ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. МАТЕМАТИКА, ИНФОРМАТИКА, ПРОЦЕССЫ УПРАВЛЕНИЯ, 2022, том 502, c. 42–45

= МАТЕМАТИКА ====

УДК 519.642

СРАВНИТЕЛЬНЫЙ АНАЛИЗ РАЗЛИЧНЫХ ЧИСЛЕННО-СТАТИСТИЧЕСКИХ ПРОЕКЦИОННЫХ АЛГОРИТМОВ ДЛЯ РЕШЕНИЯ ЗАДАЧ ТЕОРИИ ПЕРЕНОСА

© 2022 г. Член-корреспондент РАН Г. А. Михайлов^{1,2,*}, А. С. Корда^{1,**}, С. В. Рогазинский^{1,2,***}

Поступило 29.10.2021 г. После доработки 29.10.2021 г. Принято к публикации 20.12.2021 г.

Проведен сравнительный анализ различных вариантов проекционного алгоритма метода Монте-Карло на примере оценки потока частиц через слой вещества с рассеянием типа Хеньи–Гринстейна. Исследована возможность минимизации среднего квадрата погрешности оценок путем уравнивания соответствующих стохастических и детерминированных слагаемых.

Ключевые слова: метод Монте-Карло, проекционная оценка, среднеквадратическая погрешность, оценка по столкновениям, прямое моделирование, полиномы Лагерра, индикатриса Хеньи–Гринстейна

DOI: 10.31857/S2686954322010106

1. Проекционные статистические оценки. Рассматривается последовательность полиномов, ортонормированных с весом p(x):

$$\{\Psi_i(x)\}: \int_X \Psi_i(x)\Psi_j(x)p(x)dx = \delta_{ij}.$$

Известные (см., например, [1–3]) статистические проекционные оценки представим в виде

$$\tilde{\varphi}(x) = p^{\alpha}(x) \sum_{i=1}^{m} \tilde{a}_i \Psi_i(x), \quad 0 \le \alpha \le 1,$$

где

$$\tilde{a}_i = \frac{1}{N} \sum_{k=1}^{N} p^{1-\alpha}(\xi_k) \Psi_i(\xi_k)$$

причем

$$\mathsf{E}\tilde{\varphi}(x) = p^{\alpha}(x) \sum_{i=1}^{m} a_i \Psi_i(x)$$

Новосибирск, Россия

**E-mail: asc@osmf.sscc.ru

***E-mail: svr@osmf.sscc.ru

Здесь ξ — случайная величина, которая в случае оценки плотности φ моделируется согласно φ . Если же φ — искомое решение интегрального уравнения 2-го рода, то ξ — траектория моделируемой цепи Маркова "столкновений", а $\{\tilde{a}_i(\xi)\}$ — "оценки по столкновениям" специального вида (см. далее); N — объем выборки. Заметим, что детерминированный вариант разложения по полиномам Эрмита со значением α = 0.5 представлен в [4].

Настоящая работа ориентирована в основном на решение интегральных уравнений $\varphi = K\varphi + f$ с субстохастическим ядром $k(x', x) \ge 0$, причем $\int k(x', x)dx \le \rho < 1$, f – плотность распределения. В случае аналогового (прямого) моделирования [5] оценка по столкновениям имеет вид $\xi = \sum_{k=0}^{N_c} h(x_k)$, где $\{x_k\}$ – обрывающаяся с вероятностью единица цепь Маркова с характеристиками f(x), k(x', x) [5]. Известно следующее утверждение (см., например, [5]).

Лемма 1. Если $h \in L_{\infty}$, то в случае аналогового моделирования

$$\mathsf{E}\xi = (\varphi, h) = \int_{X} \varphi(x)h(x)dx, \quad \mathsf{D}\xi < +\infty.$$

¹ Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия

² Новосибирский государственный университет,

^{*}E-mail: gam@sscc.ru

Лемма 1 показывает, что использование проекционной оценки с $\alpha = 1$ для неограниченного интервала X нецелесообразно.

На основе леммы 1 доказывается

Лемма 2. Если $p^{1-\alpha}(x) | \Psi_i(x) | \leq C_{i,\alpha} < +\infty, mo$ в случае прямого моделирования

$$\mathrm{E}\tilde{a}_i = a_i = (\varphi, p^{1-\alpha} \Psi_i), \quad \mathrm{D}\tilde{a}_i < +\infty,$$

где

$$\tilde{a}_i = \sum_{k=0}^{N_c} p^{1-\alpha}(x_k) \Psi(x_k).$$

Оптимизация оценки $\tilde{\varphi}(z)$ (точнее, минимизация ее среднеквадратической погрешности, как в математической статистике) возможна в норме с весом $p^{1-2\alpha}(x)$, так как при этом по аналогии с [1] имеем

$$\delta(m) = \int \mathbf{E} \| \boldsymbol{\varphi} - \tilde{\boldsymbol{\varphi}} \|_{p^{1-2\alpha}}^2 dx =$$
$$= \mathbf{E} \int p^{1-2\alpha}(x) p^{2\alpha}(x) \left[\sum_{i=1}^m \tilde{a}_i \Psi_i(x) - \sum_{i=1}^\infty a_i \Psi_i(x) \right]^2 dx =$$
$$= \sum_{i=1}^m \mathbf{D} \tilde{a}_i + \sum_{k=m+1}^\infty a_i^2 = \delta_1(m) + \delta_2(m).$$

В случае бесконечного интервала *X* при существовании липшицируемой производной функции φ в [3] для разложения по полиномам Эрмита получена оценка $\delta_2(m) \leq c_2/m$, которую, предположительно, можно перенести на полиномы Лагерра.

Несложно доказать следующее утверждение.

Лемма 3. Если

$$\delta_1(m) = C_1 m, \quad \delta_2(m) = C_2/m,$$
 (1)

то

$$m_{opt} = \sqrt{C_2/C_1}, \quad \delta_k(m_{opt}) = \sqrt{C_1C_2}, \quad k = 1, 2.$$
 (2)

Следовательно, в случае приближенного выполнения равенств (1), определять m_{opt} можно на основе уравнения $\delta_1(m) = \delta_2(m)$. При этом, согласно лемме 3, выполняются соотношения

$$m_{opt} \asymp \sqrt{N}, \quad \delta(m_{opt}) \asymp 1/\sqrt{N}.$$

Отметим, что рассматриваемые проекционные алгоритмы распространяются на оценки функциональных зависимостей в многомерных задачах, как, например, в рассматриваемой далее тестовой задаче для оценки осредненного решения.

2. Тестовая задача. В качестве тестовой рассматривалась задача об оценке плотности $\varphi(z)$ столкновений частицы в полубесконечном слое $z \ge 0$ рассеивающего и поглощающего вещества

для источника столкновений с плотностью $f(z_1, z_2, z; \omega) = e^{-z} \delta(z_1 - 0) \delta(z_2 - 0) \delta(\omega - \omega_0), \quad z > 0,$ где $\omega_0 = (0, 0, 1)$ – направление скорости частицы, вызывающей начальное столкновение.

Параметры среды: коэффициент ослабления $\sigma = 1$, вероятность рассеяния $\sigma_s / \sigma = 0.9$, вероятность поглощения $\sigma_c / \sigma = 0.1$, индикатриса рассеяния Хеньи–Гринстейна:

$$g(\mu) = \frac{1 - \mu_0^2}{2(1 + \mu_0^2 - 2\mu_0\mu)^{3/2}}.$$

Средний косинус угла рассеяния $\mu_0 = 0.9$.

Отметим, что при $\sigma \equiv 1$ осредненная по z_1, z_2 плотность столкновений $\varphi(z) = \iiint \Phi(z_1, z_2, z; \omega) dz_1 dz_2 d\omega$, где Φ – интенсивность излучения. Таким образом, фактически рассматривается задача, близкая к проблеме Милна [6]. Для данных параметров довольно высокую точность имеет транспортное приближение [6], которое дает для $\varphi(z)$ следующую асимптотическую оценку:

$$\varphi_{as}(z) \asymp e^{-\lambda z}, \quad \lambda \approx \frac{1}{5.4}.$$

Полагая $p(z) = \varphi_{as}(z)$, получаем соответствующую последовательность полиномов Лагерра [7]:

$$\Psi_0(x) = \sqrt{\lambda}; \quad \Psi_1(x) = \sqrt{\lambda}(1 - \lambda x);$$
$$\Psi_{k+1}(x) = \left(\frac{2k + 1 - \lambda x}{k + 1}\Psi_k(x) - \frac{k}{k + 1}\Psi_{k-1}(x)\right).$$

Было реализовано статистическое моделирование [5] с целью оценки коэффициентов $a_i, i = 1, ..., 200,$ для вариантов с $\alpha = 0, \frac{1}{2}, 1,$ т.е. для проекционных представлений вида:

1)
$$\sum_{i=0}^{M} a_i \Psi_i(x);$$

2)
$$p^{\frac{1}{2}}(x) \sum_{i=0}^{M} a_i \Psi_i(x)$$

3)
$$p(x)\sum_{i=0}^{M}a_{i}\Psi_{i}(x).$$

Анализ результатов показал, что соотношение $\delta_2(m) \approx C_2/m$ здесь выполняется. Было реализовано 30 независимых оценок по $N = 10^6$ траекториям. На их основе путем уравнивания $\delta_1(m)$ и $\delta_2(m)$ были получены приближенные значения m_{opt} и $\delta(m_{opt})$. В табл. 1 эти результаты обозначены через еq.

Были также получены оценки m_{opt} и $\delta(m_{opt})$ по формулам (2), с помощью осреднения коэффициентов: C_1 в интервале $0 \le m \le 20$, C_2 в интервале $10 \le m \le 20$ для $\alpha = 1$ и C_1 в интервале $0 \le m \le 40$,

Тип оценки		$\alpha = 0$		α =	0.5	$\alpha = 1$	
		m _{opt}	$\delta(m_{opt})$	m _{opt}	$\delta(m_{opt})$	m _{opt}	$\delta(m_{opt})$
eq	average	46	1.6×10^{-5}	35	3.2×10^{-5}	16	2.9×10^{-4}
	min	19	1.2×10^{-5}	13	2.4×10^{-5}	7	1.9×10^{-4}
	max	114	2.3×10^{-5}	67	4×10^{-5}	32	5.9×10^{-4}
Л3	average	45	1.8×10^{-5}	36	3×10^{-5}	17	2.7×10^{-4}
	min	22	8.5×10^{-6}	19	1.6×10^{-5}	11	1.7×10^{-4}
	max	72	2.9×10^{-5}	59	5×10^{-5}	21	5.7×10^{-4}

Таблица 1. Результаты расчетов для тестовой задачи

 C_2 в интервале $20 \le m \le 40$ для $\alpha = 0, 0.5$. В табл. 1 эти значения обозначены через Л3.

Сравнение оценок (1), (2), (3) в интервале $0 \le z \le 2$ дано графически на рис. 1. На этом же рисунке приведены значения локальной оценки $\varphi(z)$ (в точках $z_k = 0, 0.1, 0.2, ..., 10$), которые были получены подсчетом числа пересечений частицами соответствующих плоскостей с весом $1/|\omega_z|$ [5] для $|\omega_z| > 0.001$. При этом дисперсия оценки конечная, а относительное смещение не превосходит 0.1%, как и среднестатистическое уклонение

в результате моделирования 10⁸ траекторий.

Кроме того, были вычислены L_2 -нормы разности локальной и проекционных оценок для интервала 0 < z < 10:

1) 0.00535, 2) 0.00539, 3) 0.00752.

Эти оценки и графики, с учетом леммы 2 показывают предпочтительность здесь проекционной оценки с $\alpha = 0.5$, так как дополнительные расчеты показали, что она несколько более устойчива по отношению к выбору базовой плотности p(z), сравнительно с вариантом $\alpha = 0$ и особенно с вариантом $\alpha = 1$. Практически может быть так же важно, что эта оценка допускает оптимизацию в стандартной L_2 -метрике.

Таблица 2 показывает влияние выбора плотности p(z) на оценку с $\alpha = 0.5$. Здесь $\delta(m_{opt})$ минимизируется при $\lambda \approx 1/3.8$, в связи с тем, что плотность $\varphi(z)$ убывает существенно сильнее, чем $\varphi_{as}(z)$ в нижней части слоя.

Отметим, что представленные в табл. 1, 2 соотношения результатов для разных значений параметров α и λ получены на одном и том же ансамбле траекторий, что существенно повышает их статистическую значимость.

3. Дополнительная задача для конечного слоя. Решалась также задача о переносе частиц через конечный слой $0 \le z \le H = 10$ для вещества с радиационными параметрами из раздела 2.

Для корректного использования разложения соответствующей плотности $\varphi(z) = \varphi_H(z)$ по по-

λ^{-1}	7.1	6.3	5.4	4.6	3.8	3	2.2	1.6
m _{opt}	42	39	36	34	32	31	30	31
$\delta(m_{opt})$	3.25×10^{-5}	3.14×10^{-5}	3.04×10^{-5}	3.01×10^{-5}	3.01×10^{-5}	3.13×10^{-5}	3.33×10^{-5}	3.68×10^{-5}

Таблица 2. Результаты расчетов по формулам (2) для $p(z) = e^{-\lambda z}$ при $\alpha = 0.5$

линомам Лагерра процесс переноса моделировался как и в разделе 2 в полубесконечном слое, но столкновения в точках с координатой $z \leq H$ не учитывались на траекториях, вышедших (до их реализации) из рассматриваемого конечного слоя. При этом получалась несмещенная оценка плотности $\phi_H(z)$ для слоя и, как показали расчеты, приблизительно выполнялось соотношение $\delta_2(m) \approx C_2/m$. В результате проведенных расчетов получены результаты, аналогичные результатам, приведенным в разделе 2; при этом для $\alpha = 0.5$ существенная дополнительная погрешность (с превышением от 1 до 10%) получается лишь при z > 9; соответствующее L_2 -уклонение равно 0.02. Это показывает, что разработанная методика оптимизации может быть подходяшей и для оценки плотности $\phi_H(z)$ с указанной выше искусственной модификацией моделирования траекторий, которую можно рассматривать как регуляризацию стохастической проекционной оценки.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследование выполнено в рамках государственного задания ИВМиМГ СО РАН № 0251-2021-0002.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ченцов Н.Н.* Статистические решающие правила и оптимальные выводы. М.: Наука, 1972.
- Mikhailov G.A., Tracheva N.V., Ukhinov S.A. Randomized projection method for estimating angular distributions of polarized radiation based on numerical statistical modeling // Comput. Math. and Math. Phys. 2016. V. 56. № 9. P. 1540–1550. https://doi.org/10.7868/S0044466916090155
- 3. *Rogasinsky S.V.* Two variants of Monte Carlo projection method for numerical solution of nonlinear Boltzmann equation // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. V. 34 (3). P. 143–150. https://doi.org/10.1515/rnam-2019-0012
- 4. *Grad H*. On the kinetic theory of rarefied gases // Comm. Pure and Appl. Math. 1949. V. 2. P. 331–407.
- Марчук Г.И., Михайлов Г.А., Назаралиев М.А. и др. Метод Монте-Карло в атмосферной оптике. Новосибирск: Наука, 1976.
- 6. *Davison B.* Neutron Transport Theory. Oxford University Press, 1957.
- 7. *Jackson D.* Fourier Series And Orthogonal Polynomials. The University of Minnesota, 1941.

COMPARATIVE ANALYSIS OF VARIOUS NUMERICALLY STATISTICAL PROJECTION ALGORITHMS FOR THE SOLVING THE TRANSFER THEORY PROBLEMS

Corresponding Member of the RAS G. A. Mikhailov^{a,b}, A. S. Korda^a, and S. V. Rogasinsky^{a,b}

^a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

^b Novosibirsk State University, Novosibirsk, Russia

A comparative analysis of various variants of the Monte Carlo projective algorithm for estimating the particles flow through a layer of medium with scattering of the Henyey-Greenstein type is carried out. The possibility of minimizing the mean-square error by equalizing the corresponding stochastic and deterministic terms is investigated.

Keywords: Monte Carlo method, projection estimator, mean-square error, collision estimator, direct simulation, Laguerre polynomials, Henyey-Greenstein indicatrix