## = ФИЗИЧЕСКАЯ ХИМИЯ ===

УДК 546.06

## ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ Li-Mn-Eu-O

© 2023 г. Г. А. Бузанов<sup>1,\*</sup>, Г. Д. Нипан<sup>1</sup>

Представлено академиком РАН Н.Т. Кузнецовым 02.02.2023 г. Поступило 05.03.2023 г. После доработки 03.05.2023 г. Принято к публикации 17.05.2023 г.

Впервые исследованы фазовые равновесия в системе Li–Mn–Eu–O в интервале температур 700–1000°С, и в рамках треугольника Li–Mn–Eu построена концентрационная диаграмма при парциальном давлении кислорода 21 кПа. Разрез LiEuO<sub>2</sub>–Li<sub>2</sub>MnO<sub>3</sub> можно представить как квазибинарный, в отличие от разрезов LiEuO<sub>2</sub>–LiMnO<sub>2</sub> и LiEuO<sub>2</sub>–LiMn<sub>2</sub>O<sub>4</sub>. Установлено, что для шпинели LiMn<sub>2</sub>O<sub>4</sub> (*Fd*3*m*) изоморфное замещение Eu не превышает 2 мол. %, а в случае Li<sub>2</sub>MnO<sub>3</sub> (*C*2/*m*) про-исходит разрушение однофазности.

*Ключевые слова:* фазовые равновесия, литий-ионные аккумуляторы, манганиты, оксидные шпинели, твердофазный синтез

DOI: 10.31857/S2686953523700279, EDN: BUUIEO

## введение

Стремление избавиться от токсичных и дорогостоящих кобальта и никеля в литий-ионных аккумуляторах (ЛИА) привело материаловедов к нестехиометрическим фазам на основе LiMnO<sub>2</sub> (*Pmnm*), LiMn<sub>2</sub>O<sub>4</sub> (*Fd* $\overline{3}m$ ) и Li<sub>2</sub>MnO<sub>3</sub> (*C*2/*m*), кристаллические структуры которых позволяют обратимо интеркалировать и деинтеркалировать литий [1].

Однако для системы Li-Mn-O характерно разрушение однофазности при незначительных изменениях температуры и парциального давления кислорода, а также склонность к образованию метастабильных состояний [2]. Сохранить гомогенность оксидных фаз, в ряде случаев, позволяют ограниченные твердые растворы, образующиеся при введении добавок, и при использовании оксидов редкоземельных металлов замещение 1-2% марганца не только стабилизирует фазу, но и улучшает характеристики материалов ЛИА. При синтезе образцов  $\text{LiMn}_{1-x}Y_xO_2$  (x = = 0.01, 0.02, 0.03, 0.05) гидротермальным методом изоморфное замещение Mn на Y со стабилизацией ромбической модификации манганита происходит до Li<sub>1.02</sub>Mn<sub>0.969</sub>Y<sub>0.031</sub>O<sub>2</sub> [3], и, например, после 60 циклов заряд-разряд удельная емкость  $Q_{60}$ 

для Li<sub>0.99</sub>Mn<sub>0.979</sub>Y<sub>0.021</sub>O<sub>2</sub> составляет 226.3 мА ч г<sup>-1</sup> (ток разряда I = 50 мА г<sup>-1</sup>), что в 3 раза превышает  $Q_{60}$  для LiMnO<sub>2</sub> [3]. Применение золь-гель метода для синтеза LiMn<sub>1 – x</sub>La<sub>x</sub>O<sub>2</sub> (x = 0, 0.02, 0.04, 0.06) не позволяет получить однофазный материал даже при введении 2% La [4], однако, композит с 4% La обеспечивает стабильную циклируемость, и  $Q_{20}$  находится на уровне 100 мА ч г<sup>-1</sup> [4]. В результате темплатного синтеза  $LiMn_{1-x}Ce_xO_2$ (x = 0, 0.02, 0.04, 0.06) образуются композиты, и LiMn<sub>0.98</sub>Ce<sub>0.02</sub>O<sub>2</sub> имеет наилучшие характеристики после 30 циклов заряд-разряд [5]. Как и в случае LiMnO<sub>2</sub>, для шпинели LiMn<sub>2</sub>O<sub>4</sub> возможно замещение около 1 ат. % Мп на Ү. Образцы Li<sub>0.97</sub>Mn<sub>1.93</sub>Y<sub>0.02</sub>O<sub>4</sub> и Li<sub>0.97</sub>Mn<sub>1.91</sub>Y<sub>0.04</sub>O<sub>4</sub>, приготовленные с помощью реологической фазовой реакции (90-100, 580 и 750°С), продемонстрировали стабильную циклируемость ( $I = 1 \text{ мA см}^{-2}$ ) с  $Q_{65}$  ~ 94% от  $Q_1$  ( $Q_1$  ~ 126 мА ч г<sup>-1</sup>) для Li<sub>0.97</sub>Mn<sub>1.93</sub>Y<sub>0.02</sub>O<sub>4</sub> [6]. Твердофазный синтез с использованием качестве прекурсоров В LiMnC<sub>2</sub>O<sub>4</sub>(CH<sub>3</sub>COO) и Y<sub>2</sub>O<sub>3</sub> (80-100 и 780°C) позполучить однофазную волил шпинель LiMn<sub>1.975</sub>Y<sub>0.025</sub>O<sub>4</sub>, для которой емкость снизилась на 34.37% после 60 циклов заряд-разряд ( $Q_1 =$ = 128 мА ч г<sup>-1</sup>, *I* = С/20), а для композита  $LiMn_{1.95}Y_{0.05}O_4$  разрядная емкость  $Q_1$  составила 91 мА ч г<sup>-1</sup> [7]. Поликристаллы Li<sub>105</sub>Mn<sub>2-x</sub>Sc<sub>x</sub>O<sub>4</sub> (x = 0.00, 0.01, 0.03, 0.05, 0.10), образовавшиеся после выпаривания солей (100°С) с последующим разложением (400°С) и отжигом (650-950°С), оставались однофазными до Li<sub>1.05</sub>Mn<sub>1.97</sub>Sc<sub>0.03</sub>O<sub>4</sub>.

<sup>&</sup>lt;sup>1</sup>Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, 119071 Москва, Россия

<sup>\*</sup>*E-mail: gbuzanov@yandex.ru* 



**Рис. 1.** Дифрактограммы образцов, принадлежащих разрезу LiEuO<sub>2</sub>–Li<sub>2</sub>MnO<sub>3</sub>, синтезированные на воздухе. Брутго-состав по компонентам-металлам (Li : Mn : Eu соответственно): 1.1 : 0.9 : 0.1 ( $800^{\circ}$ C,  $2 \lor$ ) (1), 1.3 : 0.7 : 0.3 ( $1100^{\circ}$ C,  $2 \lor$ ) (2), 1.8 : 0.8 : 0.2 ( $1000^{\circ}$ C,  $2 \lor$ ) (3). Обозначения:  $a - Eu_2O_3$ ,  $b - Li_2MnO_3$ ,  $c - LiEuO_2$ , m - моноклинная модификация  $Eu_2O_3$ .

Наилучшую разрядную емкость  $Q_{30} = 101.2$  мА ч г<sup>-1</sup>  $(Q_1 = 122.7 \text{ мАч } r^{-1}, I = 1 \text{ мА см}^{-2})$  показал образец Li<sub>1.05</sub>Mn<sub>1.9</sub>Sc<sub>0.01</sub>O<sub>4</sub>, отожженный при 850°С [8], и при использовании другого редкоземельного металла в LiMn<sub>19</sub>RE<sub>0 01</sub>O<sub>4</sub> (RE = Y, La, Gd) электрохимические показатели снизились в случае У или резко упали в случае La, Gd [8]. При твердофазном синтезе с предварительной механоактивацией и последующим отжигом (450 и 950°С) образцов LiMn<sub>2-x</sub>RE<sub>x</sub>O<sub>4</sub> (RE = La, Ce, Nd, Sm; x = 0.00, 0.01, 0.03, 0.05, 0.10) однофазность сохраняется до x = 0.05, но не исключено, что область гомогенности может быть большей, так как параметр кубической решетки a (x = 0.1) < a (x = 0.05), при общей тенденции снижения а и улучшения циклируемости с ростом содержания RE [9]. Величины  $Q_{100} (I = 0.5 \text{C})$  для LiMn<sub>1.9</sub>RE<sub>0.1</sub>O<sub>4</sub> сохраняют от начальных значений  $Q_1$  (99—100 мА ч г<sup>-1</sup>): 97% (La), 93% (Ce), 96% (Nd) и 94% (Sm), что значительно превосходит  $Q_{100} = 77.8\%$  от  $Q_1 (Q_1 \sim 120 \text{ мА ч г}^{-1})$ 

для Li $Mn_2O_4$  [9]. Снижение конечной температуры отжига (450, 650 и 750°С) при твердофазном синтезе заметно ограничивает возможность изоморфного замещения до x < 0.01 для серии  $LiMn_{2-x}Ce_{x}O_{4}$  (x = 0-0.03), однако наилучшими электрохимическими характеристиками обладает композит LiMn<sub>1.98</sub>Ce<sub>0.02</sub>O<sub>4</sub> ( $Q_1 = 119.6$  мА ч г<sup>-1</sup> и  $Q_{50} = 108.5$  мА ч г<sup>-1</sup>, I = 0.55 мА см<sup>-2</sup>) [10]. Использование золь-гель методики синтеза с отжигом на воздухе или в азоте, а затем на воздухе (150, 300 и 700°С) не приводит к гомогенному замещению в образцах LiMn<sub>2-x</sub>Ce<sub>x</sub>O<sub>4</sub> (x = 0.01, 0.02, 0.03), но после 150 циклов заряд-разряд (I = 1C) потеря емкости составляет 4-8% [11]. Метод соосаждения с последующим синтезом при 600 и 850°C для  $LiMn_{2-x}Sm_xO_4$  (x = 0.02 и 0.05) позволил получить гомогенный образец LiMn<sub>1 98</sub>Sm<sub>0 02</sub>O<sub>4</sub>, который не обладал заметным электрохимическим преимуществом по сравнению с LiMn<sub>2</sub>O<sub>4</sub> [12]. Элементарная ячейка шпинели LiMn<sub>2-x</sub>Tb<sub>x</sub>O<sub>4</sub>



**Рис. 2.** Дифрактограммы образцов разреза LiEuO<sub>2</sub>-"LiMnO<sub>2</sub>". Брутто-состав (Li : Mn : Eu соответственно): 1 : 0.1 : 0.9 (1000°C, 2 ч) (*1*), 1 : 0.8 : 0.2 (1000°C, 2 ч) (*2*), 1 : 0.9 : 0.1 (1000°C, 2 ч) (*3*). Обозначения: a – Eu<sub>2</sub>O<sub>3</sub>, b – Li<sub>2</sub>MnO<sub>3</sub>, c – LiEuO<sub>2</sub>, e – EuMnO<sub>3</sub>, f – LiMn<sub>2</sub>O<sub>4</sub>, h – EuMn<sub>2</sub>O<sub>5</sub>.

(*x* = 0.01 и 0.02) увеличилась в результате твердофазного синтеза [13]. По методике, описанной в работе [6], синтезированы ограниченные твердые растворы LiMn<sub>2 – *x*</sub>Er<sub>*x*</sub>O<sub>4</sub> (*x* ≤ 0.02), и шпинель LiMn<sub>1.98</sub>Er<sub>0.02</sub>O<sub>4</sub> показала лучшую циклируемость (*Q*<sub>1</sub> = 126.1 мА ч г<sup>-1</sup> и *Q*<sub>50</sub> = 118.03 мА ч г<sup>-1</sup>, *I* = 0.2C) [14]. Попытка замещения в Li<sub>2</sub>Mn<sub>1 – *x*</sub>RE<sub>*x*</sub>O<sub>3</sub> (*x* = 0.2, 0.5, 0.8; RE = Nd, Yb, Ce) при твердофазном синтезе (550 и 950°C) привела к изменению исходной структуры *C*2/*m* и, начиная с *x* = 0.2, к значительной потере Li в полученных образцах: Li<sub>3</sub>Mn<sub>3</sub>Nd(Yb)<sub>2</sub>O<sub>9</sub> и LiMn<sub>2</sub>CeO<sub>5</sub> [15].

В настоящей работе исследованы фазовые равновесия в системе Li–Mn–Eu–O и оценена возможность изоморфного замещения Mn на Eu в фазах, образующихся на разрезах, соединяющих идеализированные стехиометрические соединения LiEuO<sub>2</sub> (*Pbnm*), Li<sub>2</sub>MnO<sub>3</sub> (*C*2/*m*), LiMn<sub>2</sub>O<sub>4</sub> (*Fd3m*) и LiMnO<sub>2</sub> (*Pmnm*).

## ЭКСПЕРИМЕНТ

В качестве прекурсоров для получения поликристаллов системы Li-Mn-Eu-O использовались  $Li_2CO_3$ ,  $Eu_2O_3$  и  $Mn_2O_3$  с содержанием основного компонента не ниже 99.98%. Перед отжигом исходные смеси с заданным соотношением компонентов подвергали механохимической активации (МХА) в течение 30 мин при частоте колебаний размольных стаканов 30 Гц в вибрационной мельнице Retsch MM-400 (материалы размольных стаканов и шаров – нержавеющая сталь, объем размольных стаканов 25 мл, диаметр размольных шаров d = 5 мм, соотношение масс шаров и прекурсоров ~ 20 : 1). Содержание компонентов материала размольного сосуда и мелющих тел в получаемых механокомпозитах не превышало экспериментальной ошибки используемых методов химического анализа [2]. Отжиг проводили в течение 2-3 ч, увеличение продолжительности синтеза не приводило к изменению фазового со-



**Рис. 3.** Дифрактограммы образцов разреза  $LiEuO_2 - LiMn_2O_4$ . Брутто-состав (Li : Mn : Eu соответственно): 1 : 1 : 0.5 (900°С, 2 ч) (*I*), 1 : 1.4 : 0.3 (900°С, 2 ч) (*Q*), 1 : 0.98 : 0.02 (1000°С, 2 ч) (*Q*), 1 : 0.95 : 0.05 (1000°С, 2 ч) (*Q*). Обозначения:  $a - Eu_2O_3$ ,  $b - Li_2MnO_3$ ,  $e - EuMnO_3$ ,  $f - LiMn_2O_4$ ,  $h - EuMn_2O_5$ .

става. Для синтеза на воздухе использовали муфельную печь Nabertherm L5/11. В качестве реакционных сосудов использовали алундовые тигли, предварительно прокаленные с Li<sub>2</sub>CO<sub>3</sub> при 600-650°С. РФА продуктов осуществляли на рентгеновском дифрактометре Bruker D8 ADVANCE (СиК<sub>а</sub>, Ni-фильтр, детектор LYNXEYE, геометрия на отражение) в интервале углов  $2\theta = 10 - 80^{\circ}$ и шагом не более 0.01023° в низкофоновых кюветах с подложкой из ориентированного монокристаллического кремния. Определение содержания металлов проводили методом массспектрометрии с индуктивно-связанной плазмой (ИСП-МС) с использованием спектрометра iCAP 6300 Duo. Пробоподготовку осуществляли растворением исследуемого образца в соляной кислоте особой чистоты.

## ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Дифрактограммы образцов серии  $xLiEuO_2$ - $(1-x)Li_2MnO_3$  ( $0 \le x \le 1$ , шаг x = 0.1) синтезиро-

ванных при парциальном давлении кислорода 21 кПа из  $Li_2CO_3$ , а также сесквиоксидов Mn и Eu представлены на рис. 1. На этом разрезе основными кристаллическими фазами являются твердый раствор на основе кубического  $Eu_2O_3$  и  $Li_2MnO_3$ . Для состава с x = 0.1 при 800°C, наряду с  $Eu_2O_3$  и  $Li_2MnO_3$ , в равновесии обнаружена фаза LiEuO<sub>2</sub>. Нагревание выше 1100°C приводит к образованию твердого раствора на основе моноклинной модификации  $Eu_2O_3$ .

На рис. 2 представлены дифрактограммы для разреза *x*LiEuO<sub>2</sub>-(1 – *x*)"LiMnO<sub>2</sub>" ( $0 \le x \le 1$ , шаг *x* равен 0.1), полученные при отжиге на воздухе. Твердый раствор Li<sub>2</sub>O в Eu<sub>2</sub>O<sub>3</sub> находится в равновесии с Li<sub>2</sub>MnO<sub>3</sub> вплоть до брутто-состава Li : Mn : Eu = 1: 0.6 : 0.4 (800–1100°C). Далее с ростом содержания Mn, наряду с Li<sub>2</sub>MnO<sub>3</sub>, последовательно кристаллизуются EuMnO<sub>3</sub>, EuMn<sub>2</sub>O<sub>5</sub>, а затем твердый раствор на основе шпинели LiMn<sub>2 – x</sub>Eu<sub>x</sub>O<sub>4</sub>. EuMn<sub>2</sub>O<sub>5</sub> в образцах, полученных выше 1000°C, не обнаружен.



**Рис. 4.** *х*–*у*-Проекция субсолидусных фазовых равновесий системы Li–Mn–Eu–O. Знаки "о" отображают экспериментальные составы на соответствующих разрезах.

Картина фазовых равновесий для серии образцов xLiEuO<sub>2</sub>-(1-x)LiMn<sub>2</sub>O<sub>4</sub> ( $0 \le x \le 1$ , шаг x равен 0.1), сходна с равновесиями для разреза LiEuO<sub>2</sub>-"LiMnO<sub>2</sub>", а основные отличия связаны с изменением соотношения Mn : Eu (рис. 3). В частности, образование фазы EuMnO<sub>3</sub> происходит уже при 700°С по достижению брутто состава Li: Mn: : Eu = 1: 0.8 : 0.6 (*x* = 0.3), а при *x* = 0.4 (≥900°С) твердый раствор на основе Eu<sub>2</sub>O<sub>3</sub> отсутствует. Увеличение содержания марганца ( $x = 0.5, 800^{\circ}$ C) приводит к образованию фазы EuMn<sub>2</sub>O<sub>5</sub>, которая существует до x = 0.9. С ростом температуры до 1100°С область существования фазы сужается до x = 0.7 - 0.9. Рефлексы, соответствующие Li<sub>2</sub>MnO<sub>3</sub>, присутствуют на дифракционных картинах до x == 0.8 (700-900°С), 0.7 (900°С) и 0.6 (1100°С). Было установлено, что изоморфное замещение Мп на Еи в шпинельной фазе не превышает 2 мол. % (900°С), а при более высоком содержании европия наблюдается образование примесной фазы EuMn<sub>2</sub>O<sub>5</sub> (рис. 3, дифрактограммы 3, 4).

На основе проведенных экспериментов построена концентрационная диаграмма системы Li-Mn-Eu-O в рамках изобарно-изотермического (700°C  $\leq T \leq 1100$ °C,  $P(O_2) \sim 21$  кПа) треугольника Li-Mn-Eu (рис. 4). В данных условиях синтеза не образуются LiMnO<sub>2</sub> [2], Li<sub>2</sub>Eu<sub>5</sub>O<sub>8</sub> и LiEu<sub>3</sub>O<sub>4</sub>. Цифрами на рис. 4 отмечены области трехфазных равновесий: Li<sub>2</sub>O-LiEuO<sub>2</sub>-Li<sub>2</sub>MnO<sub>3</sub> (*I*), Eu<sub>2</sub>O<sub>3</sub>-LiEuO<sub>2</sub>-Li<sub>2</sub>MnO<sub>3</sub> (*2*), Eu<sub>2</sub>O<sub>3</sub>-Li<sub>2</sub>MnO<sub>3</sub>-EuMnO<sub>3</sub> (*3*), Li<sub>2</sub>MnO<sub>3</sub>-EuMnO<sub>3</sub>-EuMn<sub>2</sub>O<sub>5</sub> (*4*), Li<sub>2</sub>MnO<sub>3</sub>-EuMn<sub>2</sub>O<sub>5</sub>-LiMn<sub>2</sub>O<sub>4</sub> (*5*), EuMn<sub>2</sub>O<sub>5</sub>-LiMn<sub>2</sub>O<sub>4</sub>-Mn<sub>2</sub>O<sub>3</sub> (*6*) и двухфазных равновесий с участием твердого раствора на основе Eu<sub>2</sub>O<sub>3</sub>: LiEuO<sub>2</sub>-Eu<sub>2</sub>O<sub>3</sub> (*7*) и Li<sub>2</sub>MnO<sub>3</sub>-Eu<sub>2</sub>O<sub>3</sub> (*8*).

### ЗАКЛЮЧЕНИЕ

Впервые построена изобарно-изотермическая фазовая диаграмма системы Li-Mn-Eu-O. Установлена возможность замещения 2% Mn на Eu в LiMn<sub>2</sub>O<sub>4</sub> (900°C), дальнейшее увеличение содержания европия приводит к образованию примесной фазы. Показано, что только разрез LiEuO<sub>2</sub>-Li<sub>2</sub>MnO<sub>3</sub> может быть представлен как квазибинарный, в отличие от разрезов LiEuO<sub>2</sub>-LiMnO<sub>2</sub> и LiEuO<sub>2</sub>-LiMn<sub>2</sub>O<sub>4</sub>.

#### БЛАГОДАРНОСТИ

Элементный анализ методом ИСП-МС проводился с использованием научного оборудования Центра коллективного пользования "Исследовательский химико-аналитический центр НИЦ "Курчатовский институт". Рентгенофазовый анализ выполнен в Центре коллективного пользования физическими методами исследования веществ и материалов Института общей и неорганической химии им. Н.С. Курнакова Российской академии наук.

### ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 23-23-00576).

## КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

## СПИСОК ЛИТЕРАТУРЫ

- Mosa J., Aparacio M. Handbook of sol-gel science and technology. Cham. Springer. 2017. 36 p. https://doi.org/10.1007/978-3-319-19454-7\_108-1
- Buzanov G.A., Nipan G.D., Zhizhin K.Y., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 551–557. https://doi.org/10.1134/s0036023617050059
- 3. Su Z., Xu M.-W., Ye S.-H., Wang Y.-L. // Acta Phys.-Chim. Sin. 2009. V. 25. № 6. P. 1232–1238. https://doi.org/10.3866/PKU.WHXB20090629
- 4. *Zhao G., He J., Zhang C., Pan K., Zhou J.* // Rare Metal Mat. Eng. 2008. V. 37. № 4. P. 709–712. (in Chin.)
- Zhou Z.-H., Mei T.-Q. // Modern Chem. Ind. 2009.
  V. 29. P. № 9. 246–248. (in Chin.)

- Feng C., Tang H., Zhang K., Sun J. // Mater. Chem. Phys. 2003. V. 80. № 3. P. 573–576. https://doi.org/10.1016/S0254-0584(03)00115-9
- Elsabawy K.M., Abou-Sekkina M.M., Elmetwaly E.C. // Solid State Sci. 2011. V. 13. № 3. P. 601–606. https://doi.org/10.1016/j.solidstatesciences.2010.12.033
- Xie Y., Xu Y., Yan L., Yang Z., Yang R. // Solid State Ion. 2005. V. 176. № 35–36. P. 2563–2569. https://doi.org/10.1016/j.ssi.2005.06.022
- 9. Sun H., Chen Y., Xu C., Zhu D., Huang L. // J. Solid State Electrochem. 2012. V. 16. № 3. P. 1247–1254. https://doi.org/10.1007/s10008-011-1514-5
- Zhang H.-L., Ren R., An J. // Mater. Sci. Forum. 2011. V. 686. P. 716–719. https://doi.org/10.4028/www.scientific.net/MSF.686.716
- Michalska M., Ziókowska D.A., Jasiński J.B., Lee P.-H., Ławniczak P., Andrzejewski B., Ostrowski A., Bednarski W., Wu S.-H., Lin J.-Y. // Electrochim. Acta. 2018. V. 276. P. 37–46. https://doi.org/10.1016/j.electacta.2018.04.165
- 12. *Khedr A.M., Abou-Sekkina M.M., El-Metwaly F.G.* // J. Electronic. Mater. 2013. V. 42. № 6. 1275–1281. https://doi.org/10.1007/s11664-013-2588-x
- 13. *Abou-Sekkina M.M., Khedr A.M., El-Metwaly F.G.* // Chem. Mater. Res. 2013. V. 3. № 4. P. 15–25.
- 14. Liu H.W., Zhang K.L. // Mater. Lett. 2004. V. 58. P. 3049–3051. https://doi.org/10.1016/j.matlet.2004.05.040
- Yuzer A., Ozkendir O.M. // J. Electronic Mater. 2016.
  V. 45. № 2. P. 989–998. https://doi.org/10.1007/s11664-015-4256-9

# PHASE EQUILIBRIA IN THE Li-Mn-Eu-O SYSTEM

## G. A. Buzanov<sup>a,#</sup> and G. D. Nipan<sup>a</sup>

<sup>a</sup>Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119071 Moscow, Russian Federation

<sup>#</sup>E-mail: gbuzanov@yandex.ru

Represented by Academician of the RAS N.T. Kuznetsov on 02.02.2023

Phase equilibria in the Li–Mn–Eu–O system were studied for the first time in the temperature range 700–1000°C, and a concentration diagram was plotted within the Li–Mn–Eu triangle at an oxygen partial pressure of 21 kPa. It is shown that the LiEuO<sub>2</sub>–Li<sub>2</sub>MnO<sub>3</sub> system is quasi-binary, unlike the sections LiEuO<sub>2</sub>–LiMnO<sub>2</sub> and LiEuO<sub>2</sub>–LiMn<sub>2</sub>O<sub>4</sub>. It has been established that, for spinel LiMn<sub>2</sub>O<sub>4</sub> (*Fd* $\overline{3}m$ ), a homogeneous introduction of 2 mol % Eu is possible, while in the case of Li<sub>2</sub>MnO<sub>3</sub> (*C*2/*m*), the single-phase state decays.

Keywords: phase equilibria, lithium-ion batteries, manganites, oxide spinels, solid-phase synthesis