_____ ГЕОХИМИЯ **____**

УДК 549.514.71:546.883 (571.56)

ЭКСТРЕМАЛЬНОЕ НАКОПЛЕНИЕ ИЗОМОРФНОГО ТАНТАЛА В КАССИТЕРИТЕ ЛИТИЙ-ФТОРИСТЫХ ГРАНИТОВ (АРГА-ЫННАХ-ХАЙСКИЙ МАССИВ, ЯКУТИЯ)

© 2020 г. В. И. Алексеев^{1,*}, член-корреспондент РАН Ю. Б. Марин¹, О. Л. Галанкина²

Поступило 03.07.2019 г. После доработки 22.07.2019 г. Принято к публикации 22.07.2019 г.

Описан феномен аномально высокой концентрации тантала $(5.3-17.9\%\ Ta_2O_5)$ в акцессорном касситерите литий-фтористых гранитов Арга-Ыннах-Хайского массива в Восточной Якутии. Установлена существенная изоморфная емкость структуры касситерита по отношению к примеси тапиолита, достигающая 15.1-39.8%. Сделан вывод, что возникновение танталоносного касситерита связано с особыми условиями кристаллизации литий-фтористых гранитов, а их широкое распространение на Дальнем Востоке России требует дальнейшего изучения типохимизма акцессорного касситерита из редкометалльных гранитов и генетически связанных с ними метасоматитов.

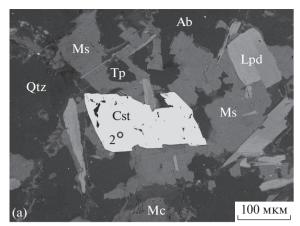
Ключевые слова: касситерит, тантал, изоморфизм, литий-фтористый гранит, Арга-Ыннах-Хайский массив, Якутия

DOI: 10.31857/S2686739720020048

Тантал – высокотехнологичный редкий металл, мировая потребность в котором неуклонно растет на фоне дефицита природных источников сырья [1, 2]. Главными носителями тантала являются его собственные минералы (танталит, воджинит, микролит и др.) в редкометалльных гранитах и пегматитах, но в мировом производстве Та все шире используются оловянные шлаки – продукты металлургической переработки касситерита этих пород [1-3]. В работе рассмотрен феномен аномально высокой концентрации тантала $(5.3-17.9\% \text{ Ta}_{2}\text{O}_{5})$ в акцессорном касситерите литий-фтористых гранитов (ЛФГ) Якутии, который позволяет уточнить представления об изоморфной емкости касситерита и его перспективах как источника тантала.

Существование акцессорного касситерита было установлено в 1920-х гг. при изучении гранитов — источников оловянных россыпей Нигерии и Малайзии. Позднее было показано, что одним из наиболее продуктивных типов касситеритсодержащих пород являются $\Pi\Phi\Gamma$, с которыми связаны комплексные Sn—Ta-месторождения. Акцессорный касситерит с содержанием Ta_2O_5 0.67—

Нами при изучении редкометалльных гранитов Арга-Ыннах-Хайского массива в междуречье Яны и Борулаха в Восточной Якутии выявлен акцессорный касситерит, резко обогащенный танталом. ЛФГ и онгониты массива слагают серпообразный гарполит мощностью 240 м и дайки, залегающие в плагиогранитах на склонах г. Арга-Турагас. В западном контакте гарполита расположена грейзеновая залежь, образующая в сочетании с ЛФГ Кестёрское редкометалльно-оловянное месторождение.


На поверхности преобладают монтебразит-лепидолитовые ЛФГ, которые с глубиной сменяются топаз-мусковитовыми гранитами [10, 11]. Литийфтористые граниты содержат редкометалльные акцессорные минералы (1.2—3.2%): монтебразит, колумбит-(Мп), танталит-(Мп), вольфрамоиксиолит, танталовый ферберит, литиофилит, стрюверит и др. Одним из акцессориев (0.3%) является и касситерит, образующий сростки с лепидолитом, топазом и монтебразитом.

^{4.03%} обнаружен в ЛФГ многих зарубежных редкометалльных месторождений, таких как Нувейби, Абу Даббаб (Египет), Эшассьер (Франция), Сянхуалин, Суншуган (Китай), Пеноута (Испания), Подлеси (Чехия) и др. ([2, 4—9] и др.). В России повышенная танталоносность касситерита ЛФГ отмечалась лишь в 1970-х гг. на месторождениях Этыка (Забайкалье), Кестёр и Полярное (Якутия) [1, 3, 10].

¹ Санкт-Петербургский горный университет, Санкт-Петербург, Россия

² Институт геологии и геохронологии докембрия Российской Академии наук, Санкт-Петербург, Россия

^{*}E-mail: alekseev vi@pers.spmi.ru



Рис. 1. Танталоносный касситерит в топаз-мусковитовом (а) и монтебразит-лепидолитовом (б) гранитах Арга-Ыннах-Хайского массива (изображение в обратно-рассеянных электронах, СЭМ JSM-6510LA). Показаны точки электронного зондирования; номера соответствуют таковым в табл. 1. Аb — альбит, Сst — касситерит, Lpd — лепидолит, Мс — микроклин, Мs — мусковит, Тр — топаз, Qtz — кварц.

Касситерит исследован в 144 пробах ЛФГ на полигоне 0.5 × 1 км и в скважинах глубиной 60—170 м. Концентрации и формы нахождения элементов-примесей в минерале определены на растровом электронном микроскопе JEOL JSM-6510LA с энергодисперсионным спектрометром JED-2200 и электронно-зондовом микроанализаторе JEOL JXA-8230 в ИГГД РАН. Изучение минеральных включений в касситерите выполнено в композиционном и топографическом контрасте с разрешением 30 нм. При интерпретации строения кристаллов использован онтогенический метод [12].

Акцессорный касситерит характеризуется широкими вариациями размера (20—770 мкм) и морфологии (от идиоморфных дипирамидальных до скелетных кристаллов). Индивиды преимущественно однородны, около 20% из них имеют зоны роста мощностью 2—70 мкм, более светлые на электронных изображениях (рис. 1).

Минеральные включения для изученного касситерита не характерны. В отдельных пробах (4%) найдены зерна с включениями колумбита-(Мп) и танталита-(Мп). Редкость находок, относительно крупный размер (10—120 мкм), зональность и незакономерное расположение включений в минерале-хозяине позволяют считать их случайными вростками. В касситерите топаз-мусковитовых гранитов наблюдались единичные фазовые микровключения (0.5—1.5 мкм) с повышенным содержанием Та, Мп, Fe. Матрица касситерита из монтебразит-лепидолитовых ЛФГ гомогенна и не содержит включений размером более 30 нм.

Очевидно, примеси Та, Nb, Fe, Mn, Ti, суммарное содержание которых достигает 21.02%, изоморфно встроены в структуру якутского касситерита. Главный заместитель олова — тантал: доля его катионов Ta/(Ta+Nb)=0.71. Концентрация Ta_2O_5 в касситерите варьируется от 0.82 до 17.90%, составляя в среднем 5.33%. Повышенное содержание Та отмечается в относительно крупных (150-600 мкм) зернах. Эмпирическая формула танталового касситерита Арга-Ыннах-Хайского массива: $(Sn_{0.93}Ta_{0.04}Fe_{0.02}Nb_{0.01}Mn_{0.001}Ti_{0.001})O_2$ (табл. 1).

Максимальная танталоносность характерна для касситерита монтебразит-лепидолитовых $\Pi\Phi\Gamma$ прикровельной фации (в среднем 5.71% Ta_2O_5); в топаз-мусковитовых $\Pi\Phi\Gamma$ и онгонитах она снижается соответственно до 5.18 и 3.64%. Распределение тантала в кристаллах неравномерное. Наибольшее содержание отмечается в промежуточных и внешних зонах роста (рис. 1).

Естественно предполагать, что образование танталоносного касситерита обусловлено кристаллохимическим сходством Sn и Ta — близостью их ионных радиусов (соответственно 0.67 и 0.66 Å) и энергии ионизации (7.33 и 7.70 эВ). Но за последние полвека укоренилось представление об ограниченной изоморфной емкости касситерита, не превышающей десятых долей процента. Повышенное содержание Ta, Nb, Fe, Mn в касситерите принято объяснять наличием включений колумбита, танталита, тапиолита, воджинита и др. [3, 13, 14].

Вместе с тем, согласно экспериментальным данным, кристаллизация акцессорного касситерита ЛФГ осуществляется при температуре $600-850^{\circ}$ С из расплава, насыщенного Li, F, P и комплексными соединениями Sn, Ta, Nb [3, 6, 11]. Растворимость Sn⁴⁺ и Ta⁵⁺ в кварц-альбитовом расплаве составляет соответственно 0.76 и 0.68%; коэффициенты их распределения между флюидом и расплавом также сопоставимы: 0.020 и 0.028 ($T=850^{\circ}$ С; $P_{\phi\pi}=101.3$ МПа). Высокотемпературные условия магматической кристаллизации оксида олова SnO₂ при избытке Та обеспечивают

Таблица 1. Химический состав касситерита в Li-Fгранитах Арга-Ыннах-Хайского массива, мас. %

Компонент	1	2	3	4	5
TiO ₂	0.01	0.09	0.35	0.00	0.07
MnO	0.12	0.22	0.12	0.05	0.04
FeO	2.49	1.87	1.08	2.51	0.85
Nb_2O_5	0.57	2.15	1.62	0.66	1.21
SnO_2	80.25	85.26	91.49	79.13	92.47
Ta_2O_5	15.87	9.57	5.25	17.90	5.33
Сумма	99.31	99.16	99.91	100.25	99.97
Количество атомов в формуле					
Ti	0.000	0.002	0.007	0.000	0.001
Mn	0.003	0.005	0.003	0.001	0.001
Fe	0.054	0.040	0.023	0.054	0.018
Nb	0.007	0.025	0.018	0.008	0.014
Sn	0.824	0.863	0.913	0.807	0.927
Ta	0.111	0.066	0.036	0.125	0.036

Примечание. 1-3 — представительные анализы касситерита в монтебразит-лепидолитовом граните (1), топаз-мусковитовом граните (2), онгоните (3); 4 – касситерит с наибольшей концентрацией тантала; 5 — средний состав касситерита в 144 пробах. Рентгеноспектральный микроанализ с волнодисперсионным спектрометром (ЈХА-8230, ИГГД РАН). Формулы рассчитаны на 2 атома кислорода. Tpl — содержание тапиолитового минала (Fe,Mn)(Ta,Nb) $_2$ O₆,%.

27.2

35.4

Tpl

16.2

39.8

15.1

значительную (до 8%) изоморфную смесимость касситерита и тапиолита [11].

Действительно, известны примеры высокой растворимости Та в касситерите (до 3.0-7.77%

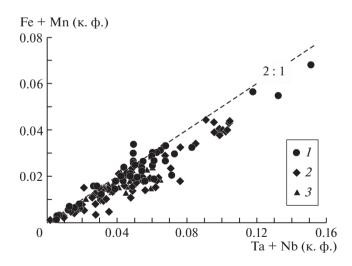


Рис. 2. Корреляция содержания катионов (Ta+Nb) и (Fe+Mn) в структуре касситерита из Li-F-гранитов Арга-Ыннах-Хайского массива (диаграмма из [15]). 1 — монтебразит-лепидолитовый гранит, 2 — топазмусковитовый гранит, 3 — онгонит.

Та₂О₅), установленной прецизионными структурными и химическими методами ([4, 6, 8, 14, 15] и др.). Особенно высокие концентрации изоморфного Та отмечены в касситерите ЛФГ массивов Пеноута в Испании (12.35%) и Подлеси в Чехии (10.15%) [5, 9]. Касситерит топаз-альбитовых гранитов массива Суншуган в Китае окружен гомогенными каймами с содержанием Та₂О₅ 7.41-18.28% [7]. Электронно-микроскопическое сканирование с полевой эмиссией показало отсутствие в высокотанталовом касситерите минеральных включений (Ze-Ying Zhu, устное сообщение).

Приведенные факты (рис. 1, табл. 1) позволяют констатировать, что и в России в ЛФГ Арга-Ыннах-Хайского массива обнаружен касситерит с экстремальной концентрацией изоморфного Та. В якутском касситерите наблюдается корреляция пяти- и двухвалентных катионов в соотношении 2:1 (рис. 2), которая не оставляет сомнений в проявлении гетеровалентного изоморфизма "тапиолитового" типа по схеме: $2(Ta, Nb)^{5+}$ + + (Fe, Mn)²⁺ \leftrightarrow 3(Sn, Ti)⁴⁺ [3, 4, 6, 15].

Таким образом, установлена сильно выраженная способность касситерита к образованию твердого раствора с тапиолитом $[(Fe,Mn)(Ta,Nb)_2O_6]$. Изоморфная емкость структуры касситерита по отношению к примеси тапиолита достигает 15.1— 39.8% (табл. 1). Возникновение акцессорного танталоносного касситерита с содержанием 5.3-17.9% Та₂О₅ связано с особыми условиями кристаллизации редкометалльных литий-фтористых гранитов. Широкое распространение таких гранитов на Дальнем Востоке России требует дальнейшего изучения типохимизма акцессорного касситерита редкометалльных гранитов и генетически связанных с ними метасоматитов.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена в рамках темы НИР ИГГД PAH № 0132-2019-0013.

СПИСОК ЛИТЕРАТУРЫ

- 1. Солодов Н.А. Минерагения литофильных редких элементов. М.: Недра, 1978. 175 с.
- 2. Никишина Е.Е., Дробот Д.В. // Известия вузов. Цветная металлургия. 2014. № 1. С. 29-41.
- 3. Кузьменко М.В., Еськова Е.М. Тантал и ниобий. М.: Наука, 1968. 342 с.
- 4. Murciego A., Garcia S.A., Dusausoy Y., et al. // Mineral. Mag. 1997. V. 61. P. 357-365.
- 5. Breiter K., Škoda R., Uher P. // Mineral. and Petrol. 2007. V. 91. P. 225-248.
- 6. Huang F.F., Wang R.Ch., Xie L., et al. // Ore Geol. Rev. 2015. V. 65. P. 761-778.
- Zhu Z.Y., Wang Ru.Ch., Che X.D., et al. // Ore Geol. Rev. 2015. V. 65. P. 749-760.

- 8. Lerouge C., Gloaguen E., Wille G., et al. // Eur. J. Mineral. 2017. V. 29. P. 739–753.
- Llorens G.T., Polonio F.G., Moro F.J.L., et al. // Ore Geol. Rev. 2017. V. 81. P. 79–95.
- 10. *Флёров Б.Л., Индолев Л.Н., Яковлев Я.В., и др.* Геология и генезис оловорудных месторождений Якутии. М.: Наука, 1971. 318 с.
- 11. Некрасов И.Я. Олово в магматическом и постмагматическом процессах. М.: Наука, 1984. 238 с.
- 12. *Бродская Р.Л., Марин Ю.Б.* // Записки Горного института. 2016. Т. 219. С. 369—376.
- 13. Доломанова Е.И., Подольский А.М., Добровольская Н.В. и др. К вопросу об изоморфизме в касситерите. В кн.: Изоморфизм в минералах. М.: Наука, 1975. С. 61–79.
- 14. *Максимюк И.Е., Филиппова Ю.И., Лапутина И.П.* О неоднородности состава касситерита. В кн.: Редкие элементы в геологии. М.: Наука, 1982. С. 143—154.
- Tindle A.G., Breaks F.W. // Canad. Mineral. 1998.
 V. 36. P. 609–635.

EXTREME CONCENTRATION OF ISOMORPHIC TANTALUM IN CASSITERITE FROM LITHIUM-FLUORIC GRANITES (ARGA-YNNAKH-KHAYSKY MASSIF, YAKUTIA)

V. I. Alekseev^{a,#}, Corresponding Member of the RAS Yu. B. Marin^a, and O. L. Galankina^b

^a Saint Petersburg Mining University, Saint Petersburg, Russian Federation
^b Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, Saint Petersburg, Russian Federation

#E-mail: alekseev_vi@pers.spmi.ru

The phenomenon of abnormally high concentration of isomorphic tantalum $(5.3-17.9\%~Ta_2O_5)$ in accessory cassiterite from lithium-fluoric granites (Arga-Ynnakh-Khaysky massif in East Yakutia) is described. The significant isomorphic capacity of cassiterite structure in relation to a tapiolite impurity, which contains 15.1-39.8%, is established. The conclusion is drawn that the origin of tantalum-bearing cassiterite is defined by specific crystallization conditions of lithium-fluoric granites, and their wide distribution in the Far East Russia demands the further studying of accessory cassiterite typochemistry from rare-metal granite and genetically connected with them metasomatite.

Keywords: cassiterite, tantalum, isomorphism, lithium-fluoric granite, Arga-Ynnakh-Khaysky massif, Yakutia