ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. НАУКИ О ЗЕМЛЕ, 2020, том 491, № 1, с. 5–11

_____ ГЕОЛОГИЯ _____

УДК 551.733.1:551.22(574.3)

ФРАГМЕНТ РАННЕКЕМБРИЙСКОГО ОФИОЛИТОВОГО РАЗРЕЗА В СТРУКТУРЕ СЕВЕРО-БАЛХАШСКОЙ ЗОНЫ (ЦЕНТРАЛЬНЫЙ КАЗАХСТАН): СТРОЕНИЕ И ОБОСНОВАНИЕ ВОЗРАСТА

© 2020 г. Академик РАН К. Е. Дегтярев^{1,*}, А. С. Якубчук¹, М. В. Лучицкая¹, А. А. Третьяков¹

Поступило 28.11.2019 г. После доработки 29.11.2019 г. Принято к публикации 10.12.2019 г.

В Северо-Балхашской зоне палеозоид Центрального Казахстана описан фрагмент офиолитового разреза, в строении которого участвуют дуниты, верлиты, пироксениты, габбро, габбро-долериты и плагиограниты, слагающие крупный блок в серпентинитовом меланже (массив Тесиктас). Для плагиогранитов этого массива впервые получена раннекембрийская (531 ± 1 млн лет) U–Pb-оценка возраста их кристаллизации, которая рассматривается как время завершения формирования плутонической части этого разреза офиолитов.

Ключевые слова: офиолиты, плагиограниты, циркон, ранний кембрий **DOI:** 10.31857/S2686739720030032

В фанерозойских складчатых поясах офиолиты обычно представлены небольшими фрагментами, входящими в состав серпентинитовых меланжей. Разрезы, в которых выделяются несколько элементов, сохраняются достаточно редко; поэтому их изучение важно для понимания обстановок и продолжительности процессов формирования океанической коры. В палеозоидах Казахстана крупные относительно слабо нарушенные фрагменты офиолитовых разрезов известны в Джалаир-Найманской, Бощекульской, Майкаин-Кызылтасской, Тектурмасской и Северо-Балхашской зонах. При этом наиболее детально изучены верхние – кремнисто-базальтовые и кремнистые части разрезов, точный возраст которых установлен на основании находок конодонтов [2, 3, 6, 7]. В то время как изученность фрагментов плутонических частей офиолитовых разрезов остается недостаточной. Задачами настоящей работы являлись изучение строения и U–Pb-датирование плутонических пород одного из фрагментов разреза офиолитов, слагающего крупный блок в серпентинитовом меланже Северо-Балхашской зоны в Центральном Казахстане.

Северо-Балхашская офиолитовая зона расположена в центральной части палеозоид Казахстана и протягивается в субширотном направлении на 250 км при ширине от 5 до 15 км. В ее строении участвуют серпентинитовый меланж и тектонические пластины, сложенные средне-верхнеордовикскими кремнистыми, кремнисто-базальтовыми, кремнисто-туфогенными и вулканогенноосадочными толщами [6, 8, 14]. С севера и юга зона обрамляется силурийскими флишем и олистостромами соответственно (рис. 1). В серпентинитовом меланже присутствуют крупные блоки подунит-гарцбургитового, род дунит-верлитпироксенит-габбрового и дунит-пироксенит-габбро-плагиогранитного комплексов, а также глыбы и блоки габбро, долеритов, плагиогранитов, кремнистых пород, базальтов, реже встречаются жадеититы, эклогиты и глаукофановые сланцы [1, 4, 5, 12].

В центральной части Северо-Балхашской зоны наиболее крупный блок в серпентинитовом меланже, известный как массив Тесиктас, сложен породами дунит-пироксенит-габбро-плагиогранитного комплекса. Его детальное изучение проводилось авторами с конца 80-х годов XX века.

Массив имеет сложные очертания, вытянут в юго-западном направлении на 5 км при ширине от 1 до 2.5 км. Он слагает тектоническую пластину, которая подстилается и перекрывается однотипными базальтами с прослоями кремней, содержащими конодонты среднего ордовика. От базальтов плутонические породы массива Тесиктас отделены серпентинитами, серпентинитовым меланжем или зонами рассланцевания (рис. 2). С юго-востока массив прорван позднекаменноугольными гранитами, вблизи контакта с которыми многие породы ороговикованы и амфибо-

¹ Геологический институт Российской академии наук, Москва, Россия

^{*}E-mail: degtkir@mail.ru

Рис. 1. Схема геологического строения Северо-Балхашской офиолитовой зоны Центрального Казахстана (по [3] с изменениями). *1* – верхнедевонские и каменноугольные вулканогенно-осадочные толщи; *2* – нижне-среднедевонские песчаники, конгломераты, алевролиты; *3* – силурийские песчаники и алевролиты; *4* – нижнесилурийские олистостромовые толщи; *5*–*9* – комплексы Северо-Балхашской офиолитовой зоны: *5* – верхнеордовикские вулканогенно-осадочные толщи, *6* – средне-верхнеордовикские кремнисто-туфогенные и обломочные толщи, *7* – верхнеордовикские кремнисто-базальтовые толщи, *8* – среднеордовикские кремнисто-базальтовые толщи, *9* – серпентинитовый меланж; *10* – позднекаменноугольные граниты; *11* – надвиги и тектонические покровы; *12* – прочие разрывные нарушения.

лизированы. С контактовым воздействием также связана повсеместная турмалинизация пород массива. Ультрамафиты представлены в основном серпентинизированными дунитами, которые слагают большое тело в северо-восточной части массива. Вблизи южного и восточного контактов этого тела в дунитах появляется примесь клинопироксена, и они постепенно сменяются верлитами. Контакты дунитов и верлитов с пироксенитами и габброидами в основном являются тектоническими и маркируются брекчиями и зонами милонитизации. Пироксениты распространены незначительно и максимально развиты в юговосточной части массива. Они образуют зоны переслаивания с габбро мощностью до 300 м. Габброиды, слагающие значительную часть массива, представлены в разной степени амфиболизиро-

Рис. 2. Схема геологического строения массива Тесиктас (по А.С. Якубчуку и И.Е. Кузнецову, с изменениями). *1–6* – фрагмент офиолитового разреза массива Тесиктас: *1* – кварцевые диориты и плагиограниты, *2* – долериты и габбродолериты, *3* – мезократовые и такситовые габбро, *4* – чередование габбро и пироксенитов, *5* – верлиты и пироксениты, *6* – серпенитизированные дуниты; *7* – серпентиниты и серпентинитовый меланж; *8* – верхнеордовикские обломочные толщи; *9* – среднеордовикские кремнисто-базальтовые толщи; *10* – позднекаменноугольные граниты; *11* – разрывные нарушения; а) тектонические покровы и надвиги, б) прочие; *12* – место отбора пробы для геохронологических U–Pb-исследований и ее номер.

ванными лейко-, мезо- и меланогаббро с пятнистыми текстурами мощностью около 400 м. В них очень слабо проявлена расслоенность, а в верхах разреза появляются маломощные прослои лейкократовых разностей.

Пятнистые габбро вверх по разрезу сменяются мелкозернистыми габбро и габбро-долеритами, которые прорваны многочисленными жилами и более крупными телами кварцевых диоритов и плагиогранитов. В северной части массива эти

породы слагают большие поля со сложными очертаниями, а габбро-долериты встречаются в них в виде ороговикованных ксенолитов. Плагиограниты прорваны дайками афировых диабазов. Разрез завершается долеритами, которые слагают тектонический блок в юго-западной части массива. Мощность этой части разреза около 10 м.

Общая мощность разреза плутонических пород массива Тесиктас составляет около 1000 м.

Рис. 3. Микрофотографии кристаллов циркона из плагиогранитов массива Тесиктас (проба Б-1802), выполненные на электронном микроскопе Camscan MX 2500S в режиме катодолюминесценции. Номера точек соответствуют номерам в табл. 1.

Рис. 4. Диаграмма с конкордией для цирконов из плагиогранитов массива Тесиктас (проба Б-1802).

Нами были проведены геохронологические исследования гранитоидов массива Тесиктас. Гранитоиды (проба Б-1802: 46°58'11.5" с.ш.; 76°26'20.1" в.д.) сложены плагиоклазом (55–65%), кварцем (25– 30%), амфиболом и биотитом (5–10%). Акцессорные минералы представлены апатитом, цирконом и магнетитом. Породы имеют гипидиоморфнозернистую, реже гранофировую структуры. Химический состав гранитоидов (мас. %): SiO₂ 74.11; TiO₂ 0.35; Al₂O₃ 12.44; Fe₂O₃ 1.93; FeO 0.35; MnO 0.03; MgO 0.72; CaO 2.68; Na₂O 6.06; K₂O 0.15; P₂O₅ 0.07, и они соответствуют плагиоклазовым лейкогранитам.

Выделение циркона из плагиогранитов проводилось по стандартной методике с использовани-

ФРАГМЕНТ РАННЕКЕМБРИЙСКОГО ОФИОЛИТОВОГО РАЗРЕЗА

N⁰	²⁰⁶ Pb _{c, %}	Содержание, мкг/г			Изотопные отношения				DI	Возраст, млн лет	
ана- лиза		²⁰⁶ Pb*	U	Th	²³² Th/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	Rho	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb
19.1	0.07	47.6	662	952	1.49	0.057 ± 1	0.084 ± 2.1	0.655 ± 2.5	0.9	519 ± 11	478 ± 29
4.1	0.21	22.1	306	180	0.61	0.057 ± 2	0.084 ± 1.1	0.661 ± 2.6	0.4	521 ± 6	489 ± 51
8.1	0.06	56.4	778	1218	1.62	0.057 ± 1	0.084 ± 2.0	0.660 ± 2.3	0.9	522 ± 10	482 ± 26
17.1	_	22	301	154	0.53	0.058 ± 2	0.085 ± 1.9	0.678 ± 2.5	0.8	525 ± 10	527 ± 36
25.1	0.28	24.6	337	283	0.87	0.057 ± 2	0.085 ± 4.3	0.662 ± 4.9	0.9	526 ± 22	472 ± 53
7.1	0.07	48.5	662	666	1.04	0.057 ± 1	0.085 ± 1.5	0.670 ± 2.0	0.8	527 ± 7	492 ± 29
1.1	0.15	46.4	634	709	1.15	0.058 ± 1	0.085 ± 4.5	0.676 ± 4.7	0.9	527 ± 23	514 ± 30
24.1	_	23.9	326	261	0.83	0.060 ± 2	0.085 ± 1.9	0.706 ± 2.8	0.7	528 ± 10	604 ± 45
6.1	—	23.2	317	283	0.92	0.058 ± 2	0.085 ± 0.7	0.682 ± 1.8	0.4	528 ± 3	528 ± 37
3.1	_	21.6	294	251	0.88	0.059 ± 2	0.085 ± 2.3	0.697 ± 3.1	0.8	528 ± 12	576 ± 43
13.1	0.15	39.1	532	513	1.00	0.057 ± 2	0.085 ± 2.1	0.670 ± 2.7	0.8	529 ± 11	485 ± 36
14.1	0.07	30.6	415	490	1.22	0.057 ± 2	0.086 ± 1.5	0.669 ± 2.2	0.7	530 ± 8	475 ± 35
12.1	0.06	18.8	255	135	0.55	0.056 ± 2	0.086 ± 1.6	0.663 ± 2.5	0.6	530 ± 8	454 ± 43
15.1	0.03	36.2	491	606	1.28	0.058 ± 1	0.086 ± 1.9	0.683 ± 2.3	0.8	531 ± 10	519 ± 28
20.1	0.09	38.9	528	552	1.08	0.058 ± 1	0.086 ± 0.6	0.681 ± 1.6	0.4	531 ± 3	512 ± 32
23.1	0.10	29.1	395	307	0.80	0.057 ± 2	0.086 ± 1.9	0.680 ± 2.5	0.8	531 ± 10	507 ± 36
21.1	_	19.3	261	124	0.49	0.060 ± 3	0.086 ± 0.7	0.717 ± 3.0	0.2	532 ± 4	618 ± 64
22.1	0.16	35.5	480	538	1.16	0.057 ± 2	0.086 ± 0.6	0.680 ± 1.8	0.3	533 ± 3	500 ± 37
9.1	_	20.4	275	181	0.68	0.059 ± 2	0.086 ± 2.1	0.695 ± 3.1	0.7	533 ± 11	548 ± 49
16.1	0.06	38.1	514	484	0.97	0.059 ± 1	0.086 ± 0.6	0.703 ± 1.5	0.4	533 ± 3	574 ± 30
11.1	0.26	37.7	508	495	1.01	0.057 ± 2	0.086 ± 0.6	0.678 ± 1.9	0.3	534 ± 3	487 ± 40
18.1	0.06	18.1	244	167	0.70	0.057 ± 2	0.087 ± 1.1	0.677 ± 2.3	0.5	535 ± 5	481 ± 46
5.1	0.05	23.1	307	262	0.88	0.057 ± 2	0.088 ± 0.7	0.685 ± 2.0	0.3	541 ± 3	481 ± 42

Таблица 1. Результаты геохронологических U–Th–Pb-исследований циркона из плагиогранитов (проба Б-1802)

Примечание: 206 Pb_c – обыкновенный Pb; 206 Pb* – радиогенный Pb; Rho – коэффициент корреляции ошибок 207 Pb/ 235 U – 206Pb/238U.

ем тяжелых жидкостей. Зерна циркона были имплантированы в эпоксидную смолу вместе с зернами стандартных цирконов TEMORA и 91500, а далее сошлифованы приблизительно наполовину их толщины и приполированы. Для выбора участков зерен циркона для локальных геохронологических исследований использовались микрофотографии, выполненные на сканирующем электронном микроскопе CamscanMX 2500S в режимах вторичных электронов и катодолюминесценции.

U-Th-Pb (SIMS)-геохронологические исследования цирконов выполнены на вторично-ионном микрозонде SHRIMP-II в Центре изотопных исследований ВСЕГЕИ (С.-Петербург). Измерения изотопных отношений U и Pb проводились по традиционной методике, описанной в [13]. Интенсивность первичного пучка молекулярных отрицательно заряженных ионов кислорода составляла ~2.5–4 нА, диаметр пятна (кратера) – ~15 × 10 мкм. Полученные данные обрабатывались с помощью программ SQUID [11] и ISO-PLOT [10].

Акцессорный циркон в плагиогранитах представлен в основном идиоморфными кристаллами призматического и дипирамидального габитуса размером 100–250 мкм, с коэффициентом удлинения 1.0–4.0. Реже встречаются ксеноморфные кристаллы изометрического габитуса размером 100–120 мкм, с коэффициентом удлинения 1.0– 2.0. Оба типа кристаллов характеризуются в разной степени проявленной магматической зональностью (рис. 3).

U–Th–Pb-геохронологические исследования выполнены для 23 кристаллов циркона. При этом оценки возраста получены как для идиоморфных, так и для ксеноморфных кристаллов циркона. Среднее значение, рассчитанное по отношению 206 Pb/ 238 U, составляет 531 \pm 1 млн лет (рис. 4, табл. 1), что соответствует верхам фортунского яруса основания нижнего кембрия [9].

Морфологические особенности циркона из плагиогранитов свидетельствуют о его магматическом происхождении. Это позволяет считать, что полученная оценка возраста 531 ± 1 млн лет соответствует возрасту кристаллизации родоначального для плагиогранитов расплава и может рассматриваться как время завершения формирования плутонического разреза офиолитов массива Тесиктас.

Полученная первая оценка возраста формирования плутонических комплексов офиолитов Северо-Балхашской зоны показывает, что в ее строении участвуют фрагменты разновозрастных офиолитовых разрезов. Среди них выявлены раннекембрийские (плутонические породы массива Тесиктас) и ордовикские (средне-верхнеордовикские кремнисто-базальтовые и кремнистые толщи) комплексы. Формирование разновозрастных фрагментов океанической литосферы происходило в различных геодинамических обстановках. Особенности состава плутонических пород массива Тесиктас свидетельствуют об их образовании в надсубдукционном задуговом бассейне с океанической корой. Состав базальтов среднего ордовика близок к базальтам OIB, а базальтов начала верхнего ордовика – к базальтам N-MORB, что позволяет предположить их формирование в пределах океанических островов и срединно-океанических хребтов соответственно. Накопление толши. состояшей только из кремнистых пород, лишенных терригенной примеси, вероятно, происходило в пределах глубоководных котловин. Совмещение этих фрагментов происходило в конце ордовика-раннем силуре в связи с их попаданием в структуру аккреционной призмы перед фронтом островной дуги, о чем свидетельствует накопление мощных олистостромовых и кремнисто-туфогенных толщ.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследования выполнены за счет средств Российского научного фонда, проект № 19–17–00101.

СПИСОК ЛИТЕРАТУРЫ

 Абдулин А.А., Паталаха Е.И. (ред.) Офиолиты. (Итмурунды-Казыкская и Чарская зоны). Алма-Ата: Наука КазССР, 1981. 180 с.

- 2. Герасимова Н.А., Новикова М.З., Курковская Л.А., Якубчук А.С. Новые данные по стратиграфии нижнего палеозоя Тектурмасского офиолитового пояса (Центральный Казахстан) // Бюлл. МОИП. Отд. геол. 1992. Т. 67. Вып. 3. С. 60–76.
- 3. Дегтярев К.Е. Тектоническая эволюция раннепалеозойской активной окраины в Казахстане. М.: Наука, 1999. 123 с.
- Добрецов Н.Л., Пономарева Л.Г. Сравнительная характеристика полярноуральских и прибалхашских жадеитовых и ассоциирующих с ними пород // Материалы по генетической и экспериментальной минералогии. Вып. 61. Новосибирск: Наука, 1965. С. 178–244.
- Михайлов Н.П. (ред.) Петрография Центрального Казахстана. Т. П. Интрузивные формации основных и ультраосновных пород. М.: Недра. 1971. 360 с.
- 6. *Никитин И.Ф.* Ордовикские кремнистые и кремнисто-базальтовые комплексы Казахстана // Геология и геофизика. 2002. Т. 43. № 2. С. 512–527.
- Новикова М.З., Герасимова Н.А., Курковская Л.А., Степанец В.Г., Якубчук А.С. Стратиграфия нижнепалеозойских вулканогенно-кремнистых толщ Майкаин-Кызылтасского офиолитового пояса (Центральный Казахстан) // Бюлл. МОИП. Отд. геол. 1993. Т. 68. Вып. 6. С. 47–63.
- 8. Новикова М.З., Герасимова Н.А., Дубинина С.В. Конодонты из вулканогенно-кремнистого комплекса Северного Прибалхашья // ДАН СССР. 1983. Т. 271. № 6. С. 1449–1450.
- Cohen K.M., Finney S.C., Gibbard P.L., Fan J.-X. The ICS International Chronostratigraphic Chart // Episodes. 2013. V. 36. P. 199–204.
- Ludwig K.R. ISOPLOT 3.00. A User's Manual // Berkeley Geochronology Center Special Publication. 2003. № 4. 2455 RidgeRoad, Berkeley. CA 94709. USA. 70 p.
- Ludwig K.R. SQUID 1.00, A User's Manual // Berkeley Geochronology Center Special Publication. 2000. No. 2. 2455 Ridge Road, Berkeley. CA 94709, USA. 17 p.
- Pilitsyna A.V., Degtyarev K.E., Tretyakov A.A. First Find of Phengite Eclogites and Garnet-Glaucophane Schists Associated with Jadeitites in the Kenterlau-Itmurundy Serpentinite Mélange (North Balkhash Ophiolite Zone; Central Kazakhstan) // Abst. Vol. 13th Int. Eclogite Conf. / C. Mattinson, D. Castelli, S.W. Faryad, J. Gilotti, G. Godard, A. Perchuk, D. Rubatto, H.-P. Schertl, T. Tsujimori, Y.-F. Zheng (Eds.). Petrozavodsk: KRC RAS, 2019.
- Whilliams I.S. U–Th–Pb Geochronology by Ion Microprobe // Rev. Econ.Geol. 1998. V. 7. P. 1–35.
- *Zhylkaidarov A.M.* Conodonts from Ordovician of Central Kazakhstan // Acta Paleontol. Polonika. 1998. V. 48. № 1. P. 53–68.

AGE AND STRUCTURE OF A FRAGMENT OF THE EARLY CAMBRIAN OPHIOLITE SEQUENCE FROM THE NORTH BALKHASH ZONE (CENTRAL KAZAKHSTAN)

Academician of the RAS K. E. Degtyarev^{*a*,#}, A. S. Yakubchuk^{*a*}, M. V. Luchitskaya^{*a*}, and A. A. Tretyakov^{*a*} *[#]E-mail: degtkir@mail.ru*

^a Geological institute, Russian Academy of Sciences, Moscow, Russian Federation

Within the structure of the North Balkhash zone of Palaeozoides of Central Kazakhstan, a fragment of the ophiolite sequence composed of dunites, wherlites, pyroxenites, gabbros along with gabbro-dolerites and plagiogranites, which are enclosed by serpentinite mélange (the Tesiktas massif), has been studied. An Early Cambrian $^{206}Pb/^{238}U$ age of 531 ± 1 Ma considered to be the crystallization age, has been first obtained for the plagiogranites from this massif. The age estimate is thought to reflect the timing of a completion of formation of the plutonic suite of the ophiolite sequence.

Keywords: ophiolites, plagiogranites, zircon, Lower Cambrian