O_3 [4]. Метастабильные фазы Mn_5O_8 , $Li_2Mn_4O_9$, $Li_2Mn_2O_4$, Li_2MnO_2 и $LiMn_3O_4$ [8] также не рассматриваются.

На рис. 1 представлена изотермическая концентрационная диаграмма субсолидусных фазовых состояний системы Li-Mn-Eu-O. Двойные и тройные оксиды отмечены фигуративными точками на рис. 1а, тетрангуляция приведена на рис. 16. Тетраэдр разбит на 36 треугольных пирамид, которым в табл. 1 соответствуют 32 равновесия с участием четырех кристаллических фаза и 4 равновесия трех кристаллических фаз и молекулярного кислорода, экспериментально не достижимые из-за высоких давлений. Например, фазоравновесие LiMn₂O₄-Li₂MnO₃-EuMnO₃вое EuMn₂O₅ приведено в строке № 1 табл. 1, и объединение четырех соответствующих фигуративных точек на рис. 1а шестью нодами позволяет выделить для выбранного равновесия треугольную пирамиду на рис. 1б.

Перемещение от основания Li–Mn–Eu (рис. 1) к вершине концентрационного тетраэдра О соответствует изменению фазовых равновесий в системе Li–Mn–Eu–O с ростом давления кислорода. При фиксированном соотношении Li : Mn : Eu изоконцентраты последовательно проходят через разные треугольные пирамиды изотермического тетраэдра Li–Mn–Eu–O (рис. 1), и фазовый состав композитов при варьировании давления

¹Институт общей и неорганической химии

им. Н.С. Курнакова Российской академии наук, 119071 Москва, Россия

^{*}E-mail: gbuzanov@yandex.ru

Рис. 1. Изотермическая диаграмма субсолидусных фазовых равновесий системы Li–Mn–Eu–O: фигуративные точки оксидов в концентрационном тетраэдре (а), тетрангуляция (б).

кислорода изменяется. В соответствии с рис. 1 и табл. 1 шпинель LiMn₂O₄ при парциальных давлениях кислорода, близких к 21 кПа, образует термодинамически стабильные композиты с Li₂MnO₃, EuMnO₃, EuMn₂O₅, Mn₃O₄ и Mn₂O₃; повидимому, избыточное давление кислорода приведет к образованию композитов LiMn₂O₄ с MnO₂ и MnO₃ (табл. 1, равновесие № 6).

Выбор изотерм выше температур плавления кристаллических фаз (Mn₂O₇ ~267 K) значительно усложняет диаграмму Li–Mn–Eu–O, так как с ростом температуры расплав занимает все больший концентрационный объем. Сложность ана-

лиза фазовых равновесий с участием ограниченных твердых растворов, образующихся в системе Li–Mn–Eu–O, связана с тем, что проекции их изотермических концентрационных объемов перекрываются. За исключением твердых растворов на основе известных соединений тройных систем, новые четырехкомпонентные фазы не образуются в системе Li–Mn–Eu–O, и анализ фазовых равновесий с нестехиометрическими фазами можно провести с помощью изотерм составляющих тройных систем [5–9, 13]. Давление кислорода над вакуумированными четырехфазными кристаллическими смесями в системе Li–Mn–Eu–O задается марганецсодержащими оксидами и для

140/1	indu it i usobi	se publicacen	n B entereme E	
N⁰	Фазовое равновесие			
1	LiMn ₂ O ₄	Li ₂ MnO ₃	EuMnO ₃	EuMn ₂ O ₅
2	$LiMn_2O_4$	Li_2MnO_3	EuMnO ₃	Mn_3O_4
3	$LiMn_2O_4$	EuMnO ₃	$EuMn_2O_5$	Mn_3O_4
4	$LiMn_2O_4$	$EuMn_2O_5$	Mn_3O_4	Mn_2O_3
5	$LiMn_2O_4$	$EuMn_2O_5$	Mn_2O_3	MnO_2
6	$LiMn_2O_4$	$EuMn_2O_5$	MnO_2	MnO_3
7	$LiMn_2O_4$	Li_2MnO_3	LiMnO ₄	$EuMn_2O_5$
8	$LiMn_2O_4$	LiMnO ₄	$EuMn_2O_5$	MnO_3
9	LiMnO ₂	Li_2MnO_3	LiEuO ₂	Li ₂ O
10	LiMnO ₂	Li_2MnO_3	LiEuO ₂	Eu_2O_3
11	LiMnO ₂	Li_2MnO_3	EuMnO ₃	Mn_3O_4
12	LiMnO ₂	Li_2MnO_3	EuMnO ₃	Eu ₂ O ₃
13	LiMnO ₂	LiEuO ₂	Li ₂ O	MnO
14	LiMnO ₂	LiEuO ₂	MnO	Eu ₂ O ₃
15	LiMnO ₂	LiEuO ₂	MnO	Mn
16	LiMnO ₂	EuMnO ₃	MnO	Mn_3O_4
17	LiMnO ₂	EuMnO ₃	MnO	Eu ₂ O ₃
18	Li_2MnO_3	LiEuO ₂	Li ₂ O	Li ₂ O ₂
19	Li_2MnO_3	LiEuO ₂	Li ₂ O ₂	Eu ₂ O ₃
20	Li_2MnO_3	LiMnO ₄	EuMnO ₃	EuMn ₂ O ₅
21	Li_2MnO_3	LiMnO ₄	EuMnO ₃	Eu_2O_3
22	Li_2MnO_3	LiMnO ₄	Li ₂ O ₂	Eu_2O_3
23	LiEuO ₂	LiEu ₃ O ₄	Li2Eu5O8	Mn
24	LiEuO ₂	LiEu ₃ O ₄	Li ₂ O	Mn
25	LiEuO ₂	Li2Eu5O8	Eu_2O_3	Mn
26	LiEuO ₂	Eu_2O_3	MnO	Mn
27	LiEu ₃ O ₄	Li ₂ Eu ₅ O ₈	EuO	Mn
28	LiEu ₃ O ₄	Li ₂ O	EuO	Mn
29	Li2Eu5O8	EuO	Eu_2O_3	Mn
30	Li ₂ O	EuO	Eu	Mn
31	Li ₂ O	Li	Eu	Mn
32	LiMnO ₄	$EuMn_2O_5$	MnO_3	Mn_2O_7
33	LiMnO ₄	EuMnO ₃	EuMn ₂ O ₅	O ₂
34	LiMnO ₄	EuMnO ₃	Eu_2O_3	O ₂
35	LiMnO ₄	$EuMn_2O_5$	Mn_2O_7	O ₂
36	LiMnO ₄	Li_2O_2	Eu_2O_3	O ₂

Таблица 1. Фазовые равновесия в системе Li-Mn-Eu-O

некоторых фазовых равновесий практически тождественно величине давления [14, 15] над сосуществующими оксидами марганца (табл. 1): $Mn_2O_3-MnO_2$ (равновесие № 5), $Mn_3O_4-Mn_2O_3$ (равновесие № 4) и $MnO-Mn_3O_4$ (равновесие № 16). Изотермическая концентрационная диаграмма (T < 267 K) охватывает интервал парциальных давлений кислорода $10^{-10}-10^{15}$ Па, если ориентироваться на расчетные P-T (давление– температура) диаграммы Mn–O [14].

Основное дивариантное равновесие $Mn_2O_3-O_2$, ограниченное многовариантными равновесиями $Mn_2O_3-MnO_2-O_2$ и $Mn_3O_4-Mn_2O_3-O_2$, может охватывать интервал давлений кислорода практически в шесть порядков, например, от 7×10^2 Па до 4×10^8 Па при 1100 К [14]. Ниже этого интервала давлений кислорода Mn_2O_3 восстанавливается до Mn_3O_4 , а затем до MnO, с которым Li Mn_2O_4 не сосуществует.

ЗАКЛЮЧЕНИЕ

С помощью топологического моделирования на основе существующих экспериментальных данных и в приближении стехиометрических кристаллических фаз построена изотермическая концентрационная диаграмма для субсолидусных равновесий в системе Li–Mn–Eu–O. Проанализировано влияние температуры и парциального давления кислорода на фазовый состав системы. Показано, что шпинель LiMn₂O₄, использующаяся в ЛИА, может образовывать термодинамически стабильные композиты с Li₂MnO₃, EuMnO₃, EuMn₂O₅, Mn₃O₄ и Mn₂O₃ при парциальных давлениях кислорода, близких к 21 кПа.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 23-23-00576).

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

В данной работе исследования на человеке или животных не проводились.

КОНФЛИКТ ИНТЕРЕСОВ

Коллектив авторов заявляет об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Thackeray M.M., Amine K. // Nat. Energy. 2021. V. 6. P. 933. https://doi.org/10.1038/s41560-021-00860-3
- Ram P., Gören A., Ferdov S., Silva M., Singha R., Costa C.M., Carlos M., Sharma R.K., Lanceros-Mén-
- Costa C.M., Carlos M., Sharma R.K., Lanceros-Mendez S. // New J. Chem. 2016. V. 40. № 7. P. 6244– 6252. https://doi.org/10.1039/c6nj00198j
- 3. Sun H., Chen Y., Xu C., Zhu D., Huang L. // J. Solid State Electrochem. 2012. V. 16. № 3. P. 1247–1254. https://doi.org/10.1007/s10008-011-1514-5

- 4. *Бузанов Г.А., Нипан Г.Д.* // Доклады РАН. Химия, науки о материалах. 2023. Т. 513. С. 139–144. https://doi.org/10.31857/S2686953523700279
- Paulsen J.M., Dahn J.R. // Chem. Mater. 1999. V. 11. № 11. P. 3065–3079. https://doi.org/10.1021/cm9900960
- Wang L., Maxisch T., Ceder G. // Chem. Mater. 2007. V. 19. № 3. P. 543–552. https://doi.org/10.1021/cm0620943
- Hoang K. // Phys. Rev. Appl. 2015. V. 3. № 2. Art. 024013. https://doi.org/10.1103/PhysRevApplied.3.024013
- Buzanov G.A., Nipan G.D., Zhizhin K.Y., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 551–557. https://doi.org/10.1134/s0036023617050059
- 9. Buzanov G.A., Nipan G.D. // Russ. J. Inorg. Chem. 2023. V. 16. № 12. P. 1834–1840. https://doi.org/10.1134/S0036023623602337

- Balakirev V.F., Golikov Yu.V. // Inorg. Mater. 2003.
 V. 39. Suppl. 1. S1–S10. https://doi.org/10.1023/A:1024115817536
- Голиков Ю.В., Балакирев В.Ф., Титова С.Г., Федорова О.М. // Журн. Физ. Химии. 2003. Т. 77. № 12. С. 2294–2296.
- Yankin A.M., Vedmid' L.B., Fedorova O.M. // Russ. J. Phys. Chem. 2012. V. 86. P. 345–348. https://doi.org/10.1134/S003602441203034X
- 13. *Buzanov G.A., Nipan G.D.* // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1035–1040. https://doi.org/10.1134/S0036023622070051
- 14. *Grundy A.N., Hallstedt B., Gauckler L.J.* // J. Phase Equilib. 2003. V. 24. № 1. P. 21–39. https://doi.org/10.1007/s11669-003-0004-6
- 15. Казенас Е.К., Цветков Ю.В. Термодинамика испарения оксидов. М.: URSS, 2015. 480 с.

CONCENTRATION TETRAHEDRON OF THE Li-Mn-Eu-O SYSTEM

G. A. Buzanov^{*a*,#} and G. D. Nipan^{*a*}

^aKurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119071 Moscow, Russian Federation [#]E-mail: gbuzanov@yandex.ru

Represented by Academician of the RAS Yu.G. Gorbunova on 13.06.2023

Based on fragmentary experimental data, an isothermal concentration tetrahedron of the Li-Mn-Eu-O system was constructed for the first time by the method of topological modeling, which describes possible solid-state transformations in the system occurring at a constant temperature with a change in pressure. Thirty-two equilibria involving four crystalline phases have been identified.

Keywords: phase equilibria, multicomponent oxide systems, phase diagrams, spinel, lithium ion batteries